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A B S T R A C T

Background: In recent years, many countries have actively implemented programs and strategies to promote
physical education and sports. Despite these efforts, the increase in physical activity has been accompanied by a
significant rise in muscle and tendon-ligament injuries, with Achilles tendon rupture being the most prevalent,
accounting for 47 % of such injuries. This review aims to summarize all significant factors determining the
predisposition of the Achilles tendon to rupture, to develop effective personalized prevention measures.
Objective: To identify and evaluate the risk factors contributing to Achilles tendon rupture and to develop stra-
tegies for personalized prevention.
Methods: This review utilized data from several databases, including Elsevier, Global Health, PubMed-NCBI,
Embase, Medline, Scopus, ResearchGate, RSCI, Cochrane Library, Google Scholar, eLibrary.ru, and CyberLe-
ninka. Both non-modifiable and modifiable risk factors for Achilles tendon injuries and ruptures were analyzed.
Results: The analysis identified several non-modifiable risk factors, such as genetic predisposition, anatomical and
functional features of the Achilles tendon, sex, and age. These factors should be considered when selecting sports
activities and designing training programs. Modifiable risk factors included imbalanced nutrition, improper
exercise regimens, and inadequate monitoring of Achilles tendon conditions in athletes. Early treatment of
musculoskeletal injuries, Achilles tendon diseases, foot deformities, and metabolic disorders is crucial. Long-term
drug use and its risk assessment were also highlighted as important considerations. Furthermore, recent clinical
advancements in both conventional and surgical methods to treat Achilles tendon injuries were described. The
efficacy of these therapies in enhancing functional outcomes in individuals with Achilles injuries was compared.
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Advancements in cell-based and scaffold-based therapies aimed at enhancing cell regeneration and repairing
Achilles injuries were also discussed.
Discussion: The combination of several established factors significantly increases the risk of Achilles tendon
rupture. Addressing these factors through personalized prevention strategies can effectively reduce the incidence
of these injuries. Proper nutrition, regular monitoring, timely treatment, and the correction of metabolic dis-
orders are essential components of a comprehensive prevention plan.
Conclusion: Early identification of Achilles tendon risk factors allows for the timely development of effective
personalized prevention strategies. These measures can contribute significantly to public health preservation by
reducing the incidence of Achilles tendon ruptures associated with physical activity and sports. Continued
research and clinical advancements in treatment methods will further enhance the ability to prevent and manage
Achilles tendon injuries.
The translational potential of this article: This study identifies key modifiable and non-modifiable risk factors for
Achilles tendon injuries, paving the way for personalized prevention strategies. Emphasizing nutrition, exercise,
and early treatment of musculoskeletal issues, along with advancements in cell-based therapies, offers promising
avenues for improving recovery and outcomes. These findings can guide clinical practices in prevention and
rehabilitation, ultimately reducing Achilles injuries and enhancing public health.

The translational potential of this article

This study identifies key modifiable and non-modifiable risk factors
for Achilles tendon injuries, paving the way for personalized prevention
strategies. Emphasizing nutrition, exercise, and early treatment of
musculoskeletal issues, along with advancements in cell-based thera-
pies, offers promising avenues for improving recovery and outcomes.
These findings can guide clinical practices in prevention and rehabili-
tation, ultimately reducing Achilles injuries and enhancing public
health.

1. Introduction

Enhanced injury prevention and clinical guidance for effective
regenerative medicine are significant strategies to ameliorate rupture-
mediated Achilles injuries in the lower limb. For instance, Physical ac-
tivity is a cornerstone of promoting and maintaining overall health. Its
benefits include improved cardiovascular health, enhanced mental well-
being, and increased longevity. As a result, many countries have been
actively implementing programs and strategies aimed at the

development of physical education and sport [1–5]. This focus is evident
in the significant progress in the physical education of children, ado-
lescents, and young people. Furthermore, the popularity of fitness clubs
and gyms is rising among the working-age population, reflecting a
broader trend towards an active lifestyle. There is also an intensive
development of all types of amateur and professional sports, driven by
increased awareness of the health benefits of physical activity and ad-
vancements in sports science and technology [1–5].

However, the increase in physical activity among the population is
accompanied by a corresponding rise in muscle and tendon-ligament
injuries, with Achilles tendon rupture taking a leading place. Achilles
tendon ruptures account for approximately 47 % of such injuries,
highlighting their prevalence and impact [6–8]. Numerous studies
indicate that the incidence of Achilles tendon rupture today reaches
25–30 cases per 100,000 population per year and continues to grow.
This increase can be attributed to several factors, including higher
participation in sports and physical activities, changes in training in-
tensities, and demographic shifts such as an aging yet active population
[6–9] (Fig. 1).

Achilles tendon is primarily composed of collagen type I (Col I) as

Fig 1. Achilles tendons are subjected to mechanical forces continuously throughout an individual’s life. When these forces are of sufficient intensity, such as during
physical activity, they can confer various health benefits not only to the tendons but also to the entire musculoskeletal system. Risk factors for Achilles tendon (AT)
injuries can be divided into intrinsic and extrinsic categories, which can occur either in isolation or in combination. Intrinsic factors include biomechanical irreg-
ularities of the lower limbs. Examples of these irregularities are indifferent leg length, hyperpronation; other irregularities include pes cavus (high arches), forefoot
varus deformity, and limited mobility of the subtalar joint. Additionally, systemic conditions like those associated with advanced age, metabolic syndrome, and the
use of specific medications, such as corticosteroids, contribute to intrinsic risk factors. Extrinsic factors involve excessive mechanical stress and poor training
practices. These include increased interval training, augmented mileage, training on uneven surfaces, repeated loading, and inadequate shock absorption. Achilles
tendinopathy typically features a failed healing response, chronic inflammation, and predominant catabolic activity. This complex interplay of intrinsic and extrinsic
factors underscores the importance of a comprehensive approach to understanding and mitigating the risk of Achilles tendon injuries.
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well as collagen type III (Col III), with Col I being the dominant struc-
tural protein that provides tensile strength, while Col III plays a sup-
portive role, particularly during the healing process [10,11]. The
formation of collagen begins when three polypeptide chains undergo
enzymatic excision of terminal peptides, leading to the assembly of
soluble tropocollagen molecules. These tropocollagen units further align
laterally to form collagen fibrils, which aggregate into collagen fibers.
Multiple collagen fibers group together into hierarchical structures,
forming primary, secondary, and tertiary bundles that contribute to the
tendon’s overall mechanical properties [12].

In addition to collagen, the extracellular matrix (ECM) of AT is a
complex network containing elastin, which imparts elasticity; fibro-
nectin, involved in cell adhesion and wound healing; and proteoglycans
such as decorin, biglycan, and fibromodulin, which regulate collagen
fibril formation and tendon integrity [13]. These ECM components play
critical roles not only in maintaining tendon architecture but also in
modulating the response to injury and mechanical load.

Tissue-resident cells within the tendon contribute to its structure and
function, displaying considerable heterogeneity. The majority of tendon
cells in mature AT are tenocytes, which are elongated, fibroblast-like
cells that synthesize and maintain the ECM. In younger tendons, a
greater proportion of the cell population consists of tenoblasts, which
are more proliferative and responsible for the initial stages of collagen
synthesis. Tenocytes and tenoblasts together form approximately 90%–
95 % of the cellular content of tendon, with tenoblasts gradually
maturing into tenocytes as the tendon ages, playing a vital role in the
development, maintenance, and repair of tendon tissue. These cells
respond dynamically to mechanical loading, contributing to the ten-
don’s adaptability and resilience [13,14].

Recurrences of this injury also account for a significant percentage,
with 35.0 % observed after conservative treatment and 3.5 % after
surgery [9]. These recurrences underscore the need for improved
treatment protocols and preventive strategies. Achilles tendon rupture is
accompanied by serious disorders of support and movement in the ankle
joint, leading in some cases to chronic instability and long-term
disability. This can significantly impair quality of life and physical
function, necessitating comprehensive approaches to treatment and
rehabilitation.

Understanding the causes and mechanisms of Achilles tendon injury
is crucial for its prevention. Factors such as biomechanical stress, genetic
predispositions, and systemic conditions like diabetes or hypercholes-
terolemia play significant roles. Advances in molecular biology and
regenerative medicine have begun to elucidate the underlying patho-
physiology of tendon injuries, providing insights that can inform more
effective preventive and therapeutic strategies. The role of mesenchymal
stromal cells (MSCs) and other regenerative techniques in tendon repair
and regeneration is particularly promising, offering the potential to
enhance healing outcomes and reduce recurrence rates. Therefore, this
review aims to summarize all significant factors determining the
Achilles tendon predisposition to rupture, with a focus on developing
effective measures for personalized prevention. This includes exploring
the latest comparative clinical outcomes of therapeutic modalities, ad-
vancements in regenerative medicine, biomechanical analysis, and
clinical guidance to provide a holistic approach to injury prevention and
management. By integrating these insights, we can enhance clinical
outcomes, reduce the incidence of recurrent injuries, and improve the
overall quality of life for individuals engaged in physical activities.

1.1. Literature search

To develop a comprehensive understanding of modifiable risk factors
for Achilles tendon rupture, we conducted an extensive literature review
using various databases. These included PubMed, Medline, eMedicine,
Scopus, Google Scholar, the National Library of Medicine (NLM), and
ReleMed. Our search focused on published reports and articles exam-
ining the impact of metabolic disorders, physical activity, and

pharmacological agents on tendon health. Specifically, we investigated
the roles of hypercholesterolemia, hyperuricemia, thyroid hormone
imbalances, inherited metabolic disorders, and the adverse effects of
medications such as fluoroquinolones, statins, corticosteroids, aroma-
tase inhibitors, anabolic steroids, isotretinoin, and drugs affecting the
renin-angiotensin system. This review also encompassed studies on the
molecular mechanisms involving cholesterol oxidation products, matrix
metalloproteinases, and oxidative stress, which contribute to tendon
degeneration and increased rupture risk.

1.2. Achilles injuries and clinical manifestations

Despite the identification of numerous risk factors for Achilles in-
juries, the precise causation remains elusive. A comprehensive evalua-
tion of all potential risk factors and the current clinical reports
supporting every risk factor is necessary for developing effective
ameliorative strategies. Lower-limb injuries are commonly observed in
military personnel and running athletes [15]. Mainly, chronic Achilles
tendon injuries, often called tendonitis or tendinopathy; are particularly
severe, significantly affecting training and racing schedules [16]. Ten-
dinopathies typically manifest across the middle anatomical region of
Achilles, due to the minimal cross-sectional area of tendon [17], or at its
insertion point on the calcaneus.

Middle region of the tendon is formed by the integration of collagen
fibers form soleus, gastrocnemius (middle or lateral) muscles. These
injuries are evident in long-distance runners. For instance, the incidence
of chronic Achilles injuries is comparatively higher in middle and long-
distance runners [6–8,18–20]. Therapeutic strategies to ameliorate
clinical manifestations showminimal efficacy as these injuries persist for
longer years. Thus, middle-to long-distance runners are at an elevated
risk of Achilles injuries, which have significant immediate and long-term
health and personal costs. Recurrent running could induce severe force
on the lower limbs nearly ninety times greater for a minute [18–20]. The
Achilles tendon, along with the calf muscles, bears significant loads
early in the absorption process, enduring forces induced by body weight
[12]. Furthermore, gait biomechanics adjust according to the training
environment to reduce harmful forces on the musculoskeletal system
while sustaining performance levels [21–23].

Achilles tendon plays a crucial role in regular locomotive activities
by enabling foot contact with the ground and drive force generation and
confer to over 50 % of positive work executed at the ankle at the time of
running [24]. Achilles functions in concert with gastrocnemius & soleus
muscles to foster effective ankle movement during joint movements
[25–27]. Hence, the mechanics of tendons are variable due to the
intricate multifactorial nature of Achilles injuries. The debate over the
mechanisms of Achilles injuries has identified several potential causes,
including tensile loading [28], and shearing [29]; In addition, hyper-
thermia is another mechanism of Achilles injury [24,30]. Mechanisms
pertinent to these can lead to ‘non-homologous loading,’ resulting in the
deterioration of tissue [31,32]. Insertion region experiences a higher
stress ex vivo [33,34]. Strain along tendon’s length is variable and lacks
a consistent pattern [33]. In chronic tendinopathies, localized damage
may result in scar generation or areas of weakened tissue. Repeated
loading before complete healing exacerbates this cycle of progressively
weakened and dysfunctional tissue, increasing the risk of further injury
if loading occurs before the tendon has fully recovered its original
strength.

Despite extensive multidisciplinary research, the reasons for Achilles
injuries and especially individuals why a few individuals acquire tendon
injuries yet require future studies. Multiple mechanisms likely could
cause intricate injury physiology which complicates the interpretation
of results. Understanding the specific loading patterns that contribute to
‘non-homologous’ loading could shed light on reasons for inducing
Achilles overuse injuries. Several risk factors were reported to enhance
the likelihood of causing Achilles injuries, including advancing age,
male gender, training errors, inappropriate footwear, running on soft
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surfaces, pronation, and cold weather [35]. Overuse injuries could be
due to the multifactorial influence typically due to the multiple risk
factors [36]. According to the clinical manifestations, prevention is a
significant strategy when compared to treatment, necessitating the
identification of causative factors to predict people who are more prone
to develop Achilles injuries. Exploring the variations in risk factors
among runners with Achilles injuries can reveal areas for further
research into potentially adjustable causative factors. An optimal pre-
ventive strategy would involve a comprehensive assessment encom-
passing multiple risk factors to effectively identify athletes at risk [37].

1.3. Non-modifiable Achilles tendon rupture risk factors

1.3.1. Genetic predisposition to Achilles tendon ruptures
Significant advances in human molecular genetics over recent de-

cades, particularly the complete sequencing of the human genome, have
provided new insights into predictive personalized medicine. Identifi-
cation of genetic markers has become a fundamentally new diagnostic
vector for detecting individual predispositions to musculoskeletal in-
juries. Achilles tendon injuries and ruptures are associated with genes
encoding extracellular matrix proteins. Mutations in these genes affect
not only tendon fiber strength and predisposition to damage but also
injury severity and recovery rate [38–42].

Research has shown that the predisposition to Achilles tendon
rupture is largely due to polymorphisms in the G1023T gene
(rs1800012) at the Sp1 functional binding site in intron-1 of the
seventeenth chromosome, involved in type I collagen synthesis. The
absence of the TT genotype indicates a possible protective role of these
alleles [43]. Of particular importance are changes in the MMP3 gene
(STMY1) on the eleventh chromosome, responsible for synthesizing
stromelysin I, a matrix metalloproteinase that degrades the extracellular
matrix. Polymorphisms in the MMP3 gene (rs679620G, rs591058C,
rs650108A) are associated with Achilles tendovaginopathy. The inter-
action between the G-allele of the MMP3 gene (rs679620) and the
T-allele of the COL5A1 gene (rs12722) significantly increases the risk of
this pathology [44].

For predicting Achilles tendon rupture, studies have also focused on
the TNC gene on the ninth chromosome (9q33), which encodes the
extracellular matrix protein tenascin C. This protein inhibits cell adhe-
sion, allowing cells to move. Polymorphisms associated with the twelfth
and ITGT repeats in the seventeenth intron are significant markers of
high Achilles tendon rupture risk, whereas polymorphisms associated
with the thirteenth and seventeenth repeats are protective [45]
(Fig. 2A–B, Table 1). Thus, genetic predisposition is a significant factor
in Achilles tendon damage.

1.3.2. Anatomo-functional Achilles tendon features
The Achilles, or calcaneus tendon, is the largest and strongest tendon

in the human body, formed from the fusion of the flat aponeuroses of the
soleus and medial and lateral gastrocnemius muscles that constitute the
triceps surae [68–71]. The Achilles tendon structure is characterized by
strict architectonics, consisting of a three-dimensional network of dense
collagen fibers forming primary bundles, which are grouped into fasci-
cles. These are surrounded by endotenon, a loose connective tissue
containing nerves, blood, and lymphatic vessels. All bundles are envel-
oped by the paratenon, which consists of two sheets: visceral (epitenon)
and parietal (peritenon). Thin fluid spaces between all connective tissue
layers reduce friction during tendon fiber sliding and prevent damage.
The total number of fibrils and bundles, which determines the Achilles
tendon strength, varies greatly within the population [70,71,96].

The Achilles tendon attaches to the calcaneus and twists spirally,
bending at right angles so that fibers in its proximal part medially are
displaced posteriorly in the distal part. This structure allows the tendon
to change length during movements, providing biomechanical strength.
The degree of tendon fiber twisting is individual and largely determines
its predisposition to microtraumas and ruptures [70,72]. The transition

of tendon fibers into bone tissue through the hyaline cartilage region is
called the enthesis. This complex formation distributes load uniformly,
performs shock absorption, and determines the biomechanics of
walking, jumping, and running. The bursa subcutanea, located between
the enthesis and the skin, and the bursa retrocalcaneale, located be-
tween the tendon and the calcaneal bone, reduce friction between
moving fibers and surrounding tissues [70,71,96]. The deep tibia fascia
acts as a retainer for the Achilles tendon, forming its anterior bend in the
distal part and giving stability to the foot during plantar flexion. Addi-
tional stabilization is provided by the tight fusion of the tibia fascia with
the calcaneal tuberosity, which functions as a guiding block for the
Achilles tendon, reducing the load on the enthesis. Studies have shown
that congenital anomalies of Achilles tendon attachment to the calca-
neus lead to chronic tendon fiber injury, increasing the risk of sponta-
neous rupture [70–72,96]. The cellular fat space along the anterior
Achilles tendon surface, known as Keger’s fat body, minimizes pressure
changes in the bursa retrocalcaneale during ankle movements. It pro-
tects blood vessels that feed the Achilles tendon and prevents the tendon
from twisting during plantar flexion. Degradation of this fat body during
long-term topical corticosteroid application impairs its protective
functions [73].

The blood supply peculiarities of the Achilles tendon play a special
role in predicting rupture location. The tendon complex receives blood
from three sources: the arteries of the musculotendinous transition, the
paratenon, and tendon attachment to the bone. Consequently, the
middle Achilles tendon part is the least supplied with blood, relying on
capillaries in the surrounding connective tissue for reperfusion. Under
increased load, these areas are more prone to hypoxia and metabolic
disturbances, leading to dystrophic changes. Poorly supplied tendon
parts exhibit higher temperature regimes, which increase the elastic
component and significantly reduce tendon fiber strength [68,73]. The
middle Achilles tendon part is subjected to maximum stress during
muscle contraction, explaining why 80.0–88.7 % of primary Achilles
tendon acute ruptures occur in this region [68,74,75].

The Achilles tendon is surrounded by a network of nerve fibers in the
epitenon and endotenon. Terminal nerve endings include Fater-Pachini
corpuscles (sensing acceleration and deceleration of movement), Ruffini
corpuscles (pressure and stretch sensors), and nociceptors (pain re-
ceptors). The tendinous Golgi organ, located in the proximal tendon
zone, serves as a tension receptor. Imbalances in nerve regulation are
associated with biomechanical disturbances in the tendon, leading to
microtraumas [76]. Asynchronous contraction of the triceps surae or
uncoordinated contraction of agonist and antagonist tibia muscles can
result in Achilles tendon rupture [77].

The Achilles tendon is primarily composed of dense fibrous con-
nective tissue, with significant fiber predominance over cells and the
amorphous substance. The cellular component includes mature fibro-
blasts (tenocytes) and young forms responsible for extracellular matrix
transformation and fiber synthesis, predominantly collagen type I (95
%) and type III (5 %). Tenocytes interact through connexin, a protein
allowing them to control collagen fiber synthesis and regulate tendon
strength according to load. Tenocytes contain contractile proteins (actin
and myosin), enabling the tendon to transfer force from muscle to bone
via an active contraction-relaxation mechanism. Regular physical ac-
tivity increases tendon fiber strength [78–80].

Achilles tendon collagen fibrils are almost entirely type I collagen,
which has higher mechanical strength compared to type III collagen.
Proteoglycan molecules, predominantly leucine-rich decorin, provide
binding between fibers. The interfibrillar space contains numerous
glycosaminoglycans and water, with longitudinal and strictly parallel
collagen fiber arrangements aligning with mechanical load direction.
Collagen molecule tensile strength is maintained by amino acid cross-
links, which vary significantly throughout the tendon. The muscu-
lotendinous and tendon-bone transitions have the highest number of
these contacts, while the medial tendon part has the least, contributing
to its reduced mechanical strength. Essential amino acids are crucial for
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Fig. 2. A–B: the risk factors for Achilles tendon rupture and the associated regenerative medicine strategies. The diagram categorizes the risk factors into non-
modifiable, modifiable, and drug-induced factors, and outlines different regenerative medicine approaches including cellular therapy, PRP therapy, and gene
therapy. This figure enables an understanding of the complex interplay between various risk factors and the emerging therapeutic strategies aimed at improving
tendon repair and regeneration.
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tendon fiber strength, and deficiencies can negatively impact the
Achilles tendon. Additionally, the tendon state depends on the content
of vitamin C and ions (Ca2⁺, Mg2⁺, Fe2⁺, Mn2⁺, Zn2⁺, Cu⁺), with de-
ficiencies leading to impaired extracellular matrix protein synthesis,
decreased fiber cross-linking, and increased fiber degradation, affecting
tendon fiber strength [9,46,97–101]. Thus, initial Achilles tendon
strength varies greatly within a biologically diverse population and
depends on the body’s content of micronutrients and essential amino
acids required for maintaining tendon homeostasis.

1.3.3. Age-sex factor
Numerous studies have demonstrated that the incidence of Achilles

tendon ruptures is significantly higher in men than in women [9,46–50].
This discrepancy is often attributed to the greater male participation in
sports activities, which inherently increases the risk of such injuries.
Additionally, the male body, due to higher testosterone concentrations,
exhibits better muscle hypertrophy, larger muscle cross-sectional areas,
more fast-twitch muscle fibers, and consequently greater forces applied
to tendons per unit time. These factors collectively increase the func-
tional load on tendons, potentially leading to a higher risk of rupture. In
contrast, the female hormone estrogen, which is responsible for the
elasticity of ligaments and tendons, is present in very low concentrations
in men, rendering their tendons more rigid and less resistant to sudden
loads [51–53] (Fig. 2A–B, Table 1).

Interestingly, physiological support for standard leg movements also
shows significant sex differences in intermuscular coordination of
different muscle groups and the hemodynamic supply of muscles and
ligaments, which may contribute to the pathogenesis of Achilles tendon

ruptures [9,54–56].
The risk of Achilles tendon rupture varies with age, showing two

distinct peaks: one in socio-economically active individuals aged 30–40
years, and the other in older adults aged 60–80 years. In the younger
group, injuries are often due to high physical loads and improper
training regimens, compounded by potential underlying connective
tissue deficiencies [9,54–56]. In older adults, the risk is associated with
age-related degenerative changes in the Achilles tendon that signifi-
cantly reduce its strength, making it susceptible to ruptures even during
routine physical activities [9,54–56].

The pathophysiological mechanisms underlying these age-related
changes include a decline in blood supply to the Achilles tendon and a
slowdown in its physiological regeneration. In tenocytes, there is a
decrease in mRNA levels and enzyme activity associated with extracel-
lular matrix protein synthesis. Concurrently, the activity of matrix
metalloproteinases, which are involved in collagen fiber degradation,
increases significantly [9,54,57–59].

During aging, tendon cell density decreases substantially, with cells
changing from a round to a spindle shape [9,54,57–61]. Moreover, aging
is associated with a reduction in collagen fiber diameter, a decrease in
the degree of fiber twisting, and a shift in the collagen ratio toward an
increase in type III collagen, which has significantly lower strength and
stress resistance [62–65]. These changes are compounded by an
age-related increase in ankle joint stiffness and a decrease in the range of
motion, which directly affect the functional capacity and structural
integrity of the Achilles tendon [66,67].

Understanding these age and sex differences in Achilles tendon
rupture risk factors is crucial for developing targeted injury prevention

Table 1
A comprehensive table outlining the risk factors and regenerative medicine approaches for Achilles tendon ruptures, organized by modifiable and non-modifiable
factors, along with their effects.

Risk Factors Modifiable/Non-
Modifiable

Effect References

Genetic Predisposition Non-modifiable Polymorphisms in genes encoding extracellular matrix proteins affect tendon fiber strength,
predisposition to damage, injury severity, and recovery rate.

[43–45]

- G1023T gene (rs1800012)  Affects type I collagen synthesis; absence of TT genotype may be protective. [43]
- MMP3 gene (rs679620G, rs591058C,
rs650108A)

 Polymorphisms associated with Achilles tendovaginopathy; interaction with COL5A1 gene
increases risk.

[44].

- TNC gene (9q33)  Polymorphisms in introns associated with high risk and protective markers for Achilles tendon
rupture.

[45]

Age-Sex Factor Non-modifiable Higher incidence in men due to greater muscle forces; age-related degenerative changes
increase rupture risk.

[9,46–61]
[62-67].

Anatomical Features Non-modifiable Structural variations in tendon attachment and fiber architecture influence rupture
susceptibility.

[68–80]

Physical Activity (Sedentary Lifestyle) Modifiable Sudden physical activity after a sedentary period increases injury risk. [46,54,81–87].
Physical Activity (Professional
Athletes)

Modifiable Overtraining and improper training regimens elevate injury risk. [46,47,85–88].

Comorbidities (Connective Tissue
Dysplasia)

Modifiable Structural abnormalities in connective tissues increase risk. [89,90]

Comorbidities (Foot/Ankle
Deformities)

Modifiable Biomechanical disorders due to deformities predispose to chronic injuries. [89–95].

Metabolic Disorders (Obesity) Modifiable Excessive load on tendons causes pathological changes and reduces strength. [45,81–83]
Metabolic Disorders (Type II Diabetes) Modifiable Structural changes and increased tendon thickness observed in diabetic patients. [84–91]
Metabolic Disorders
(Hypercholesterolemia)

Modifiable Cholesterol deposits cause chronic inflammation and tendon degeneration. [92–95]

Metabolic Disorders (Hyperuricemia) Modifiable Urate crystal deposition alters tendon structure, increasing rupture risk. [96–102]
Thyroid Hormone Imbalance Modifiable Hormone imbalances impair collagen synthesis, increasing injury risk. [62,82,

103–109]
Drug-Induced Risk Factors Modifiable Certain medications increase the risk of tendinopathy and rupture through various

mechanisms.
[110–126]

- Fluoroquinolones  Increase MMP expression and collagen degradation; inhibit tenocyte activity. [113–118]
- Antimicrobial drugs  Linked to tendinopathy and rupture. [119–121]
- Statins  Weaken tendon structural components and activate apoptosis. [111,112,122]
- Corticosteroids  Inhibit tenocyte activity and collagen synthesis; increase collagen breakdown. [111,112,123]
- Aromatase Inhibitors  Decrease estrogen levels, leading to tendon fiber damage. [111–113,124]
- Anabolic Steroids  Cause rapid muscle mass buildup and increased tendon load. [111,112,125]
- Isotretinoin  Linked to tendon damage. [126]
- Renin-Angiotensin System Drugs  Statistically associated with tendon rupture. [119]
- Thiazide Diuretics and Calcium
Channel Blockers

 Associated with tendinitis and painful ankle swelling. [111,112,117]
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strategies and clinical guidelines. Enhanced regenerative medicine ap-
proaches, tailored to address these specific risk factors, could signifi-
cantly improve outcomes for individuals at higher risk of Achilles
tendon injuries.

1.4. Modifiable Achilles tendon rupture risk factors

1.4.1. Physical activity features
Numerous studies have demonstrated that up to 90 % of Achilles

tendon ruptures occur during recreational and amateur sports activities.
This injury is particularly common among individuals who lead a
sedentary “office” lifestyle and seek to improve their health through
periodic visits to fitness clubs and gyms. Tenocytes, the tendon cells, are
mechanosensitive and respond to load stress by upregulating the
expression of extracellular matrix proteins, primarily collagen and
decorin. Insufficient physical activity results in decreased expression of
these proteins, leading to a reduction in Achilles tendon strength.
Furthermore, the lack of dynamic mechanical tension in the tendons
reduces the expression of thyroid receptors, which are crucial for
fibrocyte proliferation and anabolic processes. Therefore, irregular
physical training and sudden increases in physical activity levels
significantly elevate the risk of Achilles tendon injuries [46,54,81–84].

Professional athletes, who account for about 5 % of Achilles tendon
injuries, are also at risk due to improper training regimens and tendon
overload during exhaustive training. This overload is associated with
increased expression of proinflammatory cytokines (IL-1β, TNF-α),
prostaglandins, and matrix metalloproteinases, leading to inflammatory
and degenerative changes in tendon fibers and a higher risk of sponta-
neous rupture. Achilles tendon injuries are particularly common in team
sports such as basketball, volleyball, tennis, and soccer, where repetitive
rapid acceleration, deceleration, and jumps are frequent [46,47,85–88].

1.4.2. Comorbidity factor
Impaired synthesis of collagen fibers, increased degradation, or in-

flammatory changes in connective tissue dysplasia syndrome signifi-
cantly affects tendon fiber structure and strength. Research from
Sechenov University indicates that a serious risk factor for musculo-
skeletal injuries, including ligament and tendon ruptures, is the initial
connective tissue failure. The prevalence of this pathology in the pop-
ulation is estimated to reach 85 % [55,56]. Clinical pathognomonic
markers of predisposition to injuries have significant sex differences: in
women, markers include asthenic body type, joint hypermobility, soft
ears, hyperelastic skin, telangiectasias, atrophic striae, and varicose
veins; in men, markers include dolichostenomelia, arachnodactyly,
chest deformities, flat feet, and abdominal muscle diastasis [89,90].
Identification of these markers is crucial for personalized selection of
sports activities and training programs to prevent ligament, tendon, and
muscle injuries.

Factors increasing Achilles tendon injury risk include various foot,
ankle, and knee joint deformities. These anatomical and morpho-
logical changes can cause biomechanical disorders that lead to uneven
load distribution on tendons, resulting in damage. Congenital foot de-
formities, such as pronounced flat feet, congenital vertical talus, club-
foot, tarsal coalitions, valgus-adducted foot, varus first toe deformity,
neurogenic foot deformities, and hypermobile flat feet with Achilles
tendon shortening, significantly alter motor patterns and lead to chronic
tendon fiber traumatization [89,90]. Additionally, deformities in ankle
and knee joints due to degenerative-dystrophic or inflammatory pro-
cesses contribute to Achilles tendon injuries and ruptures [89–95].

Pathological changes in the Achilles tendon are a significant risk
factor for microtraumas and spontaneous ruptures. These changes can
be classified into non-insertional, located in the tendon’s middle part,
and insertional, located at the lower third near the calcaneus [102–104].
Non-insertional tendinopathy, often manifesting as edema and pain 2–7
cm from the calcaneus attachment, involves tendinosis, characterized by
degenerative and atrophic changes without histologic inflammation.

Continuous inadequate loads on the tendon can trigger this condition
[102–104]. Paratendopathy involves inflammatory changes extending
to the paratenon, causing pronounced edema, redness, and crepitation
at the lesion site. Histologically, tissue infiltration with inflammatory
cells and fibrinous exudate is observed, leading to increased sponta-
neous rupture risk due to a shift in the collagen type I to type III ratio
[102–104].

Insertional tendinopathy, which manifests as edema and pain at the
Achilles tendon’s attachment to the calcaneus, is often accompanied by
bony growths on the calcaneus and within the tendon. Degenerative or
inflammatory changes in the bursae, such as retrocalcaneal bursitis
(between the tendon and calcaneus) and superficial calcaneal bursitis
(between the tendon and skin), further exacerbate the condition [9,
105–107]. Chronic corticosteroid use in these areas can lead to teno-
necrosis, loss of the tendon’s tricuspid structure, and inhibition of
reparative processes, significantly increasing the risk of spontaneous
tendon rupture [9,105–107].

1.4.3. Metabolic factors
Metabolic disorders associated with various diseases significantly

impact tendon structure and function, particularly in the Achilles
tendon, leading to tendinopathy and a predisposition to spontaneous
rupture under normal mechanical loads [108–110]. Obesity, a signifi-
cant metabolic factor, places excessive long-term loads on the lower
limb joints, ligaments, and tendons, causing pathological changes and
impaired movement biomechanics. Adipose tissue cells secrete adipo-
kines, which affect tenocyte activity and alter tendon structure. These
bioactive substances increase the production of cytokines, prostaglan-
dins, and matrix metalloproteinases, supporting systemic chronic
inflammation of tendons and causing degradation regardless of the load
[54,109–111] (Fig. 2A–B, Table 1).

1.4.4. Type II diabetes
Patients with type II diabetes are characterized by increased Achilles

tendon thickness and structural changes, such as hypoechogenicity,
fibrillar pattern loss, and calcification, detectable via ultrasound
[112–116]. Electron microscopy reveals an increased density of disor-
ganized collagen fibrils, a significant decrease in the number of elastic
fibers, fibroblasts, and tenocytes per unit area, and a reduced proportion
of functioning capillaries, indicating decreased blood supply to the
tendon fibers [117,118]. In diabetes mellitus, excess glycation end
products form covalent cross-links within collagen fibers, altering their
structure and impairing mechanical stability. Collagen cross-linking,
tenocyte apoptosis, proinflammatory cytokine release, and chronic
inflammation progressively damage the tendon, predisposing it to
rupture [114,117–119].

Enhanced injury prevention strategies and clinical guidelines for
effective regenerative medicine should focus on these modifiable risk
factors. Tailored interventions, such as personalized exercise regimens,
early detection of comorbid conditions, and appropriate management of
metabolic disorders, can significantly reduce the incidence of Achilles
tendon injuries and improve overall tendon health.

1.4.5. Hypercholesterolemia
In long-term hypercholesterolemia, dense, painless subcutaneous

nodules known as xanthomas, which contain cholesterol, are found in
the Achilles tendon. These deposits initiate and sustain persistent
inflammation, leading to degenerative changes in tendon fibers, thick-
ening of the Achilles tendon, and a decrease in its biomechanical
strength [120–123]. There is a strong correlation between blood
cholesterol levels and Achilles tendon thickness, with men being at
higher risk of tendon fiber thickening than women. The pathogenetic
mechanisms of Achilles tendon damage in lipid metabolism disorders
include the penetration of cholesterol oxidation products into tenocytes,
initiating a mitochondrial-dependent pathway of apoptosis [120–123].
Additionally, hypercholesterolemia is associated with increased matrix
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metalloproteinase activity and more active collagen degradation. Some
studies suggest that dyslipidemia is accompanied by hypercoagulation,
atherosclerosis, and thrombosis, which significantly worsen blood cir-
culation to the tendon, causing tissue hypoxia and energy metabolism
disorders. Collectively, these factors play a significant role in Achilles
tendon degeneration and subsequent rupture [120–123] (Fig. 2A–B,
Table 1).

1.4.6. Hyperuricemia
The deposition of monosodium urate crystals in tendons and liga-

ments is a hallmark of chronic hyperuricemia, affecting predominantly
the lower extremities and often presenting asymptomatically
[124–127]. The crystallization onset depends on triggers such as tendon
injury, mechanical stress, low temperature, and long-term elevated
serum uric acid concentration. Microtophi formation in the Achilles
tendon significantly alters its structure, predisposing it to rupture
[128–130].

1.4.7. Thyroid hormone imbalance
Thyroid hormone imbalances can also lead to metabolic disorders

and tendinopathies. Thyroxine and triiodothyronine stimulate the pro-
liferation of tenocytes and counteract their apoptosis. They also increase
the production of collagen I, biglycan, and cartilage oligomeric matrix
protein, which are crucial for tendon mechanical strength. Decreased
thyroid hormone levels are predictive of Achilles tendon injuries.

1.4.8. Inherited metabolic disorders
Several inherited metabolic disorders are linked to tendon injuries

and ruptures. Alkaptonuria, caused by a deficiency of homogentisic acid
oxidase, leads to the accumulation of homogentisic acid in collagen fi-
bers, forming a dark pigment that inhibits collagen cross-linking [84,
110,131]. This disrupts structural integrity and increases the likelihood
of spontaneous tendon rupture, particularly in the patellar and Achilles
tendons. Glycogen storage diseases, due to deficiencies in enzymes
responsible for glycogen metabolism, are associated with severe hy-
peruricemia at a young age, manifesting as gouty tenosynovitis and
reduced tendon adaptation to physical activity [84,110,131–137].

1.4.9. Negative drug effects
Several medications are associated with Achilles tendinopathy and

rupture [138–140] (Fig. 2A–B, Table 1).

• Fluoroquinolones: These antibiotics inhibit bacterial enzymes
topoisomerases II and IV, disrupting DNA synthesis. By inhibiting
similar enzymes in connective tissue metabolism, they increase
matrix metalloproteinase expression and collagen degradation,
reduce cell proliferation, and impair collagen and proteoglycan
synthesis. They also act as potent iron chelators, disrupting collagen
cross-linking and maturation, necessary for tensile strength, and
inducing oxidative stress that leads to tenocyte apoptosis [141–146].

• Several studies have associated Achilles tendinopathy and rupture
with the use of such antimicrobial drugs as azithromycin, cephalo-
sporins, and sulfonamides [147–149].

• Statins: Tendon fiber changes are most commonly seen with ator-
vastatin, with symptoms appearing four to eight months after start-
ing therapy. The pathogenesis involves changes in matrix
metalloproteinase activity, weakening of tendon structural compo-
nents, and activation of apoptosis [139,140,150].

• Corticosteroids: Long-term use, especially in patients with bron-
chial asthma, allergic, and autoimmune diseases, inhibits tenocyte
activity and collagen synthesis, activates collagenase, and increases
collagen fiber breakdown [139,140,151].

• Aromatase Inhibitors: Used to treat breast, endometrial, and
ovarian cancer, these drugs block androgen conversion to estrogen,
significantly decreasing peripheral blood estrogen levels and leading
to tendon fiber damage within three months of use [139–141,152].

• Anabolic Steroids: These drugs stimulate protein synthesis, causing
rapid muscle mass buildup that creates an excessive load on the
tendons and increases tendon fiber stiffness [139,140,153].

• Isotretinoin: A synthetic retinoid derived from vitamin A, used to
treat cystic nodular acne, has been linked to Achilles tendon damage
within two to six weeks of use [154].

• Renin-Angiotensin System Drugs: Especially renin-angiotensin
receptor II antagonists that regulate aldosterone levels, are statisti-
cally associated with Achilles tendon rupture [147].

• Thiazide Diuretics and Calcium Channel Blockers: Long-term use
of these drugs has been associated with Achilles tendinitis and
bilateral Achilles tendonitis with painful ankle swelling [139,140,
145].

Understanding these modifiable risk factors is crucial for developing
enhanced injury prevention strategies and clinical guidelines for effec-
tive regenerative medicine. Tailored interventions, such as personalized
exercise regimens, early detection of comorbid conditions, and appro-
priate management of metabolic disorders, can significantly reduce the
incidence of Achilles tendon injuries and improve overall tendon health.
Identifying and addressing these factors through targeted therapies and
lifestyle modifications will enhance tendon resilience and reduce the
risk of rupture. The established non-modifiable and modifiable risk
factors for Achilles tendon injuries and rupture are summarized in
(Fig. 2A–B, Table 1).

1.5. ATR risk factors and surgical site infections

Achilles tendon ruptures are a frequent injury in athletes, often
necessitating surgical intervention to restore function and prevent
further complications. However, a major postoperative challenge is the
development of surgical site infections (SSIs), which significantly impact
recovery outcomes. SSIs are a critical concern in tendon repair surgeries,
as they can lead to delayed healing, long-term morbidity, and even
recurrent tendon injuries, ultimately affecting athletic performance and
quality of life [155]. The multifactorial etiology of SSIs following
Achilles tendon repair involves a complex interplay of microbial path-
ogens, patient-specific risk factors, and surgical variables [156].

Microbial pathogens responsible for SSIs in Achilles tendon surgeries
commonly include skin-resident bacteria such as Staphylococcus aureus,
but antibiotic-resistant organisms prevalent in hospital environments
can also play a significant role. S. aureus is a notable pathogen due to its
high virulence and ability to form biofilms on implanted materials,
increasing resistance to treatment. Patient-specific risk factors for SSIs
include underlying conditions such as diabetes, immunosuppression,
and prior infection history, all of which impair the body’s ability to
combat infection [157]. Surgical factors influencing SSI development
include the duration of the procedure, the use of specific surgical tech-
niques, and the quality of perioperative care. For instance, prolonged
surgeries expose tissues to contaminants for extended periods,
increasing the likelihood of infection [158,159].

A critical understanding of the microbial spectrum is essential for
effective prevention and treatment strategies in postoperative care.
Identifying and addressing specific risk factors that predispose athletes
to SSIs can facilitate personalized treatment plans, enhancing surgical
outcomes and minimizing complications. Furthermore, tailoring anti-
biotic prophylaxis based on pathogen profiles and patient risk factors
could reduce SSI incidence and improve recovery trajectories in tendon
repair surgeries.

Chenhao Guo et al. performed a retrospective cohort analysis [159]
to investigate the risk factors and microbial causes of SSIs in athletes
undergoing Achilles tendon repair. This study [159] was performed on
75 patients who underwent Achilles tendon repair. The study group
included 25 patients with confirmed SSIs (case group) and 50 patients
without infections (control group). Inclusion criteria comprised athletes
with clinically diagnosed Achilles tendon ruptures treated surgically,
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while exclusion criteria eliminated those with previous tendon disorders
or significant chronic illnesses that could confound the results. SSIs were
diagnosed based on clinical symptoms such as elevated body tempera-
ture, localized tenderness, and confirmed positive microbiological cul-
tures [159]. Advanced bacterial identification was conducted using
VITEK® 2 technology, which provided precise pathogen profiling. The
authors of this study employed univariate and multivariate logistic
regression to analyze the risk factors contributing to SSIs. The results
showed that S. aureus was the primary pathogen isolated in infected
patients, consistent with other reports of SSIs in orthopedic surgeries.
Significant risk factors identified included the absence of prophylactic
antibiotic administration, diabetes, the presence of open wounds, and
extended surgical durations. Univariate analysis highlighted stark con-
trasts in the presence of these factors between the case and control
groups, while multivariate analysis confirmed their critical roles in SSI
development [159]. The findings of this study [159] elucidate the
importance of effective preoperative planning and perioperative care to
mitigate infection risks in Achilles tendon repair surgeries. The lack of
prophylactic antibiotic use, in particular, emerged as a major modifiable
risk factor. Moreover, patients with diabetes and those undergoing
longer surgical procedures were at significantly higher risk of devel-
oping SSIs. By addressing these factors, surgeons can improve post-
operative outcomes, reduce infection rates, and ensure quicker recovery
for athletes [159].

1.6. Outdoor temperature - ATR risk factor

ATR is associated with several well-documented risk factors, such as
male sex, younger age, higher BMI, certain racial demographics,
smoking, corticosteroid intake, previous reports of a Achilles tendin-
opathy, O-group blood type, comorbid conditions, and recurrent sports
activities [17,21,25–28] [65,160-164] [165]. However, due to limita-
tions in claims data in the study by Kwang Hwan Park et al. [165], risk
factors include sex, age, household income, regional latitude, and tem-
perature index were ascertained [165]. Through logistic regression
modelling, significant variables linked to ATR were identified which
include male sex, younger age, higher income, as well as median tem-
perature. Importantly, after controlling for confounding factors, median
outdoor temperature emerged as a profound predictor of ATR in the
South Korean population, suggesting it may be a novel risk factor within
this region [165].

The exact mechanisms linking outdoor temperature to ATR remain
poorly understood. However, it is hypothesized that higher outdoor
temperatures influence ATR risk through multiple pathways. First,
elevated temperatures may encourage increased outdoor physical ac-
tivity, including sports participation, which is known to contribute to
ATR risk [166]. Several studies have established a positive correlation
between warmer temperatures and heightened levels of physical activity
[167–171], with physical activity demonstrating clear seasonal patterns,
often peaking during spring and summer months [172–177]. A high
household or recreational activity typically coincide with warmer
weather [178,179], while a reduction in physical activity is noted dur-
ing colder months [172]. Furthermore, studies, such as one conducted in
Galveston, TX, where the average July temperature is 29 ◦C, have shown
that extreme heat can also serve as a deterrent to outdoor activity [180].
In addition to this behavioral factor, previous research indicates that
higher temperatures are associated with increased risks of sports, rec-
reational, and occupational injuries [166,181], providing a plausible
explanation for the observed peak in ATR incidence during May, when
the average temperature in the region reaches 17.8 ◦C.

Beyond behavioral influences, high temperatures may directly
contribute to injury risk by inducing physiological changes such as
muscle fatigue and dehydration [182]. Dehydration, commonly expe-
rienced in hot environments, has been shown to negatively affect both
muscular endurance and strength [181,183], which may increase sus-
ceptibility to tendon injuries like ATR. In this context, dehydration

might impair the tendon’s ability to handle repetitive strain, leading to
rupture, particularly during periods of intense physical activity in warm
conditions. In conclusion, while traditional risk factors such as sex, age,
and medical history continue to play a significant role in ATR, envi-
ronmental factors like outdoor temperature are emerging as important
considerations in understanding the overall risk landscape. Future re-
ports are required to fully elucidate the direct and indirect effects of
temperature on tendon health, which could inform future prevention
strategies, particularly in regions with seasonal temperature variations
[165].

1.7. Tissue homeostasis and ATR risk factors

Tendon homeostasis is intricately controlled by the interplay be-
tween mechanical loading as well as cellular activity; these are modu-
lated by neuronal and cellular mediators, which can be synthesized
locally at the tendon site or distally in other tissues, are subsequently
delivered to the tendon through blood circulation or nerve supply [184,
185]. Mechanical loading exerts a crucial role in this regulatory process,
as appropriate levels of mechanical stress initiate anabolic responses
within the tendon, particularly through enhanced expression of collagen
genes [186,187]. Therefore, collagen production, a key component of
tendon repair and strengthening, typically peaks around 24 h after
physical activity and can persist for up to 80 h post-exercise.

However, when the mechanical load becomes excessive, it can
disrupt this balance by triggering collagen degradation, leading to a
catabolic response. Notably, the catabolic peak characterized by the
breakdown of collagen proteins occurs before the anabolic peak,
resulting in a net loss of collagen within the first 24–36 h after exercise.
This initial collagen degradation is followed by a period of net collagen
gain as anabolic processes subsequently dominate [188]. Thus, the
timing of physical activity and recovery is critical in maintaining tendon
integrity. Sufficient rest intervals between training sessions allow for
proper tissue adaptation, minimizing the risk of overuse injuries by
preventing a persistent catabolic state.

In this context, the maintenance of a healthy tendon environment
depends on balancing the anabolic and catabolic phases. Ensuring that
the tendon remains in an anabolic or neutral state for a sufficient period
after exercise may help prevent tendon degeneration and injury. Proper
management of mechanical loading, combined with periods of adequate
recovery, promotes tissue remodeling and enhances tendon resilience.
This highlights the importance of structured training regimens that
emphasize both activity and recovery to support tendon homeostasis
and reduce the likelihood of injury [189].

1.8. Effect of rupture factors before or after treatment

Achilles tendon injuries treated with bone marrow mesenchymal
stem cells (BMMSCs) in combination with TGF-β1 have demonstrated
faster and complete healing clinical outcomes. TGF-β1 plays a pivotal
role by enhancing collagen protein synthesis, promoting the formation
of cross-links, and driving matrix remodeling during tendon repair, ul-
timately boosting the mechanical strength of the tendon [190]. Addi-
tionally, low-magnitude, low-frequency vibration training at 10 Hz has
been shown to upregulate TGF-β1 expression, leading to higher teno-
modulin generation and collagen type I (Col I), as well as enhanced
Achilles tendon stiffness in rat models. This treatment modality im-
proves the structural integrity of the tendon and reduces the likelihood
of reinjury at the time of rehabilitation [191]. Further supporting the
role of TGF-β1 in ATrecovery, a clinical study on patients with AT
rupture revealed that TGF-β1 and VEGF expression levels significantly
increased three months post-treatment but decreased by six months
following surgery. The dynamic expression patterns of TGF-β1 and VEGF
suggest that these molecules could serve as key biomarkers for moni-
toring and predicting clinical outcomes in the patients diagnosed with
Achilles tendon rupture [192].
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Fibroblast growth factors (FGFs) also have significant implications in
tendon repair by regulating critical cellular processes such as migration,
proliferation, as well as differentiation. FGFs can indue these effects by
activating high-affinity FGF receptors, which consequently trigger
downstream signaling cascades essential for tissue homeostasis and
regeneration [193]. Usage of fibrin clots and vitamin C during the sur-
gical repair of AT ruptures has been shown to result in superior tendon
structure and improved healing quality, potentially due to their ability
to stimulate FGF generation at the time of early phases of tendon injury
repair [194].

In patients with AT rupture, serum levels of TGF-β1 and VEGF
increased significantly at the three-month mark post-surgery and sub-
sequently declined at six months, concluding the improvements in
clinical outcomes. These findings further suggest that TGF-β1 and VEGF
serve as reliable markers for assessing the efficacy of treatment in such
cases [192].

Platelets, a primary source for HMGB1 protein, are essential in
tendon healing, particularly in platelet-rich plasma (PRP) therapy.
Platelet-derived HMGB1 in PRP has been shown to reduce inflamma-
tion, increase local HMGB1 concentrations, and recruit stem cells to the
injury site. This mechanism highlights the potential of PRP treatments in
tendon repair, although its effectiveness may depend heavily on the
concentration and quality of platelets used [195]. In clinical practice,
PRP injections have been investigated as a potential treatment for AT
ruptures [196]. But other clinical reports have described that PRP
showed no significant improvement in clinical outcomes or functional
recovery in nonsurgical AT rupture treatments when compared to con-
ventional treatments such as percutaneous fixation [197–199]. This
discrepancy in results may be due to variations in treatment protocols.
Despite the ongoing debate regarding its efficacy, PRP remains one of
the most commonly used biological treatments for tendinopathies [14,
199].

1.9. Early stages of recovery after an Achilles tendon rupture-clinical
reports

Following an Achilles tendon (AT) injury, the decision to resume full
weightbearing activities, including sports or other physically demanding
tasks, is traditionally based on clinical assessment alone. However, the
use of objective quantitative measures such as tendon stiffness and foot
plantar pressure may provide valuable insights to support clinical
decision-making. A study by Didier Laurent et al. [200], evaluated these
parameters in 15 patients for up to 3 months post-rupture with the aid of
shear wave elastography (SWE) and wearable insoles. Additionally,
patient-reported outcomes were collected using Achilles Tendon Total
Rupture Score (ATRS) to assess the impact on physical activity [200]. At
two weeks post-injury, stiffness of the tendon associated with injury has
shown variability, with shear wave velocities near the rupture site
typically in the distal portion of the tendon. By eight weeks,
near-complete recovery of stiffness was evident in both the distal and
middle regions, while the proximal region only achieved 65 % recovery
relative to the uninjured tendon by week 12. A complementary
pre-clinical report in a rat model demonstrated a strong correlation
between in vivo tendon stiffness measured using SWE and ex vivo
Young’s modulus values, further validating the precision of SWE for
assessing tendon stiffness [200]. The evaluation of plantar pressure
distribution using wearable insoles revealed minor suboptimal function
pertinent to the affected foot during walking at week 12, despite sig-
nificant recovery of ATRS scores [200]. These findings suggest a
persistent biomechanical imbalance even as patients reported subjective
improvement. Notably, significant correlations were observed between
tendon stiffness, plantar pressure variables, as well as specific ATRS
activities, concluding the clinical relevance of these measurements for
tracking functional recovery.

Didier Laurent et al. highlighted the impact of AT structural changes
on daily activities and illustrate the utility of digital biomarkers in

monitoring functional recovery over time. The correlation of tendon
stiffness and plantar pressure distribution with patient-reported out-
comes provides a more comprehensive understanding of the biome-
chanical and functional recovery process [200]. In conclusion, the study
demonstrated the potential of SWE as a reliable diagnostic tool for
detecting tendon injuries and monitoring treatment progress aimed at
accelerating tendon regeneration. Additionally, the integration of
structural and biomechanical data, such as foot plantar pressure, with
patient perceptions of their ability to perform physical activities offers a
novel approach to understanding how alterations in AT structure affect
recovery and daily function. These findings advocate for the inclusion of
objective digital biomarkers alongside traditional clinical assessments to
improve decision-making and rehabilitation strategies after AT rupture
[200].

1.10. AT-patient specific therapies & recent clinical reports

Achilles tendon rupture (ATR) is significantly observed in the
middle-aged individuals who are involved in military activities and
recreational sports [48,201]. For example, a study in Sweden described
the ATR incidence with a steep increase which depicts an upward trend
from 2001 to 2012, with rates increasing from 47 to 55.2 per 100,000
person-years for males and from 12 to 14.7 per 100,000 person-years for
females [48]. A few other reports described that the rate andmeasures of
returning to play post-ATR found that, on average, about 80 % of in-
dividuals return to their previous activity levels after rehabilitation,
though the range varies widely from 28 % to 100 % [86,202,203].

Considerable efforts have been made to identify the optimal treat-
ment for ATR, leading to numerous systematic reviews and meta-
analyses. However, there remains no consensus on whether surgical or
nonsurgical treatment is superior [204–208]. Recent research suggests
that nonsurgical methods may be preferable if functional rehabilitation
is performed effectively, as surgical treatment carries a higher risk of
infection [207,208]. Nonetheless, another systematic review indicated
that surgical treatment reduces the risk of rerupture, though it shows no
significant differences in terms of deep venous thrombosis, or return to
sports [204]. Comparisons using patient-reported outcome measures
(PROMS) such as Achilles tendon Total Rupture Score and the Physical
Activity Scale found no significant differences between treatment
methods [204,209].

Weight-bearing exercises and rehabilitation has been reported to
bestow significant efficacy pertinent to functional outcomes in in-
dividuals diagnosed with ATR [210,211]. For instance, early rehabili-
tation with immobilization fostered good results in all categories
compared to immobilization, with the combined approach yielding the
highest satisfaction levels [210]. However early rehabilitation following
nonsurgical treatment failed to produce good functional outcomes in
individuals with ATR. According to these studies, there was a notable
improvement in health-related quality of life favoring the early
weight-bearing group [212].

Health-related rejuvenation after therapy to AT involves an in-
dividual’s experiences after treatment and rehabilitation in addition to
intrinsic factors (Fig. 1). Patient-reported outcome measures (PROMs)
are frequently employed to assess these factors; however, qualitative
research approaches can offer a deeper insight into ATR, subsequently
describing individual’s personal experience. These adaptivemethods are
significantly used to explore the factors that typically influence the in-
dividual’s ability to return to sports activities by improving the Achilles
tendon repair [213] as well as anterior cruciate ligament reconstruction
[214,215]; other therapy factors are crucial which can enhance the hip
arthroscopy for femoroacetabular impingement [216], and arthroscopic
Bankart repair [217].

Another study [213] described that the return to sports post-ATR is
solely replies upon selecting a suitable surgeon as well as a physical
therapist along with a commitment to adhere to rehabilitation guide-
lines is significantly required to mediate effective healing. This aligns
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with findings from another report that interviewed patients and their
parents about their experiences with physical therapy following an
anterior cruciate ligament reconstruction. The study highlighted the
importance of the patient-therapist relationship, emphasizing the ther-
apist’s role as a guide, motivator, confidence booster, and care coordi-
nator [218]. Effective communication and making physiotherapy
sessions enjoyable were also noted as significant factors [218]. These
insights suggest that providing patients with consistent, individualized
information throughout the rehabilitation process from various health-
care providers is vital for successful recovery.

In today’s digital age, where information is readily accessible,
comparisons with others undergoing similar experiences can be both
beneficial and detrimental. Relating to others and gaining insights into
the rehabilitation process is important, but exposure to extreme stor-
ies—both negative and unrealistic positive outcomes—can skew ex-
pectations. No specific studies were found related to the influence of
external information on recovery from musculoskeletal injuries [219].
on dermatological conditions showed that much online information is
financially biased and discourages seeking medical advice [219]. This
underscores the need for patients to rely on credible, evidence-based
sources and consult healthcare professionals for accurate information.

Fear of reinjury and insecurity about the tendon’s performance were
frequently mentioned, highlighting the psychological impact on recov-
ery. A study found that individuals who exhibited fear of reinjury had
poorer physical improvements and reduced self-reported function
compared to those without such fears [220]. The avoidance of activities
due to fear of reinjury can be explained by the Fear-Avoidance Model of
Musculoskeletal Pain, that describes a cycle where pain leads to fear,
avoidance, and ultimately more pain and disability. Some participants in
Peterson’s study fell into this cycle, avoiding the use of the affected
muscle/tendon, resulting in decreased strength and endurance [221,
222].

Physiological limitations, such as stiffness, reduced endurance, and
strength in the Achilles tendon or calf muscle, were also commonly re-
ported [222]. A study investigating a return to sports and patient
satisfaction following nonsurgical treatment for acute Achilles tendon
rupture (ATR) revealed that while 94 % of participants expressed
satisfaction with their treatment outcomes, the return to preinjury levels
of sports participation was less favorable. Specifically, only 70 % of
individuals had resumed their preinjury sports activities at the 1-year
follow-up, with a modest increase to 73 % at the 5-year mark. These
findings highlight a significant gap between patient satisfaction and the
actual return to previous levels of athletic performance, suggesting that
while nonsurgical treatments may be well-received, they might not fully
restore athletic function to preinjury standards. This underscores the
need for further research into optimizing rehabilitation protocols and
long-term outcomes for individuals undergoing nonsurgical manage-
ment of ATR. Comparison of activity levels before and after the injury
revealed that most participants were less active than before, with a mean
score of 2.3 on a scale where 1 indicates being much less active and 5
indicates being much more active [222].

Taken together, these findings emphasize the importance of
comprehensive and individualized rehabilitation programs that address
both physical and psychological aspects, along with reliable information
and strong patient-therapist relationships to enhance recovery outcomes
after Achilles tendon injuries.

1.11. Cellular therapy to ameliorate Achilles tendinopathies

Mesenchymal stromal cells (MSCs) possess typically a higher ability
to self-renew and confer to differentiate into distinct kinds of mature cell
types to foster regenerative medicine for a variety of ailments [223].
MSCs can be identified by the expression of different cell surface
markers including cluster differentiation markers and this expression
varies by different culture conditions [224,225]. MSCs exert significant
influence over their local microenvironment through paracrine and

autocrine signaling mechanisms, allowing them to modulate surround-
ing tissues [226]. Their low immunogenicity makes them suitable for
allogenic transplantation, as they generally do not provoke aggressive
immune responses. This immune-evasive nature enhances their poten-
tial in regenerative therapies, primarily due to their homing and
engraftment capabilities in target tissues [227–229]. Functionally, MSCs
could foster the proliferation of cells by the influence of paracrine or
autocrine secretions [230].

BM niche is composed of a variety of cells and especially [231],
hematopoietic stem cells (HSCs) and mesenchymal stromal/stem cells
(MSCs) are significantly involved in undergoing differentiation into
distinct types of cells. BM-derived MSCs are notable for their potent
anti-inflammatory properties, particularly through the secretion of
interleukin-1 receptor antagonist (IL-1Ra), which significantly mitigates
matrix degradation; in addition, the expression of MMP-3 and TNF-α
genes are mitigated during this BM-dived MSCs-mediated inflammation;
Furthermore, these BM-derived MSCs could mitigate chondrocyte
apoptosis while enhancing deposition of collagen [232,233]. This cy-
tokine’s effects are clinically significant, offering pain relief and
enhancing the management of chronic tissue inflammation, particularly
in tendinopathies. For instance, intratendinous injection of BM-MSCs in
Achilles tendon (AT) injuries in mammalian models has shown im-
provements in biomechanical properties and collagen fiber organization
during early tendon healing phases [234]. In rat models, BM-MSCs
demonstrate a higher tendon healing efficacy compared to
platelet-rich plasma (PRP) in histological, biochemical, and immuno-
histochemical assessments [235]. The regenerative potential of tendon
stem cells (TSCs) may even surpass that of BM-MSCs, as evidenced by
increased Tenascin-C expression in treated groups [236]. Clinical ap-
plications under ultrasound guidance, such as the administration of
autologous BM-aspirate concentrate (BMAC), resulted in mitigating pain
and subsequently enhanced the functional outcomes of tendons in the
individuals diagnosed with chronic AT, as evidenced by MRI findings
[237,238]. Furthermore, BM-MSCs support early rehabilitation, reduce
the incidence of re-rupture, and improve tendon structure [238–244].
However, further robust clinical data are necessary to fully endorse the
efficacy and safety of BMAC for AT treatment [245].

Adipose tissue has emerged as a prolific source for MSCs substan-
tially higher when compared to bone marrow source [246–248].
Adipose-derived MSCs (AD-MSCs) and stromal vascular fraction (SVF),
which includes endothelial cells, preadipocytes, macrophages, T cells,
pericytes, and progenitor cells, have shown promising regenerative
outcomes in tendinopathy treatments [249–255]. For example, SVF and
AD-MSCs enhance tendon fiber organization and facilitate neovasculo-
genesis, essential for tendon repair [253,256]. Clinical studies have
demonstrated faster recovery and fostered and improved tendon matrix
composition with SVF injections [252,253]. For instance, AD-MSCs have
been shown to promote neovasculogenesis, mitigate inflammation, and
enhance AT repair typically in the models of collagenase-induced AT
and upregulate tendon repair [256]. Additionally, AD-MSCs influence
collagen composition and matrix metalloprotease expression, crucial for
tendon healing [257,258]. Tenogenically differentiated AD-MSCs have
improved histological scores and collagen fiber organization in Achilles
tendon repairs [255]. Compared to PRP, SVF derived from adipose tissue
offers good clinical and functional outcomes in AT treatments [259,
260]. However, further clinical validation is needed to evaluate the
pharmacological efficiency of AD-derived MSCs to foster tendon healing
[245] (Table 2).

1.12. Platelet-rich plasma (PRP) mediated amelioration of Achilles
injuries

Chronic tendinopathy is characterized by a pro-inflammatory
marker expression that hampers the healing process because of limited
vascularization and slow cell turnover across the regions of tendons
[269]. PRP-based therapy is an acellular therapy. PRP, which
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concentrates platelets to generate growth factors from alpha granules,
has been shown to enhance tissue regeneration in musculoskeletal dis-
orders by promoting neovascularization and stimulating resident stem
cells [270,271]. The specific composition of PRP, including leucocytes
and chemokines, can regulate inflammatory responses and improve
collagen production and cell proliferation [272–274]. Despite varying
reports on the effects of PRP on tendon thickness and vascularity, many
studies indicate its potential to improve clinical outcomes in AT [189,
261–263]. The effectiveness of PRP may be affected by factors including
patient age and type of tendinopathy [275,276]. Despite some contro-
versy, PRP remains a promising and safe biological agent for treating AT
injuries, offering profound pain relief and functional improvements
[197,277–279] (Table 2).

1.13. Future therapeutic modalities of exosomes-based at injury
amelioration

Exosomes derived from cellular and noncellular sources, present
significant potential in tendon repair bymodulating gene expression and
promoting anti-inflammatory and regenerative responses [264,265,
280–284]. Exosomes from MSCs, for example, enhance tendon-bone
interface healing and regulate macrophage polarization, crucial for tis-
sue repair [281,282]. These vesicles can improve collagen organization
and tenocyte proliferation, contributing to tendon regeneration
[285–292]. However, the production and commercialization of exo-
somes are challenging due to technical, ethical, and cost-related factors.
Advances in engineering “smart exosomes” and tendon-specific scaffolds
hold promise for improving tendon repair and regeneration [266,267,
293–302]. Emerging concepts like “Smart Exosomes” and engineered
tenogenesis offer exciting future directions for AT treatment. These
strategies involve manipulating exosome content and combining stem
cells with growth factors on scaffolds to enhance tendon regeneration
[266,267,293–302]. Additionally, “Extracellular vesicles-educated
macrophages” represent a novel approach to inflammatory disorders,

including tendon injuries, by leveraging the regenerative potential of
macrophages exposed to exosomes [266,302]. These innovative thera-
pies aim to improve tendon healing by modulating the inflammatory
environment, enhancing biomechanical properties, and promoting the
differentiation and proliferation of tenocytes.

1.14. ATR management by rehabilitation & education strategies

There is well-established evidence that surgical and non-surgical
treatments for ATR yield comparable outcomes, yet the debate over
the optimal treatment method continues [303–305]. In light of this, the
focus has shifted to the importance of rehabilitation strategies in
ensuring recovery and functional outcomes [210,303,306]. Despite the
growing emphasis on rehabilitation, data on the recovery process
following ATR remains limited, which may contribute to suboptimal
rehabilitation protocols and inconsistent patient outcomes [307]. The
scarcity of research addressing psychosocial factors, return-to-play
(RTP) timelines after ATR treatment, and the application of novel im-
aging methods have been associated with increased re-rupture rates
[304,308,309]. Additionally, these gaps in knowledge contribute to
unpredictable recovery trajectories and RTP outcomes for athletes [86,
310–312]. Several factors, both patient-related (such as BMI, nutritional
status, as well as comorbidities) and injury-related (such as delayed
presentation, injury mechanism, and tendon gap size), are believed to
influence recovery and outcomes after ATR [65,308,313,314].

In case of tendon gap size, a few reports have investigated whether
the gap between the ruptured tendon ends affects patient-reported
outcomes in ATR cases managed with functional rehabilitation [315,
316]. Another report [315] used ultrasound method to measure the
tendon gap at the initial presentation and followed patients for at least
one year, assessing outcomes using ATRS, plantarflexion strength, and
re-rupture rates. Their findings indicated the absence of a significant
correlation between tendon gap size and ATRS, suggesting that gap size
may not be a major determinant of outcome in non-operative functional
rehabilitation. Conversely, Yassin et al. [316] reported that a larger
tendon gap, particularly when exceeding 10 mm, can be observed using
dynamic ultrasound method, and the results of this report elucidated
poorer patient-reported outcomes following functional rehabilitation, as
indicated by lower ATRS scores. This highlights the potential impact of
tendon gap size on recovery, although further studies are necessary to
solidify this relationship.

Current research supports the preference for early weight-bearing
and functional rehabilitation over traditional immobilization ap-
proaches for ATR management [303,317,318]. Although rehabilitation
methods are gaining increasing importance [210,303,306], there re-
mains a lack of conclusive evidence on the most effective rehabilitation
regimens, as well as limited guidelines for early rehabilitation protocols
[318,319]. Additionally, long-term data on recovery trajectories and
athletic performance after ATR are limited [307]. Early weight-bearing
as well as functional rehabilitation following both operative and
non-operative treatments of ATRs have shown promise in promoting
new tendon generation and improving long-term functional clinical
outcomes, including faster return to work and sports [320–327]. How-
ever, given the absence of universally accepted protocols for early
rehabilitation and the timing of weight-bearing, further research is
essential to establish evidence-based guidelines for optimal recovery
after ATR [326,328].

Modifying activity levels is one of the most effective strategies for
managing pain, making it a cornerstone of physiotherapy treatment.
Reducing or eliminating activities identified from patient history, such
as high-intensity stretch-shortening exercises (e.g., faster running,
walking on inclines) and decreasing total activity volume by more than
50 %, is often necessary for two to six weeks if load tolerance is
diminished. In cases of severe pain, though rare, complete cessation of
provocative activities (100 % reduction) may be necessary. This could
involve temporarily stopping sports or wearing a walking boot if regular

Table 2
Regenerative Medicine Approaches: The regenerative medicine approaches
highlight the promising therapies available to enhance tendon repair and
recovery.

Approach Mechanism Effect References

Mesenchymal
Stromal Cells
(MSCs)

Differentiation into
specific cell lineages,
modulating local
microenvironment
through paracrine/
autocrine signals

Promote tendon
healing, reduce
inflammation, and
improve structural
integrity.

[189,
223–230]

Bone Marrow-
Derived MSCs
(BM-MSCs)

Anti-inflammatory
properties, IL-1Ra
secretion, collagen
deposition
enhancement

Improved
biomechanical
properties, collagen
fiber organization,
and early tendon
healing.

[189,
231–245]

Adipose Tissue-
Derived MSCs
(AT-MSCs)

Easy isolation,
differentiation into
multiple cell types, anti-
inflammatory properties

Enhance tendon
healing and reduce
inflammation.

[189,
246–260]

Platelet-Rich
Plasma (PRP)

Concentrated platelets
release growth factors
and cytokines

Stimulate healing
processes, improve
pain, and enhance
tendon function.

[189,
261–263]

Gene Therapy Targeting specific genes
involved in tendon
repair and regeneration

Potential to correct
genetic
predispositions and
enhance tendon
healing processes.

[189,264,
265]

Scaffold-Based
Therapies

Use of biocompatible
materials to provide
structural support and
deliver cells/growth
factors

Promote tissue
regeneration and
structural support for
tendon repair.

[189,
266–268]

M.V. Sankova et al. Journal of Orthopaedic Translation 49 (2024) 289–307 

300 



walking exacerbates the condition. Explaining the rationale behind
these modifications is crucial, specifically for individuals who adopt an
“activity endurance” approach and persist in exercising despite pain.
Providing such patients with clear, shared activity goals can lead to
better treatment adherence and outcomes [329].

Conversely, individuals who follow an “activity avoidance” strat-
egy—often driven by fear of worsening their condition [330,331] may
benefit from a more structured, gradual reintroduction of physical ac-
tivity. This should be combined with pain education and strategies for
monitoring and balancing pain with physical activity. Behavioral
change interventions should also be incorporated to enhance
self-management and ensure the success of activity modification stra-
tegies. These approaches include addressing patient beliefs as well as
outcome expectations, setting mutually agreed-upon goals that align
with the patient’s motivations, and employing action-intention strate-
gies. Additionally, providing feedback, monitoring progress, and
implementing practical strategies such as exercise demonstration videos
that can improve exercise self-efficacy and long-term adherence to
rehabilitation plans [332].

Regarding exercise interventions, 39 trials (spanning 40 reports)
have investigated exercise therapies compared to controls, other exer-
cise regimens, or adjunctive treatments for Achilles tendinopathy
[333–347]. However, the majority of these trials were underpowered,
with significant variability in interventions and outcome measures. This
heterogeneity complicates data pooling and limits the certainty of any
conclusions drawn from the available evidence. Predominantly used
exercise strategies included the Alfredson eccentric protocol (or its
modified versions), Silbernagel program, as well as Stanish and Curwin
program, and heavy slow resistance program. Despite the challenges in
synthesizing this data, exercise remains a key component in the man-
agement of Achilles tendinopathy. Further research with standardized
interventions and outcome metrics is necessary to provide clearer in-
sights into the most effective exercise-based therapies for this condition
[348].

2. Conclusions and future acknowledgements

There is compelling evidence that non-modifiable risk factors,
including genetic predisposition, individual anatomical and functional
features of the Achilles tendon, sex, and age, play a significant role in the
susceptibility to Achilles tendon injuries and rupture. These factors must
be considered when selecting sports activities and designing training
programs to mitigate injury risk.

Priority areas for the prevention of Achilles tendon rupture include
recommendations for balanced nutrition, screening for connective tissue
integrity, implementing proper exercise regimens, and conducting reg-
ular monitoring of the Achilles tendon condition in athletes. Addition-
ally, timely treatment of musculoskeletal injuries, Achilles tendon
diseases, and deformities of the feet, ankle, and knee joints is crucial.
Addressing metabolic disorders and assessing the risks associated with
long-term drug use are also important components of a comprehensive
prevention strategy.

The interplay of multiple established factors significantly elevates
the risk of Achilles tendon rupture. Early identification and intervention
regarding these risk factors will enable the development of effective
personalized prevention strategies, thereby contributing to the preser-
vation of public health during physical activity and sports.

The primary challenge in translating advanced cellular therapies to
clinical practice lies in the lack of evidence from sufficient animal
models that accurately simulate chronic Achilles tendinopathy, as most
studies focus on acutely injured tendons. Additionally, standardizing the
isolation procedures for these biological therapies is crucial before their
clinical application can be considered viable. Ensuring robust evidence
of efficacy and standardized protocols will be essential steps in
advancing these promising treatments from experimental settings to
widespread clinical use.
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[61] Svensson RB, Heinemeier KM, Couppé C, Kjaer M, Magnusson SP. Effect of aging
and exercise on the tendon. J Appl Physiol 2016;121(6):1353–62.

[62] Slane LC, DeWall R, Martin J, Lee K, Thelen DG. Middle-aged adults exhibit
altered spatial variations in Achilles tendon wave speed. Physiol Meas 2015;36
(7):1485.

[63] Slane LC, Martin J, DeWall R, Thelen D, Lee K. Quantitative ultrasound mapping
of regional variations in shear wave speeds of the aging Achilles tendon. Eur
Radiol 2017;27:474–82.

[64] Slane LC, Thelen DG. Achilles tendon displacement patterns during passive
stretch and eccentric loading are altered in middle-aged adults. Med Eng Phys
2015;37(7):712–6.

[65] Claessen FM, de Vos R-J, Reijman M, Meuffels DE. Predictors of primary Achilles
tendon ruptures. Sports Med 2014;44:1241–59.

[66] Spink MJ, Fotoohabadi MR, Wee E, Hill KD, Lord SR, Menz HB, et al. Foot and
ankle strength, range of motion, posture, and deformity are associated with
balance and functional ability in older adults. Arch Phys Med Rehabil 2011;92(1):
68–75.

[67] Menz HB. Biomechanics of the ageing foot and ankle: a mini-review. Gerontology
2015;61(4):381–8.

[68] Winnicki K, Ochała-Kłos A, Rutowicz B, Pękala PA, Tomaszewski KA. Functional
anatomy, histology and biomechanics of the human Achilles tendon—a
comprehensive review. Ann Anat 2020;229:151461.

[69] Kayce J. Gross anatomy: achilles tendon. Clin Podiatr Med Surg 2022;39(3):
405–10.

[70] Mahan J, Damodar D, Trapana E, Barnhill S, Nuno AU, Smyth NA, et al. Achilles
tendon complex: the anatomy of its insertional footprint on the calcaneus and
clinical implications. J Orthop 2020;17:221–7.

[71] Dederer KM, Tennant JN. Anatomical and functional considerations in Achilles
tendon lesions. Foot Ankle Clin 2019;24(3):371–85.

[72] Pękala P, Henry B, Ochała A, Kopacz P, Tatoń G, Młyniec A, et al. The twisted
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