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Abstract. Post‑menopausal osteoporosis is one of the most 
common bone diseases in women. The aim of the present 
study was to predict the diagnostic function modules from a 
differential co‑expression gene network in order to enhance 
the current understanding of the biological processes and to 
promote the early prevention and intervention of post‑meno-
pausal osteoporosis. The diagnostic function modules were 
extracted from a differential co‑expression network by the 
established protein‑protein interaction (PPI) network analysis. 
First, significant genes were identified from the differential 
co‑expression network, which were regarded as seed genes. 
Starting from the seed genes, the sub‑networks in this disease, 
referred to as diagnostic function modules, were exhaustively 
searched and prioritized through a snowball sampling strategy 
to identify genes to accurately predict clinical outcomes. In 
addition, crucial function inference was performed for each 
diagnostic function module. Based on the microarray and PPI 
data, the differential co‑expression network was constructed, 
which contained 1,607 genes and 4,197 interactions. A total of 
110 seed genes were identified, and nine diagnostic modules 
that accurately distinguished post‑menopausal osteoporosis 
from healthy controls were screened out from these seed 
genes. The diagnostic modules may be associated with five 
functional pathways with emphasis on metabolism. A total 
of nine diagnostic functional modules screened in the present 
study may be considered as potential targets for predicting the 
clinical outcomes of post‑menopausal osteoporosis, and may 
contribute to the early diagnosis and therapy of osteoporosis.

Introduction

Osteoporosis is a common bone disease characterized by 
reduced bone strength, usually occurring in post‑menopausal 
women and the elderly  (1). Post‑menopausal osteoporosis 
(PO) is regarded as a chronic autoimmune and inflammatory 
disorder, which may lead to destructive fracture and even 
death (2). The high societal and personal costs of osteoporosis 
pose challenges to public health and physicians, and of note, 
most patients with osteoporosis currently remain untreated (3). 
In addition, ~20% of patients with a fragility require to receive 
therapy within one year following fracture for reducing future 
fracture (4). Thus, early diagnostics and early intervention 
would significantly control the development of PO. However, 
existing preventive measures and therapies mainly focus 
on physical activity, avoidance of smoking and excessive 
alcohol intake, calcium and vitamin D supplementation, and 
anti‑absorption or anabolic pharmacological agents  (1,2). 
Therefore, further understanding the biological processes 
involved in the development of PO may lead to the discovery 
of more effective methods to prevent and treat PO.

It has been reported that the progression of various diseases 
is always associated with the aberrant regulation of a set of 
genes, and biological networks are widely used to analyse the 
genetic levels of complex human diseases (5). Network‑based 
approaches are often built on the knowledge of physical or 
functional interactions between molecules that are usually 
illustrated as an interaction network (5). It may be used to 
understand the effects of disease‑gene interconnections that 
have multiple potential biological and clinical applications, 
and may thus offer better targets for drug development (6,7). 
Multiple computational methods, including Network‑Guided 
Forests (8) and Support Vector Machine (9), have been applied 
to identify significant sub‑network markers that predict the 
classification of microarray samples. However, the existing 
methods are largely heuristic, and the final output and defini-
tion of the output sub‑networks are ambiguous without any 
formal topological features. Previous studies have indicated 
that the use of the sub‑network method provides significant 
genes associated with disease function and may also accurately 
predict clinical outcomes (10,11). Jordán et al (12) indicated 
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that network methods have an important role in inferring 
novel disease genes and supporting prediction in pathogenesis 
studies.

In the present study, to obtain the diagnostic function 
modules from a differential co‑expression network, the crucial 
genes referred to as seed genes were identified from this 
network. Subsequently, sub‑networks starting from the seed 
nodes were searched and prioritized by using the snowball 
sampling strategy. The sub‑networks may be used to predict 
the clinical outcomes, and each sub‑network was given a most 
significant functional inference. In the present study, each 
sub‑network represents a diagnostic functional module, and 
in those, a number of novel biomarkers for PO with predictive 
value regarding the phenotypic outcome may be identified, 
which may contribute to the clinical treatment of PO.

Materials and methods

Microarray data. For performing the bioinformatics analysis 
on PO, microarray data for PO were retrieved from the Array 
Express database (http://www.ebi.ac.uk/arrayexpress/) under 
the accession no. E‑GEOD‑56116. The microarray data were 
assessed on the A‑AGIL‑28‑Agilent Whole Human Genome 
Microarray 4x44K 014850 G4112F (85 colsx532 rows) plat-
form (13). A total of 13 samples were contained in the dataset 
E‑GEOD‑56116, comprising those of 10 patients with PO and 
3 healthy post‑menopausal women, from whom peripheral 
blood was used to extract the RNA samples. The age range 
of the disease group and the control group in this dataset was 
52‑68 and 56‑68 years, respectively.

All microarray data and annotation files were down-
loaded for subsequent analysis. Prior to analysis, standard 
data pre‑processing was performed on the gene expression 
data using the robust multichip average method  (14), the 
quantiles‑based algorithm (15) and the Micro Array Suite 5.0 
(MAS 5.0) algorithm (16). The gene expression profile at the 
probe level was converted into gene symbols and the duplicated 
symbols were erased. From the microarray dataset, a total of 
11,843 genes and their corresponding expression information 
were obtained.

Differential co‑expression network. The present study 
attempted to identify diagnostic biomarkers from a network 
approach. For this, the global human protein‑protein inter-
actions (PPIs) comprising 1,048,576 interactions were first 
obtained from the Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database (http://string‑db.org/). A 
total of 787,896 interactions (covering 16,730 genes) were then 
obtained by removing feedback loops and duplicated interac-
tions. To map genes from the microarray dataset onto the PPI 
network, the common ones, including 22,728 interactions 
(covering 4,985 genes) were extracted out.

Based on the co‑expression analysis and differential 
expression analysis successively, the differential co‑expression 
network was constructed. To characterize the interactions of 
the PPI network, the Pearson correlation coefficients (PCC) 
of the PPIs associated with certain diseases may be calcu-
lated (17). The PCC is a measure of the correlation between 
two variables, with assigned values between ‑1 and +1. In 
general, the larger the absolute value of the PCC, the greater the 

intensity of the interaction between the two proteins. In present 
study, interactions with |PCC|>0.8 were retained to construct 
the co‑expression network. EdgeR  (18), a Bioconductor 
package for differential expression analysis of digital gene 
expression data, was utilized to assign a weight value to each 
interaction for weighting the degree of the co‑expression and 
differential expression of the edges. In this case, a differential 
co‑expression network with each edge was assigned a weight 
value.

Statistical analysis. In the present study, SPSS 17.0 soft-
ware (SPSS, Inc., Chicago, IL, USA) and GraphPad Prism 5 
(GraphPad Software, Inc., La Jolla, CA, USA) were used to 
perform the statistical analysis. The P‑value that evaluates 
significant differences was adjusted by the false discovery 
rate procedure based on the Benjamini and Hochberg 
method (19). Furthermore, a two‑tailed t‑test and Fisher's exact 
test were performed to determine the statistical significance. 
P<0.05 was considered to indicate a statistically significant 
difference.

Seed gene prediction. To determine the seed genes from the 
differential co‑expression network, a degree centrality analysis 
of the network was first performed for obtaining the degree 
value of each gene. Based on the degree value, a z‑score (6) 
was given for each gene in the adjacency matrix of the network. 
The significance of genes in the differential co‑expression 
network was measured according to the z‑scores. All genes 
were ranked in descending order according to the z‑score 
values. The top 5% genes were considered as seed genes.

Diagnostic module identification. In the present study, the 
diagnostic modules were identified with a snowball sampling 
strategy introduced by Goodman (20), which uses the network 
structure itself to generate a sample of nodes in the network. 
From each seed gene, a candidate diagnostic module search 
was performed by seed gene amplification. In particular, the 
genes were iteratively involved, thus leading to the largest 
increase in the prediction accuracy model until the accuracy 
of the prediction was diminished. To evaluate the accuracy of 
the prediction, the area under the receiver operating character-
istic curve (AUC) was employed as a measure. Modules with 
AUC=1 and number of genes ≥5 were considered as candidate 
diagnostic modules.

Subsequently, a permutation test was implemented to 
determine the statistical significance of these candidate diag-
nostic modules. First, a stochastic network was constructed 
based on the null score distribution of the candidate diagnostic 
modules, and a module search analysis based on the random-
ized networks was performed according to the above method. 
Here, each module was completely randomized for 1,000 
permutations. Each module was assigned an AUC value in 
each permutation, and the empirical P‑value of a candidate 
diagnostic module was determined by the probability of the 
module having a smaller AUC than that of the randomized 
network. The modules whose adjusted P‑values were <0.05 
were considered as diagnostic modules.

Functional analysis. Normally, co‑expression genes tend to 
be involved in similar biological pathways. Thus, the present 
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study investigated the functional pathways of the diagnostic 
modules. Reactome (http://www.reactome.org/), a confirmed 
pathway database, was employed to capture biological path-
ways associated with PO. From Reactome, a total of 1,675 
original human pathways were downloaded. Pathways with 
too many genes may be too complex to understand, while 
pathways with too few genes may not have sufficient biolog-
ical content (21); thus the pathways whose number of genes 
was >100 or <5 were removed from the study. Subsequently, 
pathway enrichment analysis of genes in PPI networks was 
performed for each diagnostic module. In the present study, 
to further investigate the biological functions of the diag-
nostic modules, data obtained from the Reactome database 
were entered into Genelibs (genelibs.com/gb/com/index.
html) for analysis of enrichment pathways. Genelibs is a data 
platform that provides a collection of biological informa-
tion as well as tools for processing and analysis. Therefore, 
P‑values of the pathways were evaluated in Genelibs and 
significant pathways with adjusted P<0.05 and diagnostic 
module pathways with the minimum adjusted P‑value were 
screened out.

Results

Differential co‑expression network. Prior to analysis, 
microarray and PPI data were separately obtained from the 
open‑access databases. A total of 11,843 genes were included in 
the microarray data and 787,896 interactions (covering 16,730 
genes) were contained in the PPI network. For mapping genes 
from the microarray dataset onto the PPI network, the common 
ones, including 22,728 interactions (covering 4,985 genes), 
were extracted out. The differential co‑expression network 
was then constructed based on co‑expression analysis and 
differential expression analysis successively, which contained 
4,697 interactions and 2,216 nodes. Fig. 1 displays the major 
network, including 1,607 genes and 4,197 interactions.

Seed genes. To determine the seed genes, the degree of 
centrality of the differential co‑expression network was 
analysed and the z‑scores were introduced to measure the 
significance of genes in the network. All genes were ranked in 
descending order of their z‑scores, and the top 5% genes were 
considered as seed genes. Fig. 2 illustrates the gene distribution 

Figure 1. Differential co‑expression network constructed based on co‑expression analysis and successive differential expression analysis. The major network 
contained 1,607 genes and 4,197 interactions. The seed genes are highlighted in yellow.
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by z‑scores. A total of 110 seed genes were identified, of which 
RNA polymerase II subunit I had the highest z‑score value 
(z‑score=142.41).

Diagnostic modules. Diagnostic modules (sub‑networks) with 
maximum classification accuracy were screened from the 
differential co‑expression network based on the seed genes 
prediction and diagnostic modules identification. Certain 
hidden genes that had no significance by themselves, but were 
clustered in a sub‑network module whose genes are highly 
predictive of the disease status were identified by searching 
the diagnostic modules by seed gene expansion. Starting from 
the 110 seed genes, a total of 110 candidate diagnostic modules 
were identified. Based on the cut off values of AUC=1 and 
number of genes ≥5, 9 diagnostic modules were identified 
and named as Modules 1‑9 (Fig. 3). The seed genes of these 
modules were adenylate kinase 6 (AK6), proteasome 26S 
subunitATPase 5 (PSMC5), TATA‑box binding protein asso-
ciated factor 12 (TAF12), splicing factor 3b subunit 4 (SF3B4), 
U2 small nuclear RNA auxiliary factor 2 (U2AF2), cleavage 
and polyadenylation factor I subunit 1 (CLP1), proteasome 
subunit α5 (PSMA5), NADH:Ubiquinone oxidoreductase 
complex assembly factor 1 (NDUFAF1) and Y‑box binding 
protein 1 (YBX1), respectively. From Table I, it is apparent 
that all diagnostic modules have a classification capability of 1, 
indicating that these diagnostic modules are able to accurately 
distinguish samples from patients with PO from those from 
healthy women.

Pathway analysis. After determining the diagnostic modules, 
the present study further investigated the functional path-
ways of these diagnostic modules. Based on the Reactome 
database, the pathways with number of genes of <5 and >100 
were removed, and consequently, a total of 1,002 pathways 
were obtained. Fisher's exact test was utilized to determine 
the significance of the pathways, and the pathway with the 
minimum adjusted P‑value was considered as the diag-
nostic module pathway. Each diagnostic module mapped an 
important pathway (Table I). Eventually, Modules 1 and 7 were 

identified to be enriched in histone acetyltransferases (HATs), 
while Modules 2 and 3 were enriched in ubiquitin‑dependent 
degradation of cyclin D, and Modules 5 and 9 were enriched in 
mRNA splicing. Furthermore, Modules 6 and 8 were enriched 
in processing of capped intron‑containing Pre‑mRNA. The 9 
diagnostic modules were associated with 5 pathways, most of 
which were metabolic signalling pathways.

Discussion

It has been largely accepted that osteoporosis is associated 
with age as well as environmental and genetic factors, which 
appear to have an important role in regulating bone mineral 
density and affect the quantitative ultrasound properties of 
bone (measures of bone structure components, including 
broadband ultrasound attenuation and speed of sound), skeletal 
geometry, bone turnover and the pathogenesis of osteoporosis 
itself (22,23). In the past few years, numerous studies have 
been performed among different populations using linkage 
and association approaches to identify effective biomarkers, 
including oestrogen receptor 2, tumour necrosis factor‑α and 
interleukin‑10, which may increase an individual's suscepti-
bility to PO (24,25). PO remains a difficult problem in the 
medical field due to the silent symptoms and trivialization by 
post‑menopausal women and doctors (26). To explore markers 
for classifying different disease states or predicting clinical 
outcomes, previous and current research focuses on identi-
fying genes that are differentially expressed between different 
phenotypes of various diseases (27,28). Subsequent analysis 
has focused on Kyoto Encyclopaedia of Genes and Genomes 
pathway enrichment assays to uncover the possible enrichment 
pathways signature of these genes (29). However, gene signa-
tures based solely on expression data are not sufficiently reliable 
to understand the effects of disease‑gene interconnections and 
disease pathways (30). Therefore, network‑based strategies 
have been largely used because of their broad potential in a 
variety of biological and clinical applications (31).

In the present study, a differential co‑expression network 
approach was used to identify the diagnostic function modules of 
PO, which has not been previously assessed for PO, to the best of 
our knowledge. A dataset associated with PO (E‑GEOD‑56116) 
was selected, which is different from those in previous studies. 
The present study aimed to identify important biomarkers asso-
ciated with PO for earlier diagnosing and treating PO. To predict 
the clinical outcomes of PO from a network perspective, diag-
nostic modules that are functionally associated with numerous 
differentially expressed genes and contributed to the predictive 
phenotype of PO were identified. From this network, a total of 
9 diagnostic modules were retrieved to accurately distinguish 
samples of PO patients with those from healthy women. These 
diagnostic modules involve 5 functional pathways. For instance, 
Modules 1 and 7 are associated with the histone acetylation 
through HATs pathway. It is generally accepted that epigenetic 
regulation has a key role in the oestrogenic differentiation of 
mesenchymal stem cells. Recent studies have indicated that 
histone modifications have an important role in the pathological 
phenotype of defective osteogenesis of bone marrow stromal 
cells (32,33). Zhang et al (34) revealed that the knockdown of 
the HAT p300/(CREB binding protein) associated factor signifi-
cantly reduced bone formation in vivo and in vitro, indicating 

Figure 2. Distribution of z‑scores of genes in the differential co‑expression 
network. The integral under the curve to the right of the red dashed 
linerepresents seed genes with the top 5% z‑scores.
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that histone acetylation may be involved in osteoporosis. The 
HAT GCN5 was also reported to regulate the osteogenic effect 
of mesenchymal stem cells in a nuclear factor‑κB‑dependent 
way  (35). Histone deacetylase inhibitors, including 

trichostatin A and suberoylanilide hydroxamic acid, have been 
reported to promote osteoblast maturation by inducing histone 
acetylation (36,37). Furthermore, Alao et al (38) indicated that 
a histone deacetylase inhibitor induces ubiquitin‑dependent 

Figure 3. Diagnostic modules that accurately distinguish samples with post‑menopausal osteoporosis from healthy samples. Yellow nodes represent seed 
genes. RBBP5, RB binding protein 5; GADD45A, growth arrest and DNA damage inducible α; TADA1, transcriptional adaptor 1; TAF6L, TATA‑box binding 
protein associated factor 6 like; PSMA4, proteasome subunit α4; CCND1, cyclin D1; SELL, selectin L; PSMD5, proteasome 26S subunit, non‑ATPase 5; 
YBX3, Y‑box binding protein 3; NDUFA5, NADH:Ubiquinone oxidoreductase complex assembly factor 5; NDUFB3, NADH:Ubiquinone oxidoreductase 
subunit B3; NDUFB5, NADH:Ubiquinone oxidoreductase subunit B5; SNRPD3, small nuclear ribonucleoprotein D3; CHERP, calcium homeostasis endo-
plasmic reticulum protein; SNRPA1, small nuclear ribonucleoprotein polypeptide A; SRSF6, serine and arginine rich splicing factor 6; SNRPB2, small 
nuclear ribonucleoprotein polypeptide B2; NUP107, nucleoporin 107; CD2BP2, CD2 cytoplasmic tail binding protein 2; NCBP2, nuclear cap binding protein 
subunit 2; CCND2, cyclin D2; NGF, nerve growth factor; CREBBP, CREB binding protein; EP300, E1A binding protein p300; SNRPD3, small nuclear 
ribonucleoprotein D3.

Table I. Details of diagnostic modules and functional pathways in post‑menopausal osteoporosis.

Module	 Seed		  Number		  Adjusted P‑value
no.	 gene	 z‑score	 of genes	 Enriched pathway	 of the pathway

1	 AK6	 69.94	 15	 Histone acetylation by HATs 	 6.86x10‑4

2	 PSMC5	 58.07	 16	 Ubiquitin‑dependent degradation of cyclin D	 6.55x10‑6

3	 TAF12	 49.20	 15	 Ubiquitin‑dependent degradation of cyclin D	 2.21x10‑9

4	 SF3B4	 38.79	 15	 Degradation of β‑catenin by the destruction complex	 5.96x10‑6

5	 U2AF2	 49.03	 16	 mRNA splicing	 9.96x10‑10

6	 CLP1	 48.49	 15	 Processing of capped intron‑containing Pre‑mRNA	 3.38x10‑9

7	 PSMA5	 43.00	 15	 Histone acetylation by HATs 	 3.39x10‑5

8	 NDUFAF1	 40.49	 15	 Processing of capped intron‑containing pre‑mRNA	 3.38x10‑9

9	 YBX1	 40.19	 15	 mRNA Splicing	 9.96x10‑10

AK6, adenylate kinase 6; PSMC5, proteasome 26S subunit ATPase 5; TAF12, TATA box‑binding protein‑associated factor 12; SF3B4, splicing 
factor 3B subunit 4; U2AF2, U2 small nuclear ribonucleoprotein auxiliary factor; CLP1, cleavage and polyadenylation factor I subunit 1; 
PSMA5, proteasome subunit α5; NDUFAF1, NADH‑ubiquinone oxidoreductase (complex I); YBX1, Y box binding protein 1; HATs, histone 
acetyltransferases.
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degradation of cyclin D1. In another study by Alao et al (39), 
a histone deacetylase inhibitor was proven to promote protea-
somal degradation of cyclin D1 and repress oestrogen receptor 
α‑dependent transcription. It is well known that oestrogen has 
essential roles in maintaining bone density and protecting 
against PO. Furthermore, oestrogen may induce the expression 
of cyclin D in primary osteoblasts (40). In line with this, in the 
present study, ubiquitin‑dependent degradation of cyclin D was 
a diagnostic module pathway (Modules 2 and 3). Degradation 
of β‑catenin by the destruction complex is a diagnostic pathway 
from Module 4. Numerous studies have indicated the associa-
tion between β‑catenin and PO (41‑44). In the present study, the 
diagnostic module‑associated pathways were in accordance 
with the pathological process of PO, which indirectly indicates 
the feasibility of the application of the present method.

It has been reported that genes in diagnostic modules may 
be used to effectively predict disease state (43). In the present 
study, all 9 diagnostic modules displayed good classification 
performances with AUC=1, indicating that these diagnostic 
modules were able to accurately distinguish samples from 
patients with PO from those from healthy women. Clinically, 
combined detection of genes in diagnostic modules may 
contribute to the early prediction of PO. Furthermore, diag-
nostic modules and functional pathways may provide clues for 
the identification of potential therapeutic targets for PO.

In conclusion, osteoporosis is a common and serious 
disease among the elderly, particularly in older women. At 
present, available therapies are only aimed at preventing 
further bone decay. A better understanding of the biological 
processes involved in the development of PO may be helpful 
in its early prevention and intervention. In the present study, 
9 diagnostic modules were successfully identified, which 
were able to accurately distinguish PO from healthy controls. 
These diagnostic modules are associated with 5 functional 
pathways, most of which are associated with material 
metabolism. The results indicated that this module search 
approach is suitable for the analysis of PO, and these func-
tional diagnostic modules may be considered as potential 
targets for predicting the clinical outcomes of PO, which is 
helpful for the early diagnosis and therapy of osteoporosis. 
As the number of samples in the present study was low, the 
results obtained only provide a strategy for further exploring 
the development of PO. In addition, it is still required to 
validate the results in animal or patient tissue experiments 
in future studies.
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