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Abstract

Diabetes (DM) has a significant impact on public health. We performed an in silico study of

paired datasets of messenger RNA (mRNA) micro-RNA (miRNA) transcripts to delineate

potential biosignatures that could distinguish prediabetes (pre-DM), type-1DM (T1DM) and

type-2DM (T2DM). Two publicly available datasets containing expression values of mRNA

and miRNA obtained from individuals diagnosed with pre-DM, T1DM or T2DM, and normo-

glycemic controls (NC), were analyzed using systems biology approaches to define com-

bined signatures to distinguish different clinical groups. The mRNA profile of both pre-DM

and T2DM was hallmarked by several differentially expressed genes (DEGs) compared to

NC. Nevertheless, T1DM was characterized by an overall low number of DEGs. The miRNA

signature profiles were composed of a substantially lower number of differentially expressed

targets. Gene enrichment analysis revealed several inflammatory pathways in T2DM and

fewer in pre-DM, but with shared findings such as Tuberculosis. The integration of mRNA

and miRNA datasets improved the identification and discriminated the group composed by

pre-DM and T2DM patients from that constituted by normoglycemic and T1DM individuals.

The integrated transcriptomic analysis of mRNA and miRNA expression revealed a unique

biosignature able to characterize different types of DM.

Introduction

Diabetes mellitus (DM) is a group of chronic metabolic disorders characterized by the eleva-

tion of blood glucose levels (hyperglycemia) due to defects in insulin secretion and/or activity

[1]. The most recent report from the American Diabetes Association (ADA) indicated that in

2017, approximately 425 million adults were diagnosed with DM and estimated that by 2045,
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another 629 million people will be afflicted by these metabolic disorders [2]. DM can be

broadly classified into two categories: type-1 (T1DM) and type-2 diabetes (T2DM). The for-

mer, also known as “insulin-dependent DM”, corresponds to 5–10% of DM cases, and is char-

acterized by insufficient or suboptimal production of insulin as a result of cellular mediated-

destruction of the pancreatic beta cells [3]. On the other hand, T2DM, also known as “non-

insulin-dependent DM”, accounts for 90–95% of all DM cases. The wide spectrum of symp-

toms observed in T2DM patients is associated with either insulin resistance or partial insulin

deficiency which stems from a variety of causes, including obesity, aging, and sedentarism [4].

Of note, pre-diabetes (pre-DM) is considered a transitional condition to DM in which an indi-

vidual exhibits elevated blood glucose levels without meeting additional criteria for diagnosis

of DM [5]. Furthermore, shreds of evidence gathered in the last years suggest an association

between pre-DM and a higher risk for the development of cardiovascular diseases (CVDs) [6].

Despite the current advance surrounding the understanding of differences and similarities in

the pathogenesis of distinct types of DM, the underlying molecular mechanisms remain only

partially understood.

The study of the role of the key determinants of the DM pathogenesis is important to

understand DM as a chronic inflammatory disease and to guide development of better thera-

peutic approaches [7]. A large number of inflammatory markers have been suggested as patho-

genic mediators for DM, including C-reactive protein, interleukin (IL)-1, IL-6, and tumor

necrosis factor (TNF)-α [8]. Indeed, the inflammatory biomarkers, many of which are secreted

by adipocytes [9]9, correlate with prevalent and incident DM as well as its major complications

[8]. Of note, several novel biomarkers, biological pathways, and cellular processes have also

been associated with DM progression, which includes transcriptional markers and micro-

RNA (miRNAs) [10]. miRNAs are a class of small non-coding RNAs, containing 17–25 nucle-

otides, that are central regulators of gene expression and important players in the development

of different forms of DM [11]. Furthermore, miRNAs have been described to regulate pancre-

atic β-cell development and function and also to modulate the expression of several key genes

in tissues that respond to insulin [12]. A large body of evidence indicates that changes in miR-

NAs levels are associated with a higher risk of developing DM-related outcomes such as renal

complications, cardiovascular disease and visual impairment [13].

The investigation of miRNAs and other transcripts as biomarkers of DM pathogenesis has

potential to provide a powerful tool for the attainment of a better understanding of such dis-

ease. Therefore, we performed an in silico study of publicly available datasets of paired mRNA

and miRNA transcript expression with the hypothesis that there are combined transcriptomic

signatures capable of characterizing distinct biological processes underlying the different types

of DM.

Materials and methods

Ethics statement

There were no patients directly involved in the research. The present study used publicly avail-

able gene expression data from previously published studies to perform a meta-transcriptome

analysis. All information given to the research team was de-identified. Thus, the study was

exempted from revision by the Institutional Review Board of the Instituto Gonçalo Moniz,

Fundação Oswaldo Cruz, Salvador, Brazil, and did not require signed consent forms.

Description of datasets

To select the databases, we accessed the Gene Expression Omnibus (GEO) website in May 28,

2018 [14]. The main objective was to evaluate datasets that contained transcriptional records
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on expression of both mRNA and miRNA from peripheral blood samples. The following gen-

eral terms were used: “Diabetes”, and “Homo sapiens”. This approach resulted in a total of 59

datasets. We next excluded 35 datasets because those studies used samples from tissues other

than blood (Fig 1A). Then, 24 records were examined for eligibility and additional 22 were

excluded (3 datasets were duplicated and 19 did not contain paired data on mRNA and

miRNA (Fig 1A). Finally, 2 datasets were included from persons with normoglycemia, pre-

DM, T1DM or T2DM paired with mRNA and miRNA. The first dataset was GSE55100 which

was obtained from experiments using peripheral blood samples from patients with T1DM

compared with normoglycemic controls, recruited at the Ruijin Hospital in Shanghai between

January 2009 to September 2012 [15]. In this study, a total of 22 samples of 11 males and 11

females individuals were processed and further stratified in10 normoglycemic controls and 12

newly diagnosed T1DM patients. In addition, two microarray platforms were used to obtain

the data from the same samples: GPL570 (measured the mRNA) and GPL8786 (measured the

miRNA). The second dataset (GSE26168), had data from a total of 60 samples from peripheral

blood of male individuals recruited at the Alexandra Hospital, Singapore, between July 2008 to

April 2009. The data were generated using two platforms: GPL6883 (to measure mRNA) and

GPL10322 (to measure miRNA) [16]. The dataset was composed by 8 normoglycemic healthy

controls, 7 individuals with impaired fasting glucose and 9 patients with T2DM. This

Fig 1. PRISMA flow chart of the transcriptional meta-analysis. (A)Selection of eligible GEO datasets for systems biology analysis according to PRISMA 2019 flow

diagram. (B) Flow diagram of bioinformatics analysis. (C) A list of packages and functions.

https://doi.org/10.1371/journal.pone.0239061.g001
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dataset also contained 10 samples from an animal model (rat norvegicus), which were not ana-

lyzed in the present study. All the data were downloaded on June 08,2018.

Data collection and curation of datasets

The datasets from both platforms (mRNA and miRNA) were obtained using the GEOquerry
package [17] in R 3.6.2 and raw expression data were downloaded. GEOquerry is a package

which allows the downloading of all information from the NCBI GEO datasets, including

metadata, in R platform. After data acquisition, data were normalized and log2 transformed

using the preprocesscore R package [18] in R 3.6.2. This package was used to transform and

normalize all transcriptomic data. The probes identification in GSE55100 (performed on Affy-

metrix platform) and GSE26168 (performed on Illumina platform) were corrected by collapse

function (collapserows) presented inWeighted correlation network analysis (WGCNA) package

in R 3.6.2. The WGCNA allows the identification of gene coexpression modules, based on the

correlation networks. In this analysis, we used the collapsed probes with its annotated gene

symbol. The function collapseRows was used to summarize the probes into its respective anno-

tation. Thus, the GSE26168 dataset presented 10,899 probes and the GSE5510 dataset 23520.

The collapsing process resulted in 8,131 genes and 847 miRNA in the GSE26168 dataset and

3,368 genes and 668 miRNA, respectively in the GSE5510 dataset. We only analyzed the genes

and miRNA presented in both datasets, discarding the particular ones, with 7579 genes and

668 miRNA present in both datasets. After collapsing the probes and merging the count tables,

the expression data were submitted to a correction procedure of batch effect using an empirical

Bayes framework implemented in the ComBat function available in SVApackage [19] in R
3.6.2. This package is used to correct the batch effects in high throughput data to minimize the

experimental variance.

The differentially expressed genes (DEGs) were calculated comparing each clinical group

(pre-DM, T1DM and T2DM) with normoglycemic healthy controls (baseline group). Genes

were considered differentially expressed when presented log2-fold-change < -1.5 or log2-fold-

change> 1.5 and p-value corrected with the Benjamini–Hochberg false discovery rate (FDR)

adjustment for multiple testing (FDR = 5%) lower than 0.05, determined with limma package

[20]. A volcano plot was used to identify the changes in expression, for this we use -log 10

transformed p-value corrected by FDR versus fold-change on the y and x-axes, respectively.

Venn diagrams were used to visualize/summarize all possible logical relations of all the DEGs

between the clinical groups. Principal component analysis (PCA) was performed in order to

estimate the variance of the global gene expression. For this analysis, we applied the function

prcomp a native package in R 3.6.2. The enrichment pathway analysis was employed to func-

tionally describe the DEGs, using the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database v6.2 [21] and Clusterprofile packages [22] in R 3.6.2. This approach was employed in

order to determine an over-represented gene set in the DEGs also identifying significantly

enriched or depleted genes in this set. The Clusterprofile algorithm performed an enrichment

pathway analysis and information is available in: https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

Multi-omics factor analysis

Multi-omics factor analysis (MOFA) enables the analysis of biological multidimensional data,

ranging from genome, epigenome, transcriptome, proteome, and metabolome, integrating all

these layers across a more comprehensive result in a latent factor [23]. The MOFA model used

here integrated data from mRNA and miRNA was defined by several parameters. First, the

logical scale and paired samples were selected by the functions #scaleViews (recommended to
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be “FALSE” for small datasets) and #removeIncomplete (was set as “TRUE” to only use the

paired samples in both datasets of mRNA and miRNA). Second, the number of factors was

selected by default (value = 0.5), meaning that the model would only remove a factor if it

explained exactly zero variance in the data. In summary, this parameter shows all the factors.

The data on factors was next processed with the function #likelihood = “gaussian”, which fits

the model according with the data. Gaussian for continuous data, Bernoulli for binary data

and poisson for count data. Furthermore, the parameter #sparsity was set as “TRUE” to auto-

matically learn the appropriate level of regularization for each factor and improve the interpre-

tation. Third, the tolerance was set as 0.01, recommended to establish a model and restrict the

number of factors. After selecting all the parameters and preparing the datasets, we used as an

input the corrected bath effect count table of the mRNA and miRNA obtained as the formal

analytical merged dataset. All the data were paired by study, individual and platform. In all

analyses, ap-value < 0.05 after the 5% FDR adjustment was considered statistically significant.

All the default pipelines of the analyses performed here are available in: http://www.

bioconductor.org/packages/devel/bioc/html/MOFA.html. The overall analytical study design

is illustrated in Fig 1B and a list of packages are provided in Fig 1C.

Results

Patients with different types of DM exhibit a distinct profile of mRNA and

miRNA expression

Before formally initiating the transcriptome analysis, we checked the batch effects in the pre-

processed data. The distribution of the patients in the setting of uncorrected data demon-

strated a large batch effect between platforms and experiments (S1A and S2A Figs). After the

correction, the variance was reduced in both mRNA (60.7% to 20.9%) and miRNA (85.6% to

9.4%); and the individuals from control groups in both datasets of mRNA and miRNA were

colocalizated in the same space of the principal component analysis (PCA) plots. This

approach also indicated that biological sex was not a parameter which influenced the distribu-

tion of individuals in the PCA plots (S1B and S2B Figs). We then utilized the data after correc-

tion of the batch effect in the further steps of the investigation.

In the first comparisons, we investigated the differentially expressed transcripts detected in

the mRNA datasets (Fig 2). The criteria for DEGs was established as log2 fold-change >1.5 or

<-1.5 and p value <0.05. Patients with T1DM exhibited a total of 12 genes with significant p-

values, but all of those displayed low values of fold-change variation compared to normoglyce-

mic healthy controls, failing in the criteria (Fig 2A). On the converse, patients with T2DM had

a high number of genes with significant p-values (n = 4119) with 159 genes on the criteria (Fig

2B). Individuals with pre-DM had 3616 significant genes and 143 of those genes met the fold-

change criteria (Fig 2C). We next used a Venn diagram of all those genes identified within the

criteria between all clinical groups (pre-DM, T1DM and T2DM) to summarize the findings.

The Venn diagram indicated that there was a high number of transcripts which were uniquely

expressed in the groups of individuals with pre-DM (n = 794) or T2DM (n = 1296), whereas

patients with T1DM exhibited only 5 uniquely expressed genes (SSU72, RPL41, RPL11, CEA-
CAM1 andMYH9) (Fig 2D). In addition, while a total of 2818 transcripts with significant p-

values was found in exclusively between the pre-DM and T2DM groups, only 2 (PRR13 and

SH3BP5) genes were found in common between pre-DM and T1DM and 3 (COX4I1, APEX2
and CLUAP1) were detected between T1DM and T2DM (Fig 2D). Of note, only 2 genes with

significant p-values (B2M, U2AF2) were found to be in common among all the three clinical

groups (Fig 2D).
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With regard to miRNA expression, T1DM individuals displayed 60 transcripts with signifi-

cant p-values and only three matching the DEGs fold-change criteria (hsa-miR-486-5p, hsa-

miR-1275 and hsa-miR-744) (Fig 3A). The group of patients with T2DM displayed 100

Fig 2. Differentially expressed mRNA transcripts among individuals with different types of dysglycemia. Volcano plots display the differentially expressed

genes based on adjusted p-value and fold-difference variation of the gene expression in comparisons between each clinical group and the reference group

(normoglycemic healthy controls) as follows: T1DM (A), T2DM (B) and pre-DM (C). In (D), Venn diagram shows genes with significant adjusted p-values

(<0.05) of each comparison between the indicated groups and the reference group using the Student’s T-test. Details of all the comparisons are available in the

S1 File.

https://doi.org/10.1371/journal.pone.0239061.g002
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different miRNAs which were statistically significant but just one with fold-difference value

over the control group (hsa-miR-144) (Fig 3B). Moreover, pre-DM individuals presented 176

miRNAs with significant p-values and 82 targets matched the DEGs criteria (Fig 3C). A Venn

diagram was once again used to depict the relations in transcript expression between the

groups. Similarly to what we found in the analysis of the mRNA expression, the diagram with

Fig 3. Differentially expressed miRNAs among individuals with different types of dysglycemia. Volcano plots display the differentially expressed miRNA

based on adjusted p-value and fold-difference variation of the miRNA expression in comparisons between each clinical group and the reference group

(normoglycemic healthy controls) as follows: T1DM (A), T2DM (B) and pre-DM (C). In (D), Venn diagram shows the miRNA with significant adjusted p-

values (<0.05) of each comparison between the indicated groups and the reference group using the Student’s T-test. Details of all the comparisons are available

in the S1 File.

https://doi.org/10.1371/journal.pone.0239061.g003
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the miRNA data revealed a relatively high number of statistically significant transcripts exclu-

sive to pre-DM (n = 136) and to T2DM (n = 65) whereas the T1DM group exhibited the lowest

number of uniquely expressed miRNA (n = 46) (Fig 3D). Furthermore, while 29 miRNAs

were found in common between pre-DM and T2DM, only 8 were detected among pre-DM

and T1DM and 3 were observed exclusively between T1DM and T2DM (hsa-miR-93, hsa-

miR-150 and hsa-miR-320a) (Fig 3D). Three miRNAs with significant p-values were shared by

the three clinical groups (hsa-miR-29a, hsa-miR-30a and hsa-miR-720).

Pathway enrichment analysis of mRNA transcripts revealed unique profiles

in pre-DM and T2DM, but not in T1DM

To understand the pathways associated with different types of DM, we employed a pathway

enrichment analysis using the DEGs compared to the KEGG database. Interestingly, there was

no enriched pathway detected in the T1DM group because of the complete lack of DEGs in

the primary analysis. On the converse, in T2DMwe found several pathways, including “Tuber-

culosis”, “human cytomegalovirus infection” and “Th17 cell differentiation” (Fig 4). The group

of individuals with pre-DM displayed 4 enriched pathways. Of those, the “EGFR tyrosine

kinase inhibitor resistance”, “prostate cancer” and, interestingly, “Tuberculosis” were shared

in common with T2DM (Fig 4). One pathway (“FC gamma R-mediated phagocytosis”) was

exclusively represented in pre-DM.

The Integration of mRNA and miRNA data identified factors able to

distinguish pre-DM and T2DM fromT1DM and normoglycemic healthy

controls

After performing analyses using the datasets and describing the lack difference in mRNA

expression in patients with T1DM and differences in miRNA expression separately, we per-

formed an integrative multi-omics factor analysis to investigate two transcriptomics layers of

the same patients using MOFA pipeline [23]. To do that, a total of 46 samples, which had full

pairing between mRNA and miRNA available data were used (Fig 5A). The MOFA integrated

the omics in 6 latent factors. Among those, the latent factor 1 exhibited the highest influence

in the discriminantion between the clinical groups and it was strongly correlated with the tran-

scriptomics of mRNA and miRNA, whereas the latent factor 4 was more associated with the

miRNA data (Fig 5B). We next used a PCA model in which each latent factor was inputted as a

principal component, to identify potential combined factors that could cluster the different

clinical groups separately. This approach revealed that the latent factor 1 and 4 together

resulted in reliable capacity to discriminate the groups, when combined. The factor 1 was able

to more consistently separate the groups of pre-DM patients and T2DM from those of T1DM

and normoglycemic controls (Fig 5C).

The latent factor is related with several candidate markers of distinct types

of DM and enriched in pathways related to homeostasis

The results presented above using the MOFA approach identified two latent factors (LF1 and

LF4) that when combined could result in better separation of the subgroups of individuals

from the different clinical groups. The LF1 was the factor that exhibited the strongest discrimi-

natory potential (Fig 5C). We then used the information on the loading score values of each

marker that constituted LF1 to describe the most relevant factors driving the separation of the

clinical groups. The MOFA package includes a functional enrichment analysis of pre-defined

biological pathways based on the results of the loading scores from the latent factor [23]. Our
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results demonstrated that the LF1 was most significantly enriched for “hemostasis”, followed

by and “GPCR downstream signaling”, while being less significantly associated with “regula-

tion of hypoxia inducible factor HIF by oxygen”, “activation of NF-kappaB in B cells” and

“PI3K cascade” (Fig 6A).

Fig 4. Pathway Enrichment Analysis of the differentially expressed genes per each clinical group. The differentially expressed genes (DEGs) were analyzed using a

pathway enrichment compared to the KEGG database as described in the Methods section. Only statistically significant enriched pathways are depicted. No pathway

was observed in the T1DM group because there were no DEGs identified.

https://doi.org/10.1371/journal.pone.0239061.g004
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The different latent factors are uniquely influenced by the loading scores from the distinct

markers (miRNA and mRNA) [23]. To better delineate which markers were influencing more

substantially the LF1, we plotted the loading scores from the miRNA and mRNA datasets. In

this analysis, increases in the transcript loading values are proportional to increases in associa-

tion with the latent factor. In addition, the direction of the effect is illustrated by “+” (positive

loading values) or “-” (negative loading values). Following this approach, we found that miR-

NAs that more strongly contributed to the LF1 were miR-144 and miR-924 (Fig 6B). Of note

the loading values of these two miRNAs were negative, indicating that they are more associated

with T2DM and pre-DM patients because those clinical groups had negative values of the LF1

as shown in Fig 6C. On the converse, miR-200c and miR-943 exhibited positive loading values

(Fig 6B), which were associated with normoglycemic healthy controls and individuals with

T1DM (Fig 4C). The same rational was employed with mRNAs, where IL6R, PLXNC1,

TMED10,WNK1, GRN,MXI1, TNFRSF10A all displayed negative values and thus being

related toT2DM and pre-DM patients, whereas LSR and DLC1had positive values (Fig 6C) and

were then related to normoglycemic controls and T1DM (Fig 5C).

Fig 5. Multi-Omics Factor Analysis identified latent factors able to distinguish pre-DM and T2DM from T1DM and normoglycemic healthy controls. (A) 46

samples with paired data on mRNA and miRNA expression were used using MOFA as described in Methods. (B) MOFA summarized the mRNA and miRNA data in 6

latent factors (LF) with different associations (evaluated using the proportion of total variance explained, R2) with the mRNA dataset, the miRNA dataset or both. (C)

Each latent factor was inputted as a principal component in a PCA algorithm and a matrix was used to show different combinations of latent factors able to segregate the

distinct clinical groups.

https://doi.org/10.1371/journal.pone.0239061.g005
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Discussion

In the present study, we analyzed publicly available transcriptomic datasets containing infor-

mation on both mRNA and miRNA expression levels from peripheral blood of individuals

with pre-DM, T1DM and T2DM as well as from normoglycemic controls using innovative sys-

tems biology tools, such as MOFA. Most of the previous studies in the field evaluated mRNA

and miRNA datasets individually in the context of DM [24,25]. Our integrative analysis identi-

fied combined molecules which could explain at least in part the dissimilarities between the

group of patients with pre-DM or T2DM and the group of T1DM and normoglycemic con-

trols. Such molecules included both specific miRNA and mRNA transcripts which created a

latent factor with a discriminant capacity in the MOFA results. These findings are important

to help understand the possible molecular differences among T1DM, T2DM and pre-DM.

In the primary analysis, we examined the differentially expressed transcripts detected in the

mRNA and miRNA datasets studied individually. Such approach demonstrated that, when

compared with normoglycemic controls, patients with TD1M exhibited the lowest number of

uniquely expressed transcripts than the patients from the groups of T2DM and pre-DM. Of

note, genetic differences between T1DM and T2DM, which may have implications on the

transcriptional profiles, have been previously reported [26]. For example, a genome-wide asso-

ciation study revealed that approximately one-third of genetic determinants of diabetes are

associated with T2DM, but not with T1DM [27]. In addition, a comparative analysis of mRNA

expression in the peripheral blood has identified that the differential gene expression was

higher in patients with T2DM compared to T1DM patients, suggesting that T2DM is more fre-

quently associated with activation of pathogenetic pathways [28]. Patients with T1DM are

insulin dependent and all of the patients included in the analyses presented here were under-

going insulin treatment for 6 months or more [15]. Insulin therapy has been reported to have

a direct impact in the gene expression levels, normalizing the majority of the genes which are

dysregulated in response to diabetes, including those involved with inflammatory processes,

microvascular integrity, and neuronal function in euglycemic diabetic rats [29]. Finally, in

regard to data on miRNA, patients with T1DM have been shown to exhibit decreased expres-

sion levels of miR-150, miR-146a and miR-424 compared to T2DM patients [30]. The body of

work described above argues that the transcriptional profile of T2DM is more perturbed than

that observed in T1DM. Additional studies will be necessary to define the molecular mecha-

nisms underlying this phenomenon.

The pathway enrichment analysis of the differentially expressed genes revealed that “EGFR

tyrosine kinase inhibitor resistance” was shared in common between T2DM and pre-DM.

Fig 6. Functional analysis of loading values from latent factor 1. (A) Pathway enrichment analysis of the latent factor 1. (B) Loading values miRNA composing the

latent factor 1. (C) Loading values mRNA composing the latent factor 1. In (B) and (C) the “+” and “-” signs infer directionality of the influence of the distribution of

data points shown in Fig 4C.

https://doi.org/10.1371/journal.pone.0239061.g006
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Some studies using experimental mouse models reported that epidermal growth factor recep-

tor (EGFR) mRNA expression is down-regulated in pancreatic islet cells and related to onset

of diabetes [31]. On the converse, findings from another study examining murine mesangial

cells demonstrated a beneficial effect of EGFR inhibition against cell death mediated by EGFR

which preceded development of diabetes [32]. Whether the EDFR-related pathway has direct

implication in development of diabetes in humans has not been formally demonstrated. The

pathway “Tuberculosis” was also shared in common with T2DM and pre-DM. Importantly,

strong epidemiological and pathophysiological evidence support the idea that T2DM is a

major risk factor for the development of active pulmonary tuberculosis (TB) [33]. It has been

recently demonstrated that patients with high levels of glycated hemoglobin (HbA1c) exhibit

increased risk of TB in Sudan [34]. Furthermore, a study in India reported that individuals

with pre-DM and latent TB infection (LTBI) have a high risk of developing active TB [35].

Finally, DM is associated with altered levels of specific cytokines and chemokines that affect

adaptive immunity that are potentially relevant to anti-TB immune responses [33]. Lastly, the

pathway “FC gamma R-mediated phagocytosis” was exclusively represented in the group of

individuals with pre-DM. To our knowledge, Fc-gamma receptor has not previously been

reported to be associated with pre-DM, nevertheless some studies suggest an association

between autophagy and pre-DM. Indeed, a study suggested that mice genetically lacking genes

that promote autophagy exhibit early onset of altered glucose metabolism related to a profile

similar to pre-diabetes [36]. Furthermore, an investigation of 127 non-diabetic individuals

found a clinically relevant decrease in the phagocytic index laboratory results which was pro-

portional to increasing blood glucose levels [37]. Although interesting insights on the patho-

genesis of pre-DM and T2DM could be developed using the pathway enrichment analysis, no

advance could be gained from the analysis of T1DM, because there was no differentially

expressed mRNA in our primary analysis, which preclude inferences in pathways involved.

Thus, additional studies using a larger number of patients with T1DM are necessary to delin-

eate specific pathways associated with this condition.

In recent years, several studies have explored the use of miRNA expression data in blood as

diagnostic and prognostic biomarkers in the context of several diseases [38]. miRNAs are cen-

tral regulators of gene expression and thought to be important players in the development of

pre-diabetic and diabetic conditions [11]. Pancreatic β-cells and the tissues targeted by insulin

express a well-defined set of miRNAs [39]. Our study indicates miR-144, miR-924, miR-943

and miR-200c were the miRNAs which most contributed to the latent factor 1, that in turn

could separate the groups of T2DM or pre-DM from those of normoglycemic controls or

withT1DM. Our results are in agreement with a previous study which found that miR-144

expression is highly up-regulated in T2DM [16]. In this context, increased expression of

miR144 is linked to impaired signaling of the insulin cascade probably due to the downregula-

tion of the insulin receptor substrate 1 (IRS1) [16]. Moreover, a different study reported that

higher expression of miR-144 is significantly associated with occurrence of T2DM in a Swed-

ish population38. Of note, a recent meta analysis demonstrated evidence for a role of miR-144

as a potential circulating biomarker of the T2DM [40]. The association between miR-144 and

T2DM may involve lipid metabolism. Indeed, experimental studies suggested that miR-144-3p

can facilitate adipogenesis both in vitro and in vivo, through the promotion of lipid accumula-

tion, which in turn, promotes adipocyte differentiation and the expression of genes associated

with fatty acid synthesis [41]. More studies are warranted to test the hypothesis that changes in

lipid metabolism through manipulation of miR-144 expression could have impact in T2DM

development and/or progression.

Interestingly, our analyses using MOFA demonstrated that miR-924 was another miRNA

shown to be related to T2DM and pre-DM patients whereas miR-943 seemed to be more
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associated with normoglycemic healthy controls and T1DM. To our knowledge, miR-924 and

miR-943 have not previously been reported to be associated with the pathogenesis of DM, but

there are few reports about miR-924 and miR-943 function, especially in the setting of cancer.

In hepatocellular carcinoma tissues and cells associated with hepatitis B virus infection, it has

demonstrated that miR-924 may function as a tumor suppressor [42]. In Caco-2 cell lines,

miR-924 is implicated in pathogenesis of inflammatory bowel disease by negatively regulating

DEFA5 mRNA and protein expression [43]. On the other hand, in women with breast cancer,

it has been observed alterations in miR-943 expression levels, further suggesting their involve-

ment in repair of DNA double-strand breaks through TGF-beta pathway control [44]. Further-

more, in an asthma mouse model, it has been demonstrated that miR-943-3p can negatively

regulate the expression of SFRP4, causing accelerated progression of airway remodeling in

allergic asthma [45].

Our findings demonstrated that miR-200c is related to T1DM instead of T2DM, differently

than previous studies which have shown that certain members of the miR-200 family are dys-

regulated in T2DM and DM-associated complications including vascular inflammation

[46,47]. In addition, miR-200c is one of the most upregulated microRNAs found in heart tissue

with cardiomyopathy related to diabetes [48]. Furthermore, in arteries from both DM mice

and DM patients, it has been demonstrated that high glucose levels upregulates miR-200c via a

mechanism dependent on reactive oxygen species (ROS) in endothelial cells [48,49]. These

findings suggest that miR-200c is a possible candidate to mediate DM complications, or at

least those related to heart and vasculature. Previously, the miR-497 has been proposed to be a

predictor of DM due to its upregulation during the acquisition of insulin resistance [50]. Our

findings corroborate with this hypothesis by demonstrating that miR-497 expression is associ-

ated with pre-DM in the MOFA. Remarkably, miR-497 targets the insulin-like growth factor

receptor-1 (IGF-1R) [51] and is upregulated in Goto-Kakizaki rats (which develop T2DM)

compared with normal Wistar rats [52].

Our integrative analysis demonstrated that PLXNC1, TMED10,MXI1, TNFRSF10A expres-

sion profiles are associated with both pre-DM and T2DM. Expression of some of these genes

(IL6R,WNK1, GRN) has been previously reported to correlate with metabolic disorders. High

expression of IL6R has been detected in the serum of patients with T2DM, in diabetic rat pan-

creatic tissues and in glucose-treated INS-1E cell lines [53]. Furthermore,WNK1 is considered

a mediator of insulin-stimulated GLUT4 trafficking since it promotes cell surface abundance

of GLUT4 [54]. Finally, progranulin is a protein attribute for GRN gene and its high serum lev-

els is linked with visceral obesity and T2DM patients [55].

The gene expression of LSR and DLC1 were related to healthy controls and T1DM in the

MOFA results, but previous reports suggest a relationship between both of these genes and

T2DM. For instance, dysregulation of LSR is a common characteristic in the liver of mice with

obesity associated with T2DM [56]. Moreover, DLC1 is involved in the differentiation of white

and brown adipocytes in mouse embryonic fibroblasts, constituting an important component

of the metabolic dysfunction which can cause obesity and T2DM [57].

Our study has several strengths. We examined data on a relatively high number of samples

which had paired mRNA and miRNA analysis. In addition, we used MOFA as a statistical tool

to combine data on mRNA and miRNA data. An important limitation is the lack of biological

validation, and a low number of paired samples using different platforms. The batch effects

can be corrected for samples comparison. However, it is a mathematical procedure and does

not fit the experimental design to explain a biologic effect. Although, the data was corrected by

the mean and the variance, there still have co-confounders variables that, the mathematic pro-

tocol cannot completely modelled. We deal with this limitation throughout the work and

knowning the importance of this exploratory analysis. Nevertheless, this analysis could drive
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to new insights in the field, and new approaches and validation are required. Regardless, the

results presented here contribute to the field as it described a signature able to characterize dis-

tinctions between T2DM, T1DM, and pre-DM, identifying several candidate targets for future

mechanistic studies focused on elucidation of immunopathogenesis aspects of diabetes.
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