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The high recurrence rate of non-muscle invasive bladder cancer (BC) and poor

prognosis of advanced BC are therapeutic challenges that need to be solved.

Bacillus Calmette-Guerin (BCG) perfusion was the pioneer immunotherapy for

early BC, and the discovery of immune checkpoint inhibitors has created a new

chapter in the treatment of advanced BC. The benefit of immunotherapy is

highly anticipated, but its effectiveness still needs to be improved. In this review,

we collated and analysed the currently available information and explored the

mechaisms by which the internal immune imbalance of BC leads to tumour

progression. The relationship between immunity and progression and the

prognosis of BC has been explored through tests using body fluids such as

blood and urine. These analytical tests have attempted to identify specific

immuyne cells and cytokines to predict treatment outcomes and recurrence.

The diversity and proportion of immune and matrix cells in BC determine the

heterogeneity and immune status of tumours. The role and classification of

immune cells have also been redefined, e.g., CD4 cells having recognised

cytotoxicity in BC. Type 2 immunity, including that mediated by M2

macrophages, Th2 cells, and interleukin (IL)-13, plays an important role in the

recurrence and progression of BC. Pathological fibrosis, activated by type 2

immunity and cancer cells, enhances the rate of cancer progression and

irreversibility. Elucidating the immune status of BC and clarifying the

mechanisms of action of different cells in the tumour microenvironment is

the research direction to be explored in the future.
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Introduction

There are an estimated 500,000 new cases of bladder cancer (BC) and 200,000

related deaths worldwide each year. In the US alone, > 80,000 new cases of BC and

17,000 deaths occur each year (1–3). In recent decades, the treatment of BC has

improved gradually (4, 5) and the latest major development started in 1977 with the
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introduction of Bacil lus Calmette-Guerin (BCG) in

therapeutic management (6). In the past few years, tumour

molecular profiling and immune checkpoint blockade have

led to unprecedented progress in the treatment of BC (7–11).

However, immune checkpoint inhibitors (ICIs) only provide

survival benefits to 20–30% of BC patients (12–15). However,

this limited effectiveness has not prevented ICIs from

replacing previous chemotherapy regimens as the first and

second-line treatment of BC (16–18). Immune-related

therapies have featured prominently in the history of BC

treatment. Researchers have focused more attention on

human immune surveillance and elimination mechanisms,

with the goal of eliminating BC cells in the body. However,

the effectiveness of immunotherapy for BC still needs to

be improved.

The function of the cellular components in the BC

microenvironment is related to their molecular subtypes;

precise tumour status markers need to be further explored.

The accumulation of high-throughput data has provided a

strategy to elucidate the mechanisms underlying cancer

development (19–21). The most representative data hosted

on The Cancer Genome Atlas (TCGA), comprising

chromatin landscape, transcriptome, epigenetic alterations,

and clinical data (22–25). Based on multi-omics data

analysis, muscle invasive BC (MIBC) has been divided into

six molecular subtypes (26, 27), including the stroma-rich

and basa l / squamous sub types , wh ich have lower

tumour purity.

In addition, the luminal-infiltrated subtype shows high

expression of epithelial-mesenchymal transition (EMT)

markers and high resistance to cisplatin-based chemotherapy

(26, 28). EMT markers, such as Twist, Snail and Zeb1, also

induce chemoresistance in cancer (29). In various malignant

tumours, including urothelial carcinoma (UC), there is a positive

correlation between T cell infiltration and expression of EMT-

related genes (30). T cell infiltration has been revealed to not be

directly involved in the effect of ICIs (31). Furthermore, the

infiltration of immune and stromal cells, which decreases

tumour purity, is related to BC progression and poor

prognosis (32).

The immune status of BC is not only associated with its

staging and progression but also closely related to the outcome

of BCG treatment and chemotherapy. Changes in the immune

status of the microenvironment of BC affect the recruitment of a

variety of cells and cause fluctuations in immune cells in the

blood and urine. Type 2 immunity, which mediates wound

healing fibrosis, is related to the progression, recurrence, and

refractory nature of BC. In this review, we have collated and

analysed the above information and explored the reasons for

tumour progression caused by the internal immune imbalance

in BC.
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Miscellaneous cells similar to those
involved in wound repair appear in
the BC tissue

The urothelium, submucosa, and muscle layers are part of

the bladder wall, bladder tumours mostly originate in the

urothelium layer (33, 34). The innate immune system shows

anti-tumour activity based on the detection of tumour-

associated antigens (TAAs) and damage-related molecular

patterns (DAMPs). TAAs and DAMPs are presented by

antigen-presenting cells (APCs), such as dendritic cells (DCs)

and macrophages, to cytotoxic lymphocytes, causing activation

and subsequent tumour infiltration (35–37). A tumour is an

incurable wound that is closely associated with traumatic

inflammation (38). Cancer cells likely gain survival advantages

by reducing the expression of the MHCI-like molecules, HLA-A,

-B, and -C to evade cytotoxic lymphocytes (39). Nectin-4 is a

TAA that is expressed on the surface of 97% of the UC.

Currently, combinatorial treatment with pembrolizumab and

enfortumab vedotin—an antibody-drug conjugate targeting

nectin-4—has been approved by the FDA as a first-line

treatment for cisplatin-ineligible patients with locally advanced

or metastatic UC (40). Identifying and amplifying TAA signals

and fully mobilising immune cells to attack tumour cells may be

a future solution for BC.

The development of tumours and trauma involves the same

cell types, including platelets (41). In trauma, the fascia acts as an

external reservoir for the formation of a temporary stroma for

scarring and provides numerous fibroblasts for rapid sealing of

large open wounds (42). The submucosa of the bladder is similar

to the fascia in trauma and stores numerous fibroblasts. The

inflammatory infiltration in early BC spreads to the submucosa,

which permanently activates fibroblasts and increases their

conversion into cancer-associated fibroblasts (CAFs).

CAFs are stimulated by surrounding cells or activated by

signal crosstalk in the tumour microenvironment (TME), similar

to wound repair, and are mainly derived from resident

fibroblasts (43–47) . The downregulat ion of major

histocompatibility (MHC) class I antigen of cancer cells and

upregulation of programmed cell death 1 ligand 1 (PDL1) in the

TME are the mechanisms underlying the evasion of cytotoxic T

cells by cancer cells (48, 49).

The proliferation of tumour cells and their inability to be

eliminated leads to long-term immune cell infiltration and

further recruitment of fibroblasts in the stroma. This is

completely different from established fibrosis where the

monocyte-derived cell population is dismantled and degraded

with the disappearance of inflammation after wound repair (50).

In the progression of BC, the innate advantages of the different

bladder wall layers and the infiltration of immune cells facilitate
frontiersin.org

https://doi.org/10.3389/fimmu.2022.963877
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2022.963877
the recruitment of more stromal cells to enhance tumour

heterogeneity and enrich the signal exchange in the

TME (Figure 1).
Overactive CAFs thrive in BC

CAFs are the main stromal cell type and are involved in the

occurrence and development of various cancers (51). CAFs have

multiple functions, including matrix deposition and

remodelling, extensive interaction with cancer cells, and signal

crosstalk with infiltrating immune cells (52, 53). In the immune-

excluded phenotype, immune and tumour cells are separated by

tumour stroma, preventing immune cells from killing tumour

cells (54–56). Common markers of CAFs are vimentin, a-
smooth muscle actin (SMA), fibroblast activation protein

(FAP), S100 calcium-binding protein A4 (S100A4), and

platelet-derived growth factor receptor-b (PDGFRb) (57). The
specific markers of CAFs in BC were identified using

biocomputing; these included PDGFRb (32).

Highly infiltrating CAFs and their markers are associated

with the progression and poor prognosis of BC (58–61) and,

along with high EMT/stromal-related gene expression, induce

significant resistance to PD-1 blockade in UC (62). CAFs

increased the resistance of BC cells to cisplatin through

oestrogen receptor b (ERb)/BCL2 signalling (63).

CAFs in BC can be divided into two subtypes, i.e.,

inflammatory and myo-CAFs ( iCAFs and mCAFs,

respectively) (64). iCAFs (PDGFRA+) strongly express various

cytokines and chemokines, including CXCL12, IL-6, CXCL14,

CXCL1, and CXCL2, which are very similar to the iCAFs

described in pancreatic cancer (65). CXCL2—majorly from

iCAFs—interacted with CXCR4 to induce tumour-associated

macrophage (TAM) aggregation (66). Moreover, iCAFs—which

are more closely related to the poor prognosis of BC than

mCAFs (RGS5+)—might degrade and remodel the

extracellular matrix, promote the proliferation of tumour and

stromal cells, and recruit immune cells to tumours (64).

However, mCAFs are considered the most abundant cell

subtype in the stroma in many other types of tumours, which

support the growth, survival, and metastasis of tumour cells

(41, 67). Research on CAFs is still in its infancy, and the accurate

classification of CAFs is crucial for the in-depth elucidation of

their mechanism of action. Numerous experiments are still

needed to verify this in the future.
Cytotoxic immune cells

Immune surveillance mediates tumour clearance mainly

through the action of cytotoxic CD8+ T cells (68–70). A high

density of CD8+ T cell infiltration is associated with a good

prognosis in BC (71, 72). However, T cell immunoreceptors with
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Ig and ITIM domain (TIGIT)-positive CD8+ T cells are related

factors for the poor prognosis of MIBC and poor response to

adjuvant chemotherapy (73). TIGIT, a new co-inhibitory

receptor, downregulates the cytotoxicity and activation of T

cells (74). Single-cell sequencing analysis has allowed for the

comparison of CD8+ T cells in BC tumour tissue with normal

tissues, the cell status and composition are not significantly

different. In contrast, single-cell analysis of CD4+ T cells showed

several tumour-specific states, including various states of Tregs,

which also included clonally expanded cytotoxic CD4+ T cell

(75). These CD4+ T cells kill autologous tumours in a major

histocompatibility complex class II (MHCII)-dependent manner

and are suppressed by Tregs (75). The previous concept defines

the role of CD4+ T cells in anti-tumour immunity as indirect,

mainly through Th cells to support CD8+ T cell-mediated

tumour killing or Tregs to limit this class response (76, 77).

However, accumulating evidence has shown that some

cytotoxic CD4+ T cells directly kill tumour cells and may play

a key role in anti-tumour immunity (75). Mature CD4+ Th cells

have also been shown to have phenotypic plasticity, inhibit CD8

+ lineage genes under certain conditions, and exhibit MHCII-

limited cytotoxicity (78). Because of its direct cytotoxicity, CD4+

T cell-mediated tumour killing has emerged as a unique

mechanism of anti-tumour immunity.

In BC, two cytotoxic CD4+ T cell subpopulations have been

identified, one expressing granzyme K (GZMK) and the other

granzyme B (GZMB). CD4 GZMB subgroups express high levels

of cytotoxic molecules GZMB, perforin, granulysin (Gnly), and

natural killer (NK) cell granule protein 7 (NKG7), whereas CD4

GZMK expresses high levels of GZMK and lower levels of

NKG7. Both the subsets produced high levels of the anti-

tumour cytokine interferon (IFN)-g and tumour necrosis

factor (TNF)-a (75).

The unique biological role of cytotoxic CD4+ T cells still

needs considerable investigation, especially the mechanism

underlying cell population development and regulation and

the mechanism by which cell populations contribute to

tumour cell death. Uncovering the subpopulations of T cells

and their mechanism of action would help improve the

understanding of the response and drug resistance to ICIs, and

the identification of novel targets for immunotherapy.
Immunosuppressive cells

The role of immunosuppressive cells such as Tregs and

macrophages in BC has not been fully elucidated. Tregs inhibit

CD8+ T cell function by releasing immunosuppressive cytokines

(including IL-10 and IL-35) (79, 80). Tregs in tissues play an

important role in promoting tissue homeostasis and

regeneration. Infiltration of FOXP3+ Tregs, which are involved

in regression of inflammation, is associated with a better

prognosis in BC (81, 82). However, high levels of C-C motif
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chemokine receptor 8 (CCR8)+ Tregs are associated with

immunotolerance, low survival rates, and low chemotherapy

response rates in MIBC (83).

CCR8, which mediates the immunosuppressive function, is

an important chemokine receptor expressed in Tregs (84, 85). In

BC, CCR8 maintains the stability of Tregs and enhances their

inhibitory function by upregulating the expression of

transcription factors FOXO1 and c-MAF (83). Blocking CCR8

decreases the stability of Tregs and enhances the therapeutic

effect of PD-1 inhibitors (83). Human basic leucine zipper ATF-

like transcription factor (BATF)+ CCR8+ Tregs from normal

skin and adipose tissue have the same characteristics as non-

lymphoid T follicular helper-like (Tfh-like) cells, with tissue

regeneration and wound healing properties.

BATF+ CCR8+ Tregs also have the same characteristics as

tumour-resident Tregs (86). BATF+ CCR8+ Tregs destroy the

caspase recruitment domain family member 11- B-cell

lymphoma 10- MALT1 paracaspase (CBM) signal body

complex to modulate the function of Tregs and promote their

production of IFN-g. This not only inhibits tumour growth but

also prepares the TME for successful immune checkpoint

therapy (87). However, the exact role of Tregs in BC has not

yet been clarified. Highly plastic macrophages, which usually

exhibit an immunomodulatory M2 phenotype in tumours, are

called TAMs.

Macrophages are polarised to the M2 phenotype and inhibit

CD8+ T cell function after being manipulated by tumour-

derived signals, including angiopoietin-2, macrophage-colony-

stimulating factor (M-CSF), CCL2, and vascular endothelial
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growth factor (VEGF) (88, 89). Although the role of TAM in

BC has not been confirmed, its infiltration may affect

angiogenesis, tumour grade, and prognosis (90, 91). The TAM

subgroups of BC that express dendritic cell-specific C-type lectin

(DC-SIGN) significantly activate multiple M2-like signalling

pathways, which are associated with poor prognosis and

chemotherapy resistance. Moreover, blocking DC-SIGN has

been shown to reduce the secretion of inflammatory cytokines

in TAM and enhance the cytotoxicity of CD8+ T cells to MIBC

cells mediated by PD-1 inhibition (92).
Immune escape or suppression:
Antigen presentation, recognition,
and monitoring

To elicit an effective anti-tumour response, antigen

presentation must be successful in the following two aspects.

First, cancer neoantigens must be absorbed by specific APCs,

mainly DCs, and cross-presented to activate naive CD8+ T cells

(93). Second, neoantigens must be directly presented by tumour

cells to enable triggered CD8+ T cells to recognise and kill them

(94). Tumours have developed a variety of mechanisms to

reduce these steps of antigen presentation and evade immune

recognition by inhibiting DC function and downregulating

tumour cell MHC expression.

DCs are a group of immune cells that play a central role in

antigen presentation and effective anti-tumour T cell responses.

UC has been found to induce high expression of the inhibitory
FIGURE 1

The bladder wall contains the urothelial layer, fibroblast-rich lamina propria, and muscle layer. Once bladder cancer (BC) tumours break through
the bladder, they invade the external fat and adjacent tissues. Early BC is limited to the urothelial layer, with low immune cell infiltration and the
highest tumour purity. Continued inflammatory infiltration and proliferation of cancer cells recruit and activate fibroblasts. The lamina propria,
which is rich in fibroblasts, provides numerous cancer-associated fibroblasts (CAFs) for cancer progression and increases the heterogeneity of
cancer tissues. The invasion or breakthrough of BC tumours through the lamina propria layer is similar to the repair process in the early stage of
trauma, with infiltration of immune cells and fibroblasts. However, the immune infiltration and disordered stroma in BC continue to increase.
Cancer cells that cannot be eliminated by the immune system exchange numerous signals with the complex cell environment, which makes the
incurable “bladder scar” continue to recruit immune cells and fibroblasts.
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receptors (IR, B, and T lymphocyte associated) BTLA and T cell

immunoglobulin and mucin-domain containing-3 (TIM-3) in

DCs in blood and tumours and mediates the decline and

dysfunction of cytokine secretion in DCs (95). The MHCI and

MHCII antigen presentation pathways play an important role in

controlling the immune response (96).

Cytotoxic immune cells in BC, namely CD4+ T and CD8+ T

cells, killed tumour cells by recognising MHCII and MHCI,

respectively (75, 97). Single-cell-sequencing results showed that

the downregulation of MHCII in BC cells contributes to the

fo rma t i on o f an immunosuppre s s i v e TME (64 ) .

The downregulation or absence of MHCI in the TME leads to

the dysfunction of CD8+ T cells (95). Although complete

downregulation of MHC presentation appears to be an

attractive escape mechanism for tumours to evade immune

recognition, the immune system has an important checkpoint

to monitor the loss of MHC presentation.

NK cells detect the loss of MHC surface expression as a stress

signal and target stressed cells (94). Therefore, tumours have also

evolved more subtle immune evasion strategies to deplete NK

cells without eliminating the surface expression of MHC.

Increasing the concentration of IL-21 in the TME could

reverse the fa i lure of NK cel l s by act ivat ing the

phosphoinositide 3-kinase (PI3K)-AKT-FoxO1 and signal

transducer and activator of transcription 1 (STAT1) signalling

pathways to improve the prognosis of advanced tumours (98).
Liquid biopsy and BC

Liquid biopsy is an easily accessible, non-invasive technique

that provides real-time information about cancer (99). Blood-

perfusing cancer tumours are key carriers of related substances

that can be used to detect the presence and progression of cancer

(100–104). In BC, in addition to blood, urine also directly makes

contact with the tumour and exfoliates tumour cells, which can

be used in the diagnosis of UC (105). Extracellular vesicles (EVs)

and cell-free DNA (cfDNA) in the blood and urine can be used

to monitor the progression, relapse, and treatment response of

BC (106–108).

EVs including exosomes serve as a medium for signal

communication between cells in cancer tissues (109–113).

Both EVs and cfDNA penetrate adjacent body fluid

compartments (109, 114) and abnormal changes in their levels

in liquid biopsy are related to the heterogeneity of cells in cancer

tissues. In peripheral blood, the percentage of CD3+CD25+ T

lymphocytes in BC patients is significantly higher than that in

healthy controls (115). However, the phenotypic overlap

between peripheral blood mononuclear cells (PBMCs) and

tumour-infiltrating lymphocytes (TILs) is the lowest.

The T cell checkpoint and T cell receptor (TCR)

composition is similar between urine-derived lymphocytes

(UDLs) and TILs, suggesting that UDLs are derived from the
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bladder tumour tissue. Viable CD3+ T lymphocytes, including

CD8+, CD4+ FoxP3- (CD4eff), and CD4+ FOXP3+ (T

regulatory cells, Tregs), have been detected in the urine of

MIBC patients (116). However, the mechanism by which

lymphocytes enter the urine is still unclear. UDLs can be used

to accurately determine the immune status and lymphocyte

composition in the TME of BC patients (Figure 2). In other

words, the immune content in UDLs is closer to that in the

tumour, while the immune content in blood does not decrease,

but is greatly different from that in the tumour. This

phenomenon remains to be clarified.
Immunotherapy and BC

The mechanisms of action of BCG in non-muscle invasive

bladder cancer (NMIBC) have not been completely elucidated

(36). The intense inflammation induced by BCG involves a

variety of chemokines and cytokines, which lead to infiltration

of innate and adaptive immune cells, mainly neutrophils, T cells,

and monocytes (117, 118). BCG Connaught and Tice are the two

most widely used BCG strains in North America and Europe

(119); different strains induce different immune responses.

Patients treated with BCG Connaught have significantly

better recurrence-free survival rates than those treated with

BCG Tice, which may be because its induction of T-helper 1

(Th1) and initiation of CD8+ T cells is superior to that of BCG

Tice. The difference in treatment results may be attributable to

the single nucleotide polymorphism (SNP) of the BCG strain

(120). In addition, relapse after BCG treatment is associated with

a lower ratio of T cells to monocytic myeloid-derived suppressor

cells (M-MDSCs), which are known to inhibit immune function

in tumours (121, 122).

M-MDSCs and the innate counterpart of Th2 cells, group 2

innate lymphocytes (ILC2), are detectable in urine after BCG

treatment and may be recruited and induced by ILC2 to secrete

IL-13. The ILC2/IL-13 axis mediates a mechanism that drives

the immunosuppressive microenvironment, which is closely

involved in the failure of BCG immunotherapy (123). Previous

studies reported that the imbalance of Th1/Th2 cytokine IL-2/

IL-10, that is, overproduction of IL-10, may contribute to the

poor prognosis of NMIBC.

Controlling and reversing the production of IL-10 and

promoting the overproduction of IL-2 would help eliminate

tumours (124). In NMIBC patients who failed to respond to

BCG treatment, the immunosuppressive cell subsets of

traditional Tregs have a higher level of infiltration than other

cells (125, 126). There is a significant difference in the expression

of PD-L1 in Tregs expressing Forkhead box A1 (FoxA1)

(127, 128).

The enrichment of PD-L1-positive Tregs that may be

induced by IFN-b during BCG treatment increases, leading to

a decrease in the therapeutic effect of BCG (127, 128). Compared
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with the expression of PD-L1 on tumour cells, T cells may be a

more important non-classical source of PD-L1. Blocking the PD-

1/PD-L1 interaction may increase immune-related BCG activity

(128–130). Overall, the effect of BCG treatment mainly depends

on the immune status of the local microenvironment and the

detection of cytokines and immune cells in urine could predict

the outcome of BCG treatment.

Because of the higher mutation spectrum, MIBC has a better

response rate to ICIs and lower mutation rate than melanoma

and non-small cell lung cancer (131–137). ICIs, such as PD-1

and PD-L1 inhibitors, have also become first-line treatment

strategies for patients with advanced urothelial cancer who are

not suitable candidates for platinum chemotherapy (57, 138).

Nevertheless, the response rate to ICIs still needs to be improved

and the sum of the objective and complete response rates in

urothelial cancer is < 30% (3, 139, 140). The mechanism by

which the immune checkpoint is blocked in BC remains to be

further elucidated.

PD-L1 is not only expressed in cancer cells but also on the

surface of a variety of immune cells, especially in lysosomal

associated membrane protein 3 (LAMP3)+ DCs. The DC

subgroup may directly inhibit CD8+ T cells (64). The high

expression of PD-L1 in BC patients is favourable for treatment

with PD-L1 inhibitors (8, 9, 141, 142). However, the type 2

immunity associated with tumour progression is also closely
Frontiers in Immunology 06
related to the expression of PD-L1. Group 2 innate lymphoid

cells (ILC2s) expressing PD-L1 stimulate Th2 cells to increase

GATA binding protein 3 (GATA3) expression and IL-13

production. As important participants in type 2 immunity,

stromal cells were significantly associated with a lower

response rate to PD-1 inhibitors (62).

The loss of PD-L1 on ILC2s can impair early Th2

polarisation and cytokine production (143). Surprisingly, the

interaction between PD-L1 on ILC2s and PD-1 on CD4+ T cells

did not inhibit the T cell response (143). However, we can

confirm that type 2 immunity is detrimental to immunotherapy,

including BCG and ICIs. The mechanism of action of immune

checkpoints needs to be further elucidated, especially the

markers of immune checkpoints on different cells in

the immune microenvironment. In addition, the effect of the

interaction among immune checkpoints on various functions

between cells needs to be further investigated.
Chemotherapy and BC

Although chemotherapy is still the first-line treatment for

BC, its effects are limited (17). Three or four cycles of

neoadjuvant chemotherapy (NAC) have been established as

the standard adjuvant treatment for eligible MIBC patients
FIGURE 2

Blood flowing through bladder cancer (BC) tissue and urine that comes in contact with BC tissue reflects changes to the tumour
microenvironment (TME). Currently, free cells and molecules in the urine may be shed from the tumour, similar to infused lymphocytes and
molecules in BC.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.963877
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pan et al. 10.3389/fimmu.2022.963877
(17, 144, 145). A meta-analysis of 11 clinical trials with a total of

3,000 patients showed the benefits of NAC with respect to

improving the 5-year overall survival (OS) and reducing the

risk of death (146). However, the correlation between the

therapeutic effect of chemotherapy and the TME of BC

patients has not been clarified. The gene expression profile was

used to evaluate the role of the immune-related gene expression

of BC patients in chemotherapy activity, and it was found not to

be related to the effect of chemotherapy (147).

It may be that the expression of immune-related genes does

not reflect the proportion of immune cell subsets, and therefore,

the association between chemotherapy and immune status could

not be identified. Chemotherapy can affect the internal TME in

BC patients. For patients with urothelial cancer who have not

received chemotherapy, the prognosis of failure of ICI therapy is

often worse than for patients who received chemotherapy (13).

FoxA1, which is a specific expression factor of Tregs induced by

IFN-b, is related to the chemotherapy resistance of BC

(127, 148).

Chemotherapy can enhance anti-tumour immunity,

including stimulation of CD4+ effector T (Teff) cells and

CD8+ Teff cells (149). NAC treatment decreases the

expression of the depletion marker PD-1 in CD8+ and CD4+

Teff cells and increases that of the activation markers T-bet and

the cytotoxic molecules granzyme B and perforin in the sentinel

lymph nodes of BC patients (150). However, the phenotype and

function of T cells in the sentinel lymph node in patients whose

BC is not downgraded did not show these positive immune

effects (150).

Long-term cancer control and complete remission may

involve CD8+ T cell immune responses. The C-X-C motif

chemokine receptor 3 alt (CXCR3alt)-CXCL11 chemokine

system, which has stimulatory effects on CD8+ T cells, can

predict the responsiveness of NAC in MIBC (151). CAFs, which

play a role in the development of drug resistance in a variety of

tumours, increase the resistance of BC cells to cisplatin by

enhancing the transmission of ER b/Bcl-2 signals (63, 152).

Therefore, the success of a refined NAC regimen to improve

immunogenicity—perhaps by enhancing cytotoxicity or

selecting low stroma infiltration—could be achieved by

maximising the effectiveness of chemotherapy and

immune promotion.
Inflammation and BC

Inflammation has been identified as a driving factor for

many cancers (153). Inflammation markers such as C-reactive

protein (CRP) and IL-6 promote the progression of MIBC (154–

156). Both CRP and IL-6 increase during the acute inflammatory

phase and their levels reflect their severity (157–159). Active

CRP increases the secretion of cytokine IL-6 (160). IL-6 is a

cytokine with various physiological functions, including
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regulation of immune cell proliferation and differentiation

(161). IL-6 not only amplifies cancer-causing chronic

inflammation but also mediates the internal mechanism of

tumour cells that drive cancer progression (162). IL-6 induces

PI3K-AKT, mitogen-activated protein kinase (MAPK)/

extracellular signal-regulated kinase (ERK), nuclear factor

(NF)-kB, and STAT3 signalling (162).

CRP also has prognostic significance with respect to

NMIBC. However, relapses confined to the bladder mucosa

layer have a less effect on systemic inflammation and CRP is

not ideal for predicting disease recurrence (163). Higher CRP

levels are associated not only with poor prognosis for radical

cystectomy, but also with poor prognosis after chemotherapy

and radiotherapy in metastatic BC (164–168). However, CRP

has been shown to have a tumour-killing activity in both in vivo

and in vitro (160). Such results revealed the complexity of the

role of CRP in BC. In tumours, CRP is involved in the

recruitment of monocytes/macrophages, a phenomenon that

increases the complexity of the TME (169–171). Perhaps CRP

does not directly kill camouflaged cancer cells, as it is non-toxic

to normal cells (160).

A gradual increase in inflammatory infiltration increases the

number and various types of immune cells that accumulate in

the TME. The progression of tumours is similar to wound

healing. Following the accumulation of a considerable amount

of inflammatory factors, the inflammatory phase subsides and

the tissue repair process commences (172). Similar to the

inflammation subsidence and tissue reconstruction phase,

which enhance wound healing, the complex and multi-source

signals present in the TME promote cancer progression.
Type 2 immunity and BC

Typically, Th1 induces M1 macrophages and cytotoxic T

cells to kill tumour cells in the pro-inflammatory type 1 immune

response (173). Type 2 immunity is usually involved in the

development of tolerance in the tumour environment, where

Th2/M2-related cells are involved in immunosuppression and

tumour progression (174, 175).
M2 macrophages

M2 macrophages, often referred to as immunosuppressive

cells, are also called TAMs (176). The M2 phenotype has been

found to promote the progression of BC by suppressing

inflammation (177). Squamous cell carcinoma-like BC, which

dominates in MIBC, has greater M2 macrophage infiltration

(178). Studies revealing the molecular mechanisms between BC

and M2macrophages are limited. Bone morphogenetic protein 4

(BMP4) secreted by BC cells induces M2 macrophage

polarisation (179). Moreover, lysine-specific demethylase 6A
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(KDM6A), which is frequently mutated in BC, leads to

activation of cytokine and chemokine pathways, which

promotes the polarisation of M2 macrophages (180).
Th2

Th2 is a predominant class of CD4+ Th cells characterised

by the production of IL-4/IL-13 cytokines. There are few high-

quality studies related to Th2 in BC. However, it is known that

M2 macrophages recruit Th2 cells through the actions of

CCL11/CCL22 (181–184). Th2 differentiation could be

induced by IL-4 secreted by B cells, NK cells, naive CD4+ T

cells, and mast cells (185). Furthermore, IL-4/IL-13 has been

shown to contribute to cancer growth and metastasis (186, 187).
IL-13

IL-13, which plays an important role in type 2 immunity,

was found to be abnormally elevated in the urine of BC patients

(188, 189). IL-13, described as an inhibiting inflammatory

cytokine (190, 191), participates in immune surveillance in

cancer, inhibits cancer cell apoptosis, and promotes tumour

growth (192–194).
CAFs

After BC tumours break through the muscle layer of the

bladder or metastasise to distant sites, the CAFs and extracellular

matrix (ECM) in the TME increases significantly (32, 64).
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However, excessive deposition of fibroblasts and ECM during

wound healing can lead to scarring or fibrosis (195–198). The

study of the wound healing process has considerably facilitated

the understanding of cancer progression. Excessive type 2

immune activation involves Th2 cells and IL−4- and IL−13

−activated M2 macrophages, which recruit more fibroblasts and

cause excessive ECM deposition by IL-4/IL-13 and fibroblast

growth factor (FGF)/PDGF, respectively. The progression of BC

reduces the purity of the tumour and increases the proportion of

stroma in the tumour (26, 199). The proliferation rate of CAFs,

the main component of the stroma, has been shown to be faster

in BC than under normal conditions, which contributes greatly

to the growth and increased heterogeneity of the tumour.

In addition to the activation of type 2 immunity, the

proliferation of CAFs is also related to the signals provided by

cancer cells in the TME. BC cells trigger the differentiation of

fibroblasts into CAFs through exosome-mediated transforming

growth factor (TGF)-b transport and activation of the SMAD

pathway (200). In oral squamous cell carcinoma, gastric cancer,

and liver cancer, CAFs promote the proliferation and metastasis

of cancer cells through exosomes (201–203). The signals

p r odu c e d b y c an c e r c e l l s d i s r u p t t h e immune

microenvironment and convert the type 2 immune response,

which is targeted at repairing and maintaining homeostasis, into

a persistent source of malignant tumours (Figure 3).
Next generation therapeutics

The use of ICIs has impacted the treatment of BC. Antibody-

drug conjugates (ADCs), such as enfortumab vedotin, are

approved for patients locally advanced or metastatic UC who
FIGURE 3

Type 2 immunity and bladder cancer (BC) cells cause rapid and persistent progression of cancer-associated fibrosis. Scarring or fibrosis caused
by wound healing or inflammation of organs is associated with overactivation of type 2 immunity. T helper 2 (Th2) cells and M2 polarized
macrophages promote mutual differentiation and jointly recruit fibroblasts. The proportion of M2 cells and cancer-associated fibroblasts (CAFs)
in BC increased with tumour progression and interleukin (IL)-13 level increased significantly in tumours, which suggests that BC was closely
related to type 2 immunity. CAFs have shown signal crosstalk with cancer cells in a variety of cancers, promoting differentiation, proliferation,
and metastasis. Cancer cell involvement makes type 2 immunity persistent and uncontrollable, resulting in tumour metastasis.
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were unresponsive to PD-1/PD-L1 therapy (204). ADCs—agents

targeting Trop-2, HER2, and EpCAM—are undergoing clinical

evaluation for UC (205) and have the potential to emerge as next

generation UC treatments. Similarly, some bispecific antibodies

and fusion proteins in the research and development phase, such

as T cell engagers, Treg depleting ATOR-1015, and super

agonistic cytokine traps ALT-803, are likely to introduce a

change in the manner UC is treated (206–210). The next

generation of treatments, based on activation of the immune

system and recruitment of effector cells to kill cancer cells while

minimising the side effects, and a variety of other treatments, are

undergoing clinical trials for BC (211).
Conclusions and future directions of
BC research

Immune status is the main factor determining prognosis in

BC and is evaluated using relatively invasive body fluid testing

(99, 106). The significance of fluctuations in immune cells and

cytokines in blood and urine in patients with BC has not been

fully demonstrated. In the future, it may be possible to predict

the prognosis and guide treatment of BC patients by analysing

the immune state of bodily fluids, which are reflective. The role

of type 2 immunity and the related cytokines in the host immune

system and inflammatory diseases is to suppress type 1 and

Th17-driven inflammation and participate in the repair and

regeneration of damaged tissue (181, 182, 212).

Overreaction of type 2 immunity leads to pathological

fibrosis, such as liver and pulmonary fibrosis (213–216). The

mechanism underlying the development of fibrotic disorders
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mediated by type 2 immunity is unclear, but signals that

continuously activate tissue repair are known to contribute to

this condition. The involvement of cancer cells further

complicates the imbalance of type 2 immunity in the TME.

Studies have shown that blocking type 2 immune cytokines, such

as IL-4 and IL-13, can interfere with the inhibition of type 1 and

Th17-driven inflammation, which can induce considerable

neutrophilic inflammation.

In the experimental myeloid schistosomiasis and pulmonary

cell tumour model, blocking IL-13 significantly reduced fibrosis,

but type 1 and Th17-driven inflammation simultaneously

exacerbated liver and lung damage (217). Cancer-related

fibrosis of the TME, likely induced by the blockade of type 2

cytokines, slows down the pathological fibrosis associated with

the uncontrollable nature of tumour and active cytotoxicity of

type 1 immunity (Figure 4). However, there may also be

excessive accumulation of type 1 and Th17-related

inflammatory molecules, with considerable inflammatory

fluids providing nutrition for BC cells, which promotes their

proliferation and metastasis.

In the allergenic mouse model, the dual blockade of IL-13

and IL-17A protected mice from acidophilic and neutrophilic

inflammation and the damage caused by rebound

inflammation (217, 218). This also prompted us to attempt

to treat BC using dual blockade (217, 219). The study of the

immune status and mechanism of action of related molecules

in BC is still in its infancy and identification of the immune

stage and control of immune status should be the primary

focus of future research. The correlations among multiple

immune, matrix, and cancer cells need to be studied and

elucidated in future studies.
FIGURE 4

Blocking type 2 immunity may be an effective treatment for bladder cancer (BC). Type 2 immune-driven diseases, such as scarring and organ
fibrosis, are caused by excessive recruitment of fibroblasts and inhibition of the cytotoxicity of type 1 and T helper 17 (TH17) immunity. BC cells
interact with type 2 immunity-related molecules, making pathological fibrosis persistent and causing tumour progression or metastasis. Blocking
type 2 immunity could prevent pathological fibrosis and in BC may be worth future exploration and study.
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Glossary

BC Bladder cancer

BCG Bacillus Calmette-Guerin

IL Interleukin

ICIs Immune checkpoint inhibitors

TCGA The Cancer Genome Atlas

MIBC Muscle invasive bladder cancer

EMT Epithelial-mesenchymal transition

TAA Tumour-associated antigens

DAMPs Damage-related molecular patterns

APC Antigen-presenting cells

DCs Dendritic cells

CAFs Cancer-associated fibroblasts

TME Tumour microenvironment

MHC Major histocompatibility

PDL1 Programmed cell death 1 ligand 1

EVs Extracellular vesicles

cfDNA Cell-free DNA

PBMCs Peripheral blood mononuclear cells

TILs Tumour-infiltrating lymphocytes

TCR T cell receptor

UDLs Urine-derived lymphocytes

NMIBC Non-muscle invasive bladder cancer

Th1 T-helper 1

SNP Single nucleotide polymorphism

M-
MDSCs

Monocytic myeloid-derived suppressor cells

ILC2 Group 2 innate lymphocytes

FoxA1 Forkhead box A1

IFN Interferon

NAC Neoadjuvant chemotherapy

OS Overall survival

TIGIT T cell immunoreceptor with Ig and ITIM domain

GZMK Granzyme K

GZMB Granzyme B

Gnly Granulysin

NK Natural killer

NKG7 Natural killer cell granule protein 7

TNF Tumour necrosis factor

TIM-3 T-cell immunoglobulin and mucin-domain containing-3

PI3K Phosphoinositide 3-kinase

STAT1 Signal transducer and activator of transcription 1

CCR8 C-C motif chemokine receptor 8

BATF Basic leucine zipper ATF-like transcription factor

CBM Caspase recruitment domain family member 11- B-cell lymphoma
10- MALT1 paracaspase

TAM Tumour-associated macrophages

M-CSF Macrophage-colony-stimulating factor

VEGF Vascular endothelial growth factor

(Continued)
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DC-
SIGN

Dendritic cell-specific C-type lectin

SMA a-smooth muscle actin

FAP Fibroblast activation protein

S100A4 S100 calcium-binding protein A4

PDGFRb Platelet-derived growth factor receptor-b

ERb Oestrogen receptor b

CRP C-reactive protein

MAPK Mitogen-activated protein kinase

ERK Extracellular signal-regulated kinase

NF Nuclear factor

ECM Extracellular matrix

FGF Fibroblast growth factor

TGF Transforming growth factor

LAMP3 Lysosomal associated membrane protein 3

GATA3 GATA binding protein 3
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