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ABSTRACT

Complex haemodynamic phenomena underpin the pathophysiology of chronic liver disease. Non-invasive MRI-based

assessment of hepatic vascular parameters therefore has the potential to yield meaningful biomarkers for chronic liver

disease. In this review, we provide an overview of vascular sequelae of chronic liver disease amenable to imaging

evaluation and describe the current supportive evidence, strengths and the limitations of MRI methodologies, including

dynamic contrast-enhanced, dynamic hepatocyte-specific contrast-enhanced, phase-contrast, arterial spin labelling and

MR elastography in the assessment of hepatic vascular parameters. We review the broader challenges of quantitative

hepatic vascular MRI, including the difficulties of motion artefact, complex post-processing, long acquisition times,

validation and limitations of pharmacokinetic models, alongside the potential solutions that will shape the future of MRI

and deliver this new frontier to the patient bedside.

Profound hepatic vascular changes occur in chronic liver
disease, driving complex phenomena including portal
hypertension. Hepatic vascular pathophysiology is com-
plicated by the dual portal venous (PV) and hepatic
arterial (HA) blood supply, and the clinical course of
chronic liver disease is heterogeneous and often un-
predictable. Routine clinical assessment of liver disease
assimilates results of serological, non-invasive and inva-
sive tests. The most robust and well-documented bio-
marker of chronic liver disease prognosis is the hepatic
venous pressure gradient (HVPG). The relationship be-
tween this invasive surrogate of portal pressure and
clinical outcomes underlines the importance of vascular
abnormalities in the pathophysiology of liver disease.1,2

Non-invasive imaging-based assessment of hepatic vascular
parameters would therefore provide clinically meaningful
biomarkers for disease staging, therapeutic monitoring
and represents a novel opportunity to empower clinical
radiologists in defining patient management. In this re-
view, we provide a brief overview of vascular sequelae of
chronic liver disease amenable to MRI evaluation and
describe existing methods including their applications
and challenges in the assessment of hepatic vascular
parameters, before concluding with a discussion of future
directions.

LIVER IMAGING—UNMET NEEDS
Liver disease is the fifth most common cause of death in
the UK, and there are an estimated 8000 new diagnoses of
cirrhosis each year.3 Later stage “decompensated” cirrhosis
is defined by the presence of ascites, variceal haemorrhage,
encephalopathy and/or jaundice, with both ascites and
variceal haemorrhage direct sequelae of vascular derange-
ments and portal hypertension.4 In compensated patients,
the HVPG is the strongest predictor for the development of
varices and decompensation, and in patients with a known
diagnosis of cirrhosis, each HVPG rise of 1mmHg leads to
a 3% increase in mortality risk.5

In spite of this, medical treatments that target hepatic
vascular parameters are in their infancy. Licensed treat-
ments include non-cardioselective beta-blockers, effective
only in certain patients and often poorly tolerated.6 The
paucity of robust non-invasive methods for vascular as-
sessment of liver disease has hindered the development and
validation of newer, much needed medical treatments.7

Multiple inputs, multiple compartments—the
challenge of vascular imaging in the liver
The healthy liver receives 75–80% of its blood supply from
the PV—a low pressure, high capacity vessel—whereas the
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remaining supply arrives via the HA—a vessel of resistance,
delivering a smaller volume of blood at higher pressure. Liver
parenchyma is organized into “acini” (Figure 1), where afferent
PV and HA blood mix in the hepatic sinusoid and drain into an
efferent hepatic venule. The sinusoids are flanked almost entirely
by hepatocytes but are physically separated from an endothelial
cell lining by the “space of Disse”, a separate anatomical com-
partment into which plasma and low molecular weight com-
pounds (including common extracellular contrast agents) can
circulate freely. On the opposing hepatocyte surface but parallel
to the sinusoids lie bile canaliculi. These drain bile and products
of hepatocyte bile transporters (including hepatocyte-specific
contrast agents) proximally into biliary ductules (Figure 1). The
healthy liver preserves low pressure within the sinusoids but is
tasked with the challenge of being interposed between a mixed
high and low pressure input and a low pressure venous output.8

Pressure, flow and resistance—the diseased liver
Fibrosis associated with chronic liver injury is driven by an-
giogenic factors. Release of contractile factors from vascular
smooth muscle cells, sinusoidal endothelial dysfunction and
contraction of activated hepatic stellate cells combine to increase

intrahepatic parenchymal resistance.9 Rises in sinusoidal re-
sistance reduce PV flow and drive formation of extrahepatic
collaterals and shunting of splanchnic blood via the portosys-
temic anastomoses. Reductions of PV flow of as much as 60%
can be matched by rises in HA blood flow—the so-called “he-
patic arterial buffer response”—but this response is impaired in
liver disease, so that reductions in PV flow are met with an
inadequate response from the HA and a reduction in total liver
blood flow.8

Deposition of collagen in the space of Disse reduces the volume
of the extracellular, extravascular compartment with secondary
neovascularization of this fibrotic tissue culminating in reduced
effective hepatocyte perfusion and “intrahepatic shunting”. Mi-
crovascular thrombi also have the potential to increase the mean
transit time (average time for a compound to traverse the pa-
renchyma) for low molecular weight compounds.10

Current gold standards
Many well recognized vascular phenomena are visualized on
cross-sectional imaging (including postosystemic collaterals, cav-
ernous transformation, varices, mesenteric venous congestion and

Figure 1. Schematic illustration of the functional organisation of the liver acinus (left). Magnified diagram illustrating the

arrangement of sinusoid and space of Disse is shown in the right lower corner. Extracellular contrast agent molecules are

demonstrated as spheres on the magnified diagram. Note how these distribute between within the vascular compartment

(sinusoidal lumen) and extracellular space (space of Disse). Hepatocyte-specific contrast agents (shown as spheres with an

attached flag), distribute between these compartments but are also endocytosed by bile transporters on the surface of hepatocytes

before being transported into bile canaliculi.
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ascites for example), but these phenomena are qualitative.11

Quantitative vascular assessment of liver disease is possible using
HVPG but requires invasive fluoroscopic guidance of a pressure
transducer into a hepatic vein (Figure 2). Although measurements
correlate well with portal pressure, they require calibrated
equipment and technical expertise with reported intraindividual
variability of as much as 8%, even in specialist centres.12

Indocyanine green (ICG) clearance is a widely used reference
standard for liver blood flow but requires invasive transjugular
hepatic venous sampling and simultaneous peripheral arterial
sampling in patients receiving a continuous peripheral ICG in-
fusion. The Fick principle can then be used to estimate effective
liver blood flow.13 Exclusive hepatic extraction and photometric
properties of ICG have yielded less invasive ICG plasma disap-
pearance rate and ICG 15-min retention rate (ICG-R15), which
measure hepatic parenchymal function rather than liver blood
flow and are potentially subject to error.14,15

APPROACHES TO MR HAEMODYNAMIC IMAGING
IN THE LIVER
Dynamic contrast-enhanced MRI
Multiphase post-contrast imaging is well established in routine
liver MRI. By recording serial, high temporal resolution

measurements of mean signal intensity (SI) of a region of in-
terest (ROI) after the administration of contrast agent, “dynamic
contrast-enhanced” (DCE) MRI can go beyond qualitative
evaluation of contrast behaviour and quantify liver perfusion
(Figure 3). Gadolinium chelated with diethylene-triamine-penta-
acetic acid is used as a contrast agent given its T1 shortening
effect, rapid distribution within the extracellular space and ex-
clusive renal clearance. Contrast agent concentration is, however,
not linearly related to SI but linearly related to the reciprocal of
a given concentration’s T1 relaxation time thereby complicating
analysis.16 Formal quantitation therefore requires measurement of
the intrinsic T1 of the tissue and blood within the ROIs and
knowledge of the contrast agent T1 relaxivity.

17

Early single slice studies in pigs assuming SI linearity were val-
idated using invasive thermal diffusion probes (r5 0.91,
p, 0.01) but were less encouraging once translated into patients
(r5 0.39, p5 0.17).18,19 Early formal attempts at contrast agent
pharmacokinetic modelling were in the context of liver lesion
characterization, where hepatocellular carcinoma demonstrated
clear differences in timing and shape of contrast enhancement
curves.20 CT based methods were later developed to measure
“hepatic perfusion index” (a measure of HA fraction
within a ROI).21

Figure 2. A pressure transducer is advanced via the jugular vein, into the right hepatic vein. The pressure trace recorded from the

catheter tip known as the “free” hepatic venous pressure (FHVP) is subtracted from the pressure recorded when the balloon is

inflated (wedge hepatic venous pressure; WHVP). The latter equates with sinusoidal pressure (recognized to be slightly lower than

but directly related to portal venous pressure). Although both of these measurements are subject to variations in intra-abdominal

pressure from respiration, the difference of the two—the hepatic venous pressure gradient (HVPG)—eliminates this source of error.
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The “dual-input single compartment” model is the most widely
adopted model, the dual-input referring the use of aortic and PV
enhancement curves (vascular input functions, from ROIs
placed over the aorta and PV, Figure 4) and the single com-
partment referring to the assumption that the parenchymal
enhancement arises from a single anatomical space. Invasive
microsphere validation in rabbits demonstrated encouraging
correlations (PV perfusion r5 0.91; HA perfusion r5 0.79).22

Larger studies in patients with cirrhosis (n5 46) have demon-
strated significant differences in bulk and relative PV flow be-
tween healthy patients and those with cirrhosis. DCE MRI
parameters have also been compared with HVPG (correlation
with PV fraction r520.769, p, 0.001).23

Methodological refinements of the dual-input single compartment
model have also been proposed,23 including the use of volumetric
acquisitions,24 correction of arterial input functions,25 evaluation
of changes in temporal resolution,26 alternative approaches to
conversion of SI into contrast agent concentration27 and the use of
alternative breath-holding strategies.28

A dual-input dual compartment has also been proposed, with the
second compartment reflecting the space of Disse (Figure 1). This

has been applied in animal studies using higher molecular weight
contrast agents, with encouraging correlations between distribution
volume and ICG clearance (r50.857, p5 0.007).29 Although the
extension of the model in microcirculatory terms is interesting, the
dual-input dual-compartment model estimates more parameters
from the same data and is therefore more prone to error.

Dynamic hepatocyte-specific contrast-
enhanced MRI
Gadolinium-based contrast agents chelated with hepatocyte-
specific receptor ligands [gadobenate dimeglumine (MultiHance®;
Bracco, Singen, Germany) and gadoxetic acid (Primovist™/Eov-
ist™; Bayer, Berkshire, UK)] produce vascular enhancement fol-
lowed by progressively increasing hepatocyte T1 weighted SI as
agents are taken up by hepatocyte cell membrane transporters and
excreted into the biliary system. Dynamic hepatocyte-specific
contrast-enhanced (DHCE) MRI studies thus provide an oppor-
tunity to quantify perfusion and hepatocyte function by studying
contrast agent uptake.30

Greater and more rapid endocytosis of gadoxetic acid has fav-
oured its use in quantitative studies. Studies in rabbits with cir-
rhosis showed alterations in modelled relative “hepatic extraction

Figure 3. Selected gadolinium chelated with diethylene-triamine-penta-acetic acid (Gd-DTPA) concentration maps from a dynamic

contrast-enhanced MRI study. Contrast agent concentration maps for a sample dataset are shown at (a) baseline, (b) 23, (c) 70, (d) 120, (e)

225 and (f) 302s. Signal on these maps is linear to contrast agent concentration based on the scale on the right. Note the predominantly

arterial phase enhancement (b), portal venous phase enhancement (c) and progressive parenchymal washout through to (f).
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fraction” (a quantitative uptake parameter, inferentially related to
cell function). Measurements at baseline and post-cirrhosis in-
duction have demonstrated encouraging correlation between the
change in hepatic extraction fraction and the change in ICG-
R15.31 Studies in Child-Pugh class A primary biliary cirrhosis and
primary sclerosing cholangitis patients demonstrated significant
differences in hepatic extraction fraction and “mean transit time”
(but not “input relative blood flow”).32–34

Using early post-gadoxetic acid enhancement and dual-input
single-compartment modelling, significant differences between
HA and PV flow were demonstrated between normal and
chronic hepatitic patients.35 Furthermore, using raw SI data
from the standard five phases of clinical DHCE protocols
(baseline, early arterial, arterial, PV and hepatocellular phases),
no T1 measurement and a Patlak model, differences in “uptake
rate” and “extracellular volume” across a large cohort of patients
with Child-Pugh class A and B and without cirrhosis (n5 119)
were demonstrated.36 The ratio of hepatic parenchymal en-
hancement during the post-gadoxetic acid hepatobiliary phase to
muscle, spleen or baseline SI has also been used to demonstrate
good correlations with ICG plasma disappearance rate37 and
ICG-R15.38 Such simplified protocols are undoubtedly attractive
for translation into standard clincial practice.

Calculating the ratio of hepatic parenchymal baseline and peak
hepatobiliary phase T1, to generate a “T1 relaxation time index”
or evaluation of raw peak hepatobiliary phase T1 both represent
useful quantitative approaches. These measurements have the

potential to define diagnostic thresholds that are transferable
between institutions. Such studies have demonstrated changes in
T1-based quantification in the presence of disease and correla-
tions with model for end-stage liver disease (MELD) scores.39,40

Both DCE and DHCE-MRI face similar challenges. The non-
linear relationship between SI and contrast agent concentration
has hampered quantification, complicated post-processing pro-
tocols and hindering the generalizability of findings between
scanners and institutions. High concentrations of contrast agent
can also lead to signal drop out (T2* dephasing effects),41 and
poor temporal resolution can introduce significant measure-
ment errors. Standardization of protocols across scanners/
institutions can address these problems.

Despite these challenges, MRI offers unparalleled contrast res-
olution, without compromising patient safety through exposure
to ionizing radiation or to large volumes of iodinated contrast
media. DCE and DHCE-MRI quantification studies to date have
been encouraging, and both approaches have the potential to
yield robust quantification.

Phase-contrast MRI
Two-dimensional phase-contrast MRI (PCMRI) sequences are
readily available on most clinical MRI systems with established
routine clinical applications in cardiovascular and brain MRI for
measurement of bulk vessel flow. Unlike Doppler ultrasound,
where only a unitary estimation of flow velocity can be made,
PCMRI offers high spatial-resolution, operator-independent

Figure 4. Dual-input single-compartment pharmacokinetic modelling for dynamic contrast-enhanced studies. Regions of interest

are used to derive temporal enhancement curves from a single bolus pass of contrast agent. (a) Arterial and (b) portal venous input

functions are convolved with (c) an impulse residue function to fit (d) the parenchymal enhancement curve. The transfer constants

can be used to estimate absolute arterial and portal venous perfusion (and relative fractions), distribution volume and mean transit

time of the contrast agent (CA).
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velocity maps across the vessel lumen. It is based on the prin-
ciple that all spins in a magnetic field gradient experience shifts
in their rotation phase. Moving spins, however, experience phase
shifts that are proportional to their velocity. By applying op-
posing gradients, the stationary tissue phase shifts can be
eliminated and a velocity vector map of moving spins (flowing
blood) passing through the imaged slice can be created. Sum-
ming the vectors over the cross-sectional area of a vessel can
estimate of bulk vessel flow (Figure 5).42

The first studies investigating hepatic blood flow using PCMRI
were undertaken in the PV, with validation studies using a flow
phantom43–45 or often less successfully with transcutaneous
Doppler ultrasound.46–48 Comparative reproducibility studies
between PCMRI and Doppler ultrasound have demonstrated
better PCMRI 1-year reproducibility and reduced variability
(combined total liver blood flow coefficient of variation 18% for
PCMRI vs 33% for Doppler ultrasound).48 Multiple PV PCMRI
studies have demonstrated reduced PV flow in chronic liver

Figure 6. Flow attenuated inversion recovery arterial spin labelling scheme and T1-based perfusion quantification. Schematic

diagram (a), demonstrating arrangement and orientation of consecutive global and slice selective inversions. Note slab sizes are not

drawn to scale. The T1 recovery curves of the slice selective (b, solid curve) and global (b, dashed curve) are shown in (b). The

measured difference in T1 (*, arrow) is dependent on perfusion and can be quantified with knowledge of blood T1 and the

blood–tissue partition coefficient (l).

Figure 5. Phase-contrast MRI—(a) schematic diagram of sequence and (b, c) example of phase contrast acquisition images. (a)

Bipolar gradients (upper chart) induce phase shifts in both stationary and moving spins (lower chart), but ultimately cancel out the

phase shift seen in stationary tissue. The residual signal (*) is proportional to the velocity of moving spins. (b) Anatomical axial

“magnitude” image through liver with (c) corresponding phase contrast map. Note the opposing flow directionality (black vswhite, c)

in the descending aorta and inferior vena cava (labelled).
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disease and portal hypertension.47,49–52 PV PCMRI has been
used to demonstrate expected increases in PV flow post-
prandially and following transjugular intrahepatic portosystemic
shunt (TIPSS) procedures.43,53

Very few HA PCMRI studies have been reported likely due to the
technical challenges involved, with some normal volunteers and
reproducibility studies, and one small patient study.48,54,55 There
have also been some work demonstrating increased azygous ve-
nous flow in the setting of chronic liver disease,44,45,52 and reduced
azygous flow post-TIPSS procedure43 and post-variceal banding.56

The technical quality of PCMRI studies has improved over time,
but consensus on the clinical value of derived flow measure-
ments has yet to emerge. Elevated PV flow, for example, is as-
sociated with variceal haemorrhage, but studies correlating PV
flow with gastro-oesophageal variceal grade have been
disappointing.44,49,57

PCMRI is also beset with technical challenges, which compro-
mise the evaluation of smaller vessels such as the HA: ana-
tomical variations, vessel tortuosity and the requirement for
the imaging plane to be perpendicular to the direction of flow
in the vessel of interest call for expertise during study planning.
Partial voluming, spatial misregistration and “phase-wrapping”
(when the velocity of the blood in a vessel exceeds the “velocity
encoding” setting for sequence, set by the operator) can also
introduce errors.42,44,49,55

PCMRI validation is also a challenge: many studies use flow
phantoms, but these do not replicate the challenges of in vivo
imaging.43–45,50,58 Transabdominal Doppler ultrasound will only
measure velocity, enabling crude estimations of plug flow, but is
a poor reference standard with high inter-/intraobserver vari-
ability and inferior reproducibility.46–48,58

Blood flow when studied as a physiological parameter is classically
normalized to organ mass, which can be assessed using anatomical
imaging (liver volume correlates well with mass on surgical re-
section (r5 0.954, p,0.001).51 Normalized PCMRI flow values
are likely to yield more meaningful biomarkers for liver disease but
are seldom reported in this way.51

Finally, bulk flow-derived biomarkers from two-dimensional
PCMRI are valuable because they reduce a large volume
of data to a single parameter. This is clinically attractive, as
faced with large numbers of complex variables, single
parameters can simplify stratification of patients and clinical
decision-making.

Four-dimensional phase-contrast MRI
By acquiring PCMRI data in multiple flow-encoding direc-
tions, a three-dimensional image of blood flow can be con-
structed, which over time can then be used to derive spin
(blood) motion streamlines through the cardiac cycle in three
dimensions. Combining this with computational flow dynamics,
this could be used to derive new and previously unmeasured
blood flow parameters including pressure gradient and wall
shear stress.59

Four-dimensional PCMRI for liver blood flow quantitation is fea-
sible in patients with cirrhosis, but validation with two-dimensional
PCMRI and Doppler ultrasound has been unimpressive (r50.46;
r50.35, respectively).47,60 Studies in a small cohort of patients with
cirrhosis also failed to show correlation with MELD scores61 or
differences in patients with known portal hypertension.62

Large four-dimensional PCMRI data volumes can be acquired in
as little as 20min, but motion corruption, particularly in the
upper abdomen, is a challenge.59 To accelerate acquisition times,
alternative k-space sampling methods such as phase-contrast
vastly undersampled isotropic projection reconstruction (PC-
VIPR) have been proposed, but these have the potential to in-
troduce artefacts, reduce signal-to-noise ratio63 and have un-
certain effects on absolute flow quantification.64,65 Selection of
suitable velocity-encoding settings remains troublesome,66 and
phase wrapping and noise remain a source of error. Complex
post-processing is also a barrier to use.59 Nonetheless, the po-
tential to derive alternative haemodynamic parameters will yield
new insights into blood flow and will no doubt yield exciting
future clinical applications.

Arterial spin-labelling MRI
Arterial spin-labelling (ASL) is based on the generation of
a control static signal image and a “labelled”/”flow-sensitised”
image, of combined static and magnetized inflowing blood
signal. When subtracted, the difference image reflects local
perfusion. There are a variety of labelling techniques including
pulsed ASL, continuous ASL and pseudocontinuous ASL. The
overall ASL signal is dependent on intrinsic tissue and blood T1,
which must be measured for quantification (Figure 6).67

Reports of hepatic ASL are sparse, with recently reported
pseudocontinuous ASL data in normal volunteers.68 Mice liver
ASL studies have reported reasonable parenchymal perfusion
quantification and changes in perfusion of colorectal liver me-
tastases after administration of vascular disrupting agents.69

High-quality validation studies are lacking: studies comparing
DCE CT perfusion and ASL have demonstrated positive correla-
tions (r50.794, p, 0.01; n55),70 and clinical studies have been
undertaken comparing non-normalized PCMRI PV flow with tis-
sue perfusion.71 Child-Pugh class A patients with cirrhosis have also
demonstrated reductions in ASL hepatic parenchymal perfusion.72

ASL raises specific challenges at labelling, imaging, measuring T1
and signal modelling stages. Inflowing vessels have variable ori-
entation and consistent labelling strategies, particularly for sepa-
ration of HA and PV contributions, are essential. Alternative
signal modelling approaches may also be required if arterial and
PV contributions are to be quantified. Final subtracted ASL signal
is small, so that liver motion artefact can easily corrupt the data.
Motion correction strategies will be essential for avoiding ex-
tended scanning times and the high specific-absorption rate doses
required for multiple averages and/or multiple slices.

MR elastography
Biomechanical imaging methods measure tissue response to an
applied physical stress. The tissue response is dependent on the
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tissue physical properties (viscosity, elasticity and stiffness), and also
haemodynamic factors such as tissue perfusion, bulk vessel flow
and pressure. Measurement of biomechanical properties thus has
the potential to non-invasively probe haemodynamic parameters.

MR elastography (MRE) uses low-frequency mechanical waves
propagated through tissues. The waves are imaged using
a modified PCMRI sequence with “motion-encoding gradients”.
PCMRI data are then used to generate parametric maps of
mechanical properties. To produce mechanical stress, a 19-cm
plastic disc with a drum membrane is strapped to the patient
surface over the right upper abdominal quadrant, under the
surface coil. The disc is connected to an active pneumatic driver
outside the scanner room. Data acquisition is synchronized with
the driver oscillations. Processing occurs at acquisition, with
mapping of shear stiffness (pressure applied divided by the ratio
of the change in length of the stressed tissue, Young’s modulus,
kPa) at source. Absolute quantification using ROIs or liver pa-
renchymal segmentation can then be used to record mean
stiffness values.73 An alternative approach, using different driv-
ers and quantification methods termed “compression-sensitive
MRE” has also been proposed.74

Pre-clinical studies assessing portal hypertension have been
encouraging. A small canine study reported significant correla-
tions between both liver and splenic stiffness and HVPG
(r5 0.95 and 0.93; p, 0.01),75 and correlations between swine
MRE hepatic and splenic stiffness and colloid infusion volume
have been demonstrated (r5 0.86 and r. 0.90).76 Clinical
studies have, however, reported modest correlations between
hepatic (r5 0.44, p5 0.017) and splenic (r5 0.57, p5 0.002)
“loss modulus” and pre-transplant HVPG.77 Compression-
sensitive MRE has been more encouraging, correlating HVPG
with hepatic “volumetric strain” (r5 0.852, p, 0.0001)78 and
observing changes in splenic viscoelastic constant modulus (G*)
(r5 0.659, p5 0.013),79 pre- and post-TIPSS.

The relationship between MRE and the presence and severity of
oesophageal varices77,80 and hepatic decompensation81 has also
been positive: larger scale studies will help define formal clinical
applications in these contexts.

Finally, liver stiffness changes secondary to haemodynamic
changes induced by prandial stress have been compared in
patients with chronic liver disease (21.24614.98%) and normal
volunteers (8.08610.33%).82 Correlation between post-prandial
PCMRI PV flow and MRE stiffness change (Spearman’s r5 0.48,
p5 0.013) was unimpressive,53 but composite MRE/DCE MRI
and MRE/PCMRI parameters have demonstrated improved
sensitivity/specificity to the severity of oesophageal varices.57,80

Important challenges to assumptions in the biomechanical
quantification process lie ahead. The parameters estimated using
MRE related to “stiffness” include Young’s, loss and shear
modulus; divergence and volumetric strain; viscoelastic con-
stants; and decomposed curl to name a few. The nomenclature is
confusing and parameters abstract, particularly in the hands of
clinicians unfamiliar with biomechanical quantification. The
clinical value of this multitude of parameters will become clear

from larger scale studies; some parameters of likely of greater
value in assessing fibrosis while others more useful in the as-
sessment of haemodynamics.

Ultimately, the biggest challenge to MRE is competition from
ultrasound elastography. Two-dimensional parametric mapping
is MRE’s main advantage, but cost, time and simplicity will
always favour sonographic approaches. Future studies that
demonstrate superiority of either for clinical applications will
clarify the role of each method in the assessment of liver
haemodynamics.

CHALLENGES AND FUTURE DIRECTIONS
The translation of hepatic vascular MRI into the clinical setting
faces demanding but not insurmountable challenges, both spe-
cific to liver and to quantitative MRI in general. Firstly, the liver
experiences complex motion and deformation through re-
spiratory and cardiac cycles: quantitative data must be efficiently
registered to derive accurate anatomically localizable data.83

Complex post-processing impedes the use of quantitative tech-
niques: new post-processing solutions must be robust, fast and
accessible across institutions/scanners; require minimal user
input; and be free from costly software/hardware solutions.
Acquisition of quantitative data must also be rapid, convenient
and cost effective for realistic clinical implementation alongside
existing protocols for anatomical imaging.

There is a relative paucity of high-quality validation studies
using standards such as HVPG and ICG clearance, although
encouraging data are slowly emerging. Through invasive, high-
quality validation, the legitimacy of new imaging methods can
be better stated and can establish strong foundations for clinical
acceptance. Quantification of MR signal is also challenging.
DCE, DHCE and ASL methods are reliant on T1 measurement
protocols which themselves are highly variable in the literature.
Inaccurate T1 measurements affect haemodynamic quantifica-
tion, complicate validation studies and restrict comparisons
across institutions/scanners. Conformity of DCE MRI acquisi-
tion and analysis protocols has been proposed by international
consortia,84,85 with liver-specific guidance anticipated in the
near future.

Effective use of mathematical models to derive haemody-
namic parameters is essential. These must be as simple as
possible but yield clinically meaningful haemodynamic
parameters. The model-based estimation of parameters must
be driven by clinical need rather than mathematical theory.
Quantitative data must be useful to radiologists and clini-
cians: translation into routine imaging protocols will only
occur once championed by clinical radiologists and clinicians
working in non-academic settings.

Finally, hepatic haemodynamic parameters are inherently com-
plex. Physiological homeostasis of flow, pressure and resistance
remains poorly understood. Clinical use of HVPG would favour
“pressure” as the key variable for assessment, but this approach
is likely too simplistic. Future multimetric imaging protocols
must deliver comprehensive haemodynamic assessment through
a “one-stop”MRI protocol for perfusion, intrahepatic resistance,
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hepatic sinusoidal pressure and shunting maps. These could help
clinical radiologists identify segmental areas more affected by
disease, qualify focal hepatic parenchymal lesions and be used to
inform therapeutic interventions ranging from optimizing
TIPSS stents to planning and enhancing medical treatments and
surgical outcomes.

CONCLUSION
Chronic liver disease is associated with major vascular
changes that to date remain poorly understood but are clear
and promising targets for imaging biomarkers. A number of
promising quantitative MRI techniques have been developed
for hepatic haemodynamic assessment, each with their own
strengths and limitations. Future research must include well-
designed studies in large cohorts of pre-clinical and clinical

subjects to robustly validate new techniques. The future is
exciting, as techniques aimed at quantifying fibrosis, bio-
mechanical properties and haemodynamics converge to yield
multimetric MRI strategies that equip clinical radiologists
with powerful tools to yield useful and meaningful non-
invasive biomarkers not only for assessment and prognosti-
cation but also in the development of new, evermore per-
sonalized treatments for liver disease.
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