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ABSTRACT

Existence of some extra-genetic (epigenetic) codes
has been postulated since the discovery of the
primary genetic code. Evident effects of histone
post-translational modifications or DNA methylation
over the efficiency and the regulation of DNA proces-
ses are supporting this postulation. EMdeCODE is an
original algorithm that approximate the genomic dis-
tribution of given DNA features (e.g. promoter,
enhancer, viral integration) by identifying relevant
ChIPSeq profiles of post-translational histone
marks or DNA binding proteins and combining
them in a supermark. EMdeCODE kernel is essen-
tially a two-step procedure: (i) an expectation-
maximization process calculates the mixture of
epigenetic factors that maximize the Sensitivity
(recall) of the association with the feature under
study; (ii) the approximated density is then recur-
sively trimmed with respect to a control dataset to
increase the precision by reducing the number of
false positives. EMdeCODE densities improve signifi-
cantly the prediction of enhancer loci and retroviral
integration sites with respect to previous methods.
Importantly, it can also be used to extract distinctive
factors between two arbitrary conditions. Indeed
EMdeCODE identifies unexpected epigenetic profiles
specific for coding versus non-coding RNA, pointing
towards a new role for H3R2me1 in coding regions.

INTRODUCTION

The role of epigenetic mechanisms as modulators of tran-
scriptional activation and repression, DNA methylation,
cell memory maintenance, stem cell differentiation,

cancerogenesis and other major genomic processes have
been widely demonstrated [reviewed in (1–3)]. Moreover,
it has been already observed that epigenetic features such
as histone post-translational modifications and DNA
methylation can act in concert to promote or silence
specific cellular functions (4). Accordingly, I have
recently shown that retroviral insertional site selection
into the host DNA could be strongly influenced by a set
of specific histone modifications acting as a sort of beacon
for incoming retroviruses (5). This information could be
taken as the prelude to postulate the existence of a
not-yet-well-defined epigenetic code (6).
Here I propose a statistical approach to identify patterns

of epigenetic signatures associated with specific genomic
functions. Relatively new technologies, notably ChIPSeq,
are able to track the position of DNA binding proteins as
transcription factors or histones carrying specific modifica-
tions and yield a genome-wide density profile. When search-
ing for association to a given genomic process, this
information might be probabilistically interpreted and
combined to generate a new virtual mark of greater statis-
tical power with respect to the ‘real’ mark alone. Several
approaches have been developed. Some (7–10) are based
on unsupervised genome segmentation where the aim is to
find clusters of epigenetic factors repeated over the genome
(transcription factor binding sites, histone marks, DNase
profile etc.). These patterns are then associated ‘a posteriori’
with known annotations as promoter or enhancer regions.
As another example, (11) uses Bayesian networks to explores
causal relationships among clusters of DNA binding
proteins in Drosophila and infers direct or indirect inter-
actions among them. In general, unsupervised methods are
useful to label large portions of the genome but they lack a
false-positive correction resulting in poor performance espe-
cially in terms of positive predicted value (PPV or Precision
<0.5) (10). On the other hand, supervised methods use
training subsets of specific functional regions (enhancers
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and promoters inmost cases) to predict the genomic position
of other unknown functional sites (12,13), and they use a
control (random) dataset to increase the Precision. Addi-
tionally these methods yield better Sensitivity (Recall) than
unsupervised methods (12). Previously I implemented a
supervised heuristic methodology based on F score statistics
to create a ‘supermarker’ out of ChIPSeq profiles (5). This
methodology requires the pre-calculation of individual F
scores for each mark, the selection of a subset of significant
marks and the eventual addition or deletion of some marks
to the subset. EMdeCODE is a general extension of this idea,
based on mixture modeling Expectation and Maximization
(EM) and statistical selection. It is specifically designed to
deal with post-translational histone modifications and it
presents some peculiar features. The input data is a set of
peaks calculated by an independent peak caller from row
ChIPSeq data [similarly to (9)]. The rationale behind this
design is to decouple the peak calling task that can be ac-
complished by several continuously improved algorithms
[see (14) for a review] from the statistical combination of
histone marks. The advantage is 2-fold: (i) EMdeCODE is
independent from current and likely soon obsolete treat-
ments of ChIPSeq data; (ii) EMdeCODE can work with
peaks called from different algorithms and from different
experiments. The peak caller can be chosen accordingly
with the expected ChIPSeq profile and the experimental con-
ditions, for exampleHOMER (15) for narrow peakedmarks
as H3K4me3, and RSEG (16) for wider distribution as
H3K27me3. Differently from all other approaches, for
each input peak set, EMdeCODE recreates a new histone
mark distribution by interpreting each peak as a single or
stretch of nucleosomes (accordingly to the genomic size of
the peak) and modeling the nucleosome occupancy by
Gaussian functions of equal amplitude and variance
(=200bp). The idea here is to drastically reduce the experi-
mental noise and facilitate the interaction of data obtained
by different experiments. These new distributions are then
combined during the training phase to generate a genome-
wide probability mass distribution that approximate the
unknown functional distribution. Here, another peculiarity
of EMdeCODE is the maximization of the F Score, a
weighted combination of precision (positive predictive
value) and recall (Sensitivity), to reduce the influence of
false negatives similarly to what presented in (5). The main
difference is the addition of the EMprocedure that combines
a set of factors and selects the relevant subset without super-
vision. As shown in theResults section, a consequence of this
approach is a gain of precision with respect to other
methods. EMdeCODE can therefore be used to discover
new associations between marks and genomic functions.
Applications to enhancer identification in comparison with
previous supervised methods, retroviral integration site
prediction and to discriminate between coding versus
non-coding genes are discussed.

MATERIALS AND METHODS

Input data

High-Throughput Sequencing–based applications usually
require large amount of computational power and

software tools. The minimal computational ChIPSeq
pipeline consists of a sequence aligner that maps millions
of reads produced by the sequencer to the proper reference
genome and a peak finder to identify enriched regions with
respect to a control background according to some user
pre-defined parameters [see (17) for a review about
ChIPSeq and other similar technologies]. EMdeCODE
takes as input the final peak set and assumes that these
steps are correctly performed with proper controls and
sufficient profile quality. In particular, all ChIPSeq
histone profiles used in this study have been pre-processed
with Fseq (18) for it produces good-quality peak set from
both narrow and broad read distributions (14).

The algorithm

Here M DNA-binding factors are considered. Formally,
each ChIPSeq profile for factor Xj could be interpreted as
the probability to find Xj bound to a specific genomic
region of size w centered on i=(chr, pos):
pXj
� pðXj ¼ iÞ. This mass density is modeled by

EMdeCODE with a sum of Gaussian functions, each
one centered on one nucleosome. Nucleosome positions
are extracted from ChIPSeq peaks by considering a
genomic occupancy of 200 bp. This reduces the potential
bias that can arise by combining ChIPSeq densities
obtained over different experimental conditions. Briefly,
each marker probability density function is written as

pðX ¼ iÞ ¼
1

C

X
p2�

e
�ði�pÞ2

2�2 , ð1Þ

where G is the peak set of factor X, and C is a normaliza-
tion factor.

Similarly, the biological event could be modeled as a
random variable B taking values on all chromosomal
loci. In other words, the event modeled by B has an
unknown (mass) probability to occur in the region
centered on i: pB � pðB ¼ iÞ .

The aim is to find a new mass probability functional
that can approximate pB by means of the pXj

’s:
pB ffi = pX1

,pX2
,:::,pM

� �
.

Assuming that B has been observed to occur on N loci
fk1,:::,kNg , pB can be written as

pB ¼ pðB ¼ kÞ ¼
X
i

pðB ¼ kjXj ¼ iÞpðXj ¼ iÞ

¼ pðB¼kjXj¼kÞpðXj¼kÞ+
X
i6¼k

pðB¼kjXj¼ iÞpðXj¼ iÞ

ð2Þ

where i spans across all possible loci.
The first right term in (2) can be interpreted as how well

pXj
fits pB. The second term is the related error expressing

the spreading of pXj
over loci unrelated to B.

Summing (2) over j:

pðB ¼ kÞ ¼
XM
j

pðB ¼ kjXj ¼ kÞ

M
pðXj ¼ kÞ

+
X
j

X
i6¼k

pðB¼ kjXj¼ iÞ

M
pðXj¼ iÞ¼ ~pBj�+",

ð3Þ
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where ~pBj� ¼
PM

j �jpðXjÞ, � ¼ ð�1,:::,�MÞ and " is the ag-
gregate of all M approximation errors.

� can be estimated by a classical Maximum Likelihood
approach. Indeed, maximizing the (log)likelihood of ~pBj�:

log Lð�jBÞð Þ ¼ logð ~pBj�Þ ¼ log
XM
j

�jpðXjÞ

 !
:

is equivalent to a mixture-density parameter estimation
problem and can be efficiently treated with the Expec-
tation Maximization algorithm (EM) (19).

This algorithm works in a way that, at the t-esim

iteration, the expectation function Qð�,�ðt�1ÞÞ ¼ EY

logLð�jB,YÞjB,�ðt�1Þ
� �

is maximized (Y is an auxiliary

random variable), that is, �ðtÞ ¼ argmax� Qð�,�ðt�1ÞÞ.
As previously derived in (19), by introducing the probabil-
ity that value k arises from the j-esim distribution,

Pðjjk,�Þ ¼
�jpðXj ¼ kÞPM
l

�lpðXl ¼ kÞ

, ð4Þ

Qð�,�ðt�1ÞÞ can be written as

Qð�,�ðt�1ÞÞ ¼
X
j

X
k

logð�jÞpðjjk,�ðt�1ÞÞ ð5Þ

The mixture coefficient vector � is evaluated by
maximizing (5) by the Lagrange multiplier l with con-
straints

P
j �j ¼ 1 and (4):

�ðtÞj ¼
1

N

X
k

Pðjjk,�ðt�1ÞÞ ¼
1

N

X
k

�ðt�1Þj pðXj ¼ kÞ

~pðB ¼ kj�ðt�1ÞÞ

¼
1

N

X
k

�ðt�1Þj pðXj ¼ kÞPM
l

�ðt�1ÞpðXl ¼ kÞ

ð6Þ

where N is the number of discrete genomic loci all
densities have support.

From (3) the following identity holds:

�ðt�1Þj pðXj ¼ kÞ ¼
1

M
pðB ¼ k,Xj ¼ kj�ðt�1ÞÞ

Introducing the concept of Sensitivity (Recall), defined

as R ¼ PðB,XÞ
PðBÞ , equation (6) can be simply written as:

�ðtÞj ¼
1

M
PðBjXj,�

ðt�1ÞÞ ¼
1

M
Rjð�

ðt�1ÞÞ ð7Þ

In other words, each factor is weighted proportionally to
the respective Sensitivity.

The spreading error " can be interpreted as the affinity
of factor Mj for a control dataset C, defined as the set of
random loci where pðB ¼ cÞ ¼ 0,8c 2 C.

Indeed, considering a control dataset with NC control
loci, the spreading error could be estimated as:

" ¼
X
j

X
i6¼k

pðB ¼ kjXj ¼ iÞ

M
pðXj ¼ iÞ

ffi
X
j

XNC

i

pðC ¼ ijXj ¼ iÞ

M
pðXj ¼ iÞ ¼

1

MNC

X
j

fpj ¼ fp
� �

where fpj ¼ NCPðC,XjÞ is the number of false positives,
that is, the number of control loci localizing in the
region where factor Xj is bound. Therefore, minimizing "
implies the minimization of false positives.
The strategy adopted here to approximate pB is a two-

step procedure where ~pBj� is calculated by (6) and low-
probability peaks of ~pBj� are trimmed out to reduce the
number of false positives (the whole procedure is sketched
in Figure 1). Obviously this could also reduce the Sensiti-
vity, that is, the number of peaks associated to B. To
measure the quality of the approximation, the F� score is
evaluated after trimming to find the optimal tradeoff
between Sensitivity and false positives reduction (Precision).
Formally, the F� score is defined as the b-weighted

harmonic mean of Precision(P) and Sensitivity(R):
F� � 1+�2

� �
PR

�2P+R
.

Here, b=0.5 to give more weight to Precision than to
Sensitivity. This balances type I and type II errors by ad-
justing for the high rate of False Positives (fp) inherent to
the examination of large datasets for genome-wide binding
sites according to statistical significance. Moreover, to
make the F score insensitive to data size, the number of
false positives fp has been normalized with respect to N [F
score–based statistics and comparison with other
measures have been extensively discussed in (5)].
Eventually, the algorithm is lined out as follows:

(1) ~pBj� is evaluated by (6). This corresponds to weighting
each factor distribution with the respective Sensitivity.

(2) ~pBj� is trimmed to reduce the number of false posi-
tives by removing small peaks until F0.5 score is
maximized. Accordingly, the support of mass prob-
ability functions pðXj ¼ iÞ is reduced.

(3) If F0.5 score has increased, step 1) is repeated or else
it ends.

EMdeCODE has been implemented in Python and can be
downloaded from http://seaseq.unige.ch/�fsantoni/
EMdeCODE.

RESULTS

Comparison with previous methods

Cross validation
To compare the performance of EMdeCODE with previ-
ously published algorithms, a 5-fold cross validation has
been implemented over a set of 74 well-defined enhancers
according to the experimental settings proposed in (20),
but replacing ChIP-ChIP signals for H3K4me3 and
H3K4me1 with the corresponding ChIPSeq profiles (21).
As background, 740 random genomic sites have been se-
lected. EMdeCODE scored a PPV of 96.9%±1.1 with an
optimal window of 300 bp. Notably, this window is con-
siderably smaller than 2000 bp reported elsewhere
(12,13,20), probably owing to the higher resolution
provided by ChIPSeq data. Comparison with previous
methods is reported in Table 1.

Enhancer identification

EMDdeCODE has also been used to reconstruct the p300
binding sites distribution in CD4+ T cells, as a strong
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marker for enhancer identification (22). Thirty-nine
ChIPSeq histone modifications (acetylation and methyla-
tion) profiles have been used as input (see ‘Materials and
Methods’ section). Similarly to the analysis proposed by
Firpi et al. (12), EMdeCODE was trained with 213 p300
distal binding sites [at least 2.5Kbp from a known
Transcription Starting Site (TSS)] overlapping PreMod
(23) predicted enhancers and 2130 random genomic
sites. Here, two loci are considered as overlapping if
their genomic distance is <2 Kbp.

EMdeCODE generated 22 878 whole genome putative
enhancer sites, 53% overlapping (12 165) with the 36 796
sites generated by CSI-ANN [(12), data in Supplementary
Material]. To validate this prediction, the EMdeCODE
generated enhancer dataset has been compared with the
whole genome distal p300-enriched regions [>2.5Kbp
from TSS, calculated by SICER (24)]. In all, 74% (6069/
8245) of p300 regions overlap with EMdeCODE predic-
tions, 29% more than CSI-ANN (45%, 3740/8245). When
compared with a background dataset to evaluate the

Figure 1. (1) EMdeCODE reconstructs mark density distributions by placing the appropriate number of nucleosomes into each peak region and
modeling nucleosome occupancy by a Gaussian distribution with variance 200 bp. (2) Expectation Maximization evaluates the sensitivity of each
mark to true positives (filled round dots). Marks are weighted accordingly and linearly combined to generate the raw supermark. (3) Peaks of the
supermark accounting for random loci (crosses: false positives) are trimmed off the supermark to optimize the F score.
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number of false positives (70 000 random selected genomic
sites), EMdeCODE predictions obtained an F score of
0.91 (Precision=PPV=96%, Recall=Sensitivity=
74%), whereas the CSI-ANN F score was 0.74
(Precision=PPV=89%, Recall=Sensitivity=45%).
This is somehow expected because EMdeCODE aims to
maximize the F score. A visual comparison between
EMdeCODE and CSI-ANN is reported in Figure 2 by
Chromosome Projection Mandalas (5). It is interesting
to observe that, consequently, EMdeCODE improves
both PPV and Sensitivity. Previously it has been shown
that enhancers are enriched with DNase I sensitive sites
(13,22,25). Indeed, 80% of EMdeCODE predictions is
supported by at least one among p300, DNase sites (26)
and PreMod predicted functional sites, 20% more than
CSI-ANN (60%). As additional comparison, 49 746
p300 distal binding sites were obtained by peak calling
from the original p300 ChIPSeq data. In all, 18 759
(82%) EMdeCODE-generated sites were supported by
p300 peaks, 45% more than CSI-ANN (37%). Together,
these results indicate that EMdeCODE is a more effective
algorithm to approximate the p300 distribution and a
superior enhancer predictor.

Enhancer ‘Code’

The composition of the enhancer ‘code’ generated by
EMdeCODE (reported in Supplementary Figure S1A) is
dominated by H3K36ac, an highly conserved histone
modification already reported to be strongly enriched at
enhancer sites (27,28) followed by H2BK120 and H3K4ac,

two marks associated with active enhancers and pro-
moters (29). Notably, EMdeCODE enhancers are also
enriched in H3K4me3 (76%) and H3K27ac (70%) and
depleted in H3K27me3 (<1%), indicating that most of
them are likely active enhancers (30,31).
Interestingly, this particular composition depends

on modeling ChIP-Seq profiles as probability mass
distributions and specifically on the normalizationR+1
�1

pðxÞdx ¼ 1. When min-max normalization is applied

(i.e. C ¼ max
P

p2� e
�ði�pÞ2

2�2 in eq. 0), EMdeCODE generates

45 616 putative enhancers, 16 961 (out of 22 878, 75%)
overlapping with those ones produced by standard nor-
malization. In this case the composition of this supermark
is dominated by the well known marks H2AZ, H3K9me1,
H3K4me1 and H3K4me3 (Supplementary Figure S1B).
Notably, the performance of this prediction is slightly
better in Sensitivity (77%, 6374/8244 of p300 regions
overlap with this prediction) but not in Precision (89%),
leading to a lower F score=0.86. For this reason, the
standard normalization has been preferred in
EMdeCODE implementation.

Retroviral integration site prediction

EMdeCODE has been used to generate new virtual marks
by combining 39 different histone marks previously ex-
tracted from CD4+T cells [methylation (32) and acetyl-
ations (29)] with 6 histone marks from HeLa cells (21).
These new marks have been tested for association with
several gammaretroviral integration datasets with respect
to randomly generated matched control datasets [similarly
to (5)].
Indeed, EMdeCODE improved the prediction of retro-

viral integration sites with respect to (5). The Sensitivity
(Recall) increases 5% (to 10%) explaining up to 85% of
integration sites in CD4+T cells. Accordingly, the related
F score increases 3% (to 7%, Figure 3). The mixture co-
efficient vector �, calculated for each chromosome, stores
the contribution of each mark to the final association. As
expected, the optimal receipt includes all marks related to
active transcription and open chromatin, whereas

Figure 2. Chromosome projection mandalas calculated within 2Kbp for EMdeCODE and CSI-ANN enhancer predictions versus p300 enriched
regions on chr1. Each dot on the mandala represents the center of a p300 region in polar coordinates. Angular distance corresponds to genomic
location, and radial distance from the outer circle indicates the log-scaled distance in nucleotides from the closest predicted enhancer. Inner circles
mark 1, 2 (in blue), 10, 20Kbp and so on. Blue filled circles represent p300 sites within 2Kbp from the nearest predicted enhancer.

Table 1. Positive Predicted Value comparison among enhancer

predicting algorithms in a 5-fold cross-validation test

Method (H3K4me1, H3K4me3) Enhancer PPV(±SD)a

EMdeCODE 96.9%±1.10
CSI-ANN (12) 96.22%±2.14
HMM (20) 94.1%±0.89
Heintzmann et al. (13) 85%

aWhere available.
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H3K27me3 and other heterochromatin-related marks give
no contribution (Supplementary Figure S2). All results
have been checked using a 5-fold cross-validation
strategy similar to what presented in (5).

Discriminating between coding and non-coding DNA

Another possible application of EMdeCODE is the iden-
tification and the quantification of differential epigenetic
profiles between two distinct genomic features. Here, the
algorithm has been used to identify epigenetic differences
that could characterize coding from non-coding tran-
scripts as, in this case, long non-coding RNA (lncRNA).
It is believed that non-coding mRNAs transcribed by the
PolII transcriptional machine have the same epigenetic
landscape found in promoter regions specific of coding
mRNA (33). To investigate this hypothesis, a total of
182 lncRNA, 84 not overlapping with any known
expressed transcript within 6Kbp upstream of the TSS
and 98 not overlapping within 6Kbp downstream of the

30-end of transcription regions (EoT), all actively
transcribed in CD4+T cells [accordingly to publicly avail-
able RNASeq data (28,34)], with a clear PolII peak in the
promoter region [data from (32)] and more than 400 nt
long have been selected. As a matched control, 84+98
coding PolII transcribed RefSeq genes with the same 6
Kbp non-overlapping condition as selected lncRNA and
with comparable transcriptional level and length have
been randomly chosen (Supplementary Figure S3).
EMdeCODE was then fed with the above-mentioned 39
markers to identify possible discriminating factors over
promoter regions, gene bodies (Tx) and the 30-EoT. A
comparison with 2000 randomly selected genomic
regions has been performed as reference.

Diagrams in Figure 4A report F score curves calculated
for coding versus non-coding genes (Gene versus ncRNA),
coding versus random (Gene versus Rnd) and non-coding
versus random (ncRNA versus Rnd), considering gene
bodies and increasing regions from TSS and 30 EoT

Figure 3. Histograms of the F score (upper panel) and the percentage of associated proviruses wi2Kbp of the EMdeCODE-generated supermark
(lower panel) with respect to MLV (I and II) proviruses (41,42) and HIVmINmGAG chimera (41) integrated in HeLa in comparison with the
‘supermarker’ previously reported by Santoni et al.
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respectively. As expected, both coding genes and non-
coding RNA (ncRNA) can easily distinguished from
random sites in gene bodies (Tx, F score=0.87 and
0.86), whereas it is more difficult but still possible to

discriminate between them (Tx, F score=0.67). PolII
transcribed lncRNA and coding genes do not differ in
the epigenetic profile of the promoter region (F score
<0.6), accordingly to what previously reported, but they

Figure 4. Coding (Gene), ncRNA and Rnd comparisons. (A) Supermarks and corresponding F scores are calculated for gene bodies (Tx) and for
genomic regions considering regions extending upstream from TSS (negative sizes on x axis) and downstream of 30-end of transcription (EoT,
positive sizes). Association is considered significant if F score >0.6. (B) Single-mark contributions (mixture coefficient vector �) to supermark
discriminating Gene versus lncRNA ordered by contribution in gene bodies. Only marks contributing >1% are reported.
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are clearly distinct up to 6 Kbp downstream the EoT
(F score=0.78). Figure 4B reports the contribution of
each mark to the final supermark (i.e. the mixture coeffi-
cient vector � defined in eq. 2) sorted by their percentage
in gene bodies. The leading histone mark here is
H3K4me3, unexpectedly followed by H3R2me1 that
is also the fourth contributor in downstream region after
the well-known marks H2AZ, H3K36me1 and H3K36me3
and in comparison with random sites (Gene versus Rnd,
Supplementary Figure S4). No functions in human cells
have been associated to this mark so far. Notably,
H3R2me1 does not show up in lncRNA versus Rnd
analysis (Supplementary Figure S5), indicating that this
mark might be specific to coding regions. To support
this hypothesis, I calculated H3R2me1 and PolII density
plots extending 6 Kbp 50 and 30 gene bodies of the two
matched dataset. H3R2me1 appears to be indeed enriched
in coding gene bodies with respect to expressed lncRNA.
Its density increases drastically in the promoter region
reaching its maximum immediately after TSS and it de-
creases smoothly but peaking again around the 30 EoT
region (Figure 5A, black line). Conversely, H3R2me1 is
almost flat in lncRNA regions (Figure 5A, red line). This
different behavior cannot be explained by differences of
length, expression level or by PolII-mediated activation as
clearly shown in Figure 5B. Moreover, correlation
between level of expression of coding genes and lncRNA
with H3R2me1 density in T cell data is rather low: 0.25
and 0.22, respectively. Interestingly, coding PolII density
has a ‘bump’ at 30 EoT [interpreted as a slow release of
PolII from DNA (35)], absent in lncRNA and that overlap
with H3R2me1 increased density in the same region
(Figure 5A and B).

DISCUSSION

Understanding the combinatorial complexity of histone
post-translational modifications is important to elucidate
the mechanisms of gene expression regulation as well
as protein–DNA interactions. In this perspective,
EMdeCODE recreates the probability mass distribution
of observing a specific event on a specific DNA location
by aggregating ChIPSeq histone marks profiles into a new
associated supermark. The algorithm is based on classical
Expectation Maximization approach and mixture
modeling with statistical selection. The goal is to
maximize the association in term of F score, thus
reaching an optimal tradeoff between Precision and
Sensitivity.
Compared with previous methods, EMdeCODE signifi-

cantly improves the identification of putative enhancers,
as demonstrated by the good approximation of the experi-
mental p300 distribution in CD4+ T cells. One of the
reasons for this increased performance can be ascribed
to the choice of reconstructing a minimal profile by con-
sidering only significant peaks from ChIPSeq data, thus
consistently reducing the associated noise and defining
a common background for all the available marks.
Moreover, the interpretation of ChIPSeq profiles as prob-
ability mass densities and the choice of the F0.5 score as

cost function increase the contribution of less abundant
but significantly associated marks and, at the same time,
reduce the number of false positives.

When applied to the prediction of retroviral integration
sites, EMdeCODE outperforms the heuristic method
reported in (5) and generates a supermark localized

Figure 5. H3R2me1 (A) and PolII (B) read density plots of coding
(black) and non-coding (red) gene bodies normalized by length and
divided in 50 non-overlapping bins +15 bins for ±6Kbp extensions.
(C) Density plots in untranscribed genes.
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within 2 Kbp of 75–85% of gammaretroviral proviruses,
while increasing the corresponding F score. It is worth to
observe that the best performance is obtained in CD4+T
cells where the highest number of marks is also available.
This again demonstrates that EMdeCODE exploits and
properly balances even minor contributions that are
underrated by the heuristic approach.

EMdeCODE can also be used to determine whether
some marks can be used to discriminate among genomic
events. Indeed, it has been capable of determining
supermarks which distinguish coding from non-coding
genes, despite substantial epigenetic homogeneity of tran-
scriptional regions having been previously reported (36).
This seems to be true only for the promoter region up to
6Kbp (upstream from the TSS), where no significant dif-
ferences can be observed. Regions downstream (from 2 to
6Kbp) of coding genes, instead, are particularly enriched
in transcription associated marks, such as H2AZ,
H3K4me3 and H3K36me1-3 among others, likely ac-
counting for a complex regulatory structure that is less
pronounced for most of non-coding transcripts. The
gene body, also, is clearly enriched of H3K36me3 and
H3K36me1 in coding genes, especially in comparison
with random sites (Supplementary Figure S4), in line
with what has been previously reported (37). Perhaps
less expected is the strong influence of H3R2me1 in
coding gene bodies with respect to lncRNA and random
regions as shown in Figure 4B and Supplementary Figure
S4. The specificity of this mark for coding regions is con-
firmed by its absence in lncRNA compared with random
regions even if they can be clearly discriminated (F score
>0.75, Figure 4A and Supplementary Figure S5).
H3R2me1 significantly contributes to coding genes char-
acterization in 30 EoT regions and 6Kbp downstream.
H3R2me1 read density profile shows a peculiar shape in
coding regions of the matched dataset by markedly
outlining the gene body. Conversely, H3R2me1 is consid-
erably depleted in non-coding gene bodies, explaining why
it has been picked up by EMdeCODE (Figure 5A). H3R2
is methylated by PRMT1 and CARM1 that subsequently
coactivate nuclear hormone receptor-mediated transcrip-
tion, suggesting that the H3R2 methylation may be
involved in transcriptional activity (38), as recently
observed in Drosophila (39). On the other hand,
H3R2me1 is not particularly enriched in active promoter
regions of human DNA (32) and it is not strongly
correlated with expression levels [see Results and (32)].
Interestingly, a recent study proposed that symmetrical
dimethylation of H3R2 may have a role in euchromatin
maintenance by mediating histone H3K4 methylation and
H3 and H4 acetylation (40). Figure 5C reports PolII and
H3R2me1 densities of 150 untranscribed 6Kbp
non-overlapping coding and non-coding genes. Again,
monomethylated arginin of histone 3 is denser in coding
regions even in complete absence of transcriptional
activity (flat PolII density). These observations together
with the other results obtained by EMdeCODE support
the hypothesis that H3R2 is a key amino acid residue
epigenetically involved in the maintenance and the protec-
tion of coding regions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1–5.
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