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With population genetic evidence of recombination ongoing in the natural Aspergillus
fumigatus population and a sexual cycle demonstrated in the laboratory the question
remained what the natural niche for A. fumigatus sex is. Composting plant-waste material is
a known substrate of A. fumigatus to thrive and withstand temperatures even up to 70°C.
Previous studies have shown indirect evidence for sexual reproduction in these heaps but
never directly demonstrated the sexual structures due to technical limitations. Here, we
show that flower bulb waste material from stockpiles undergoing composting can provide
the conditions for sexual reproduction. Direct detection of ascospore structures was shown
in agricultural flower bulb waste material by using a grid-based detection assay.
Furthermore, we demonstrate that ascospores can germinate after exposure to 70°C for
up to several days in contrast to asexual conidia that are unable to survive a two-hour heat
shock. This indicates a sufficient time frame for ascospores to survive and escape
composting stockpiles. Finally, sexual crosses with cleistothecium and viable ascospore
formation could successfully be performed on flower bulb waste material. Recombination of
A. fumigatus can now be explained by active sexual reproduction in nature as we show in
this study that flower bulb waste material provides an environmental niche for sex.
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INTRODUCTION

Aspergillus fumigatus is known as a fungus of concern for human health particularly in
immunocompromised patients. This fungus has a ubiquitous presence in our environment and
healthy individuals exhibit high innate immunity to prevent Aspergillus diseases due to efficient
clearing of the spores from the lungs (Hohl and Feldmesser, 2007). The most lethal manifestation of
Aspergillus diseases includes invasive aspergillosis (IA), an infection that is characterized by tissue
invasive growth of the fungus. IA is known to develop in patients with neutropenia, but in recent
years cases are increasingly observed in nonneutropenic critically ill patients including those with
severe influenza and coronavirus disease 2019 (COVID-19) (Schwartz et al., 2020; Chong and Neu,
2021). A major improvement in the management of Aspergillus diseases was made with the
introduction of the triazole class, including itraconazole, voriconazole, posaconazole and
isavuconazole. These triazoles have become evidence-based first choice treatment options for
gy | www.frontiersin.org January 2022 | Volume 11 | Article 7851571
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both treatment and prophylaxis of Aspergillus diseases.
Management of IA has however remained difficult despite the
availability of the triazoles. Diagnosis is often challenging
because clinical symptoms and biomarkers are not always
specific for IA, patient groups have become more
heterogenous, and because of the emergence of acquired
triazole resistance. Although triazole resistance was long
neglected to be an uncommon phenomenon (Patterson and
Strek, 2014), over the past decades triazole resistance has
increased substantially in some geographic regions, mainly due
to A. fumigatus isolates harboring TR34/L98H and TR46/Y121F/
T298A mutations in the triazole target gene; the cyp51A gene.
Triazole resistance was shown to be associated with treatment
failure and 20% excess mortality in patients with IA (Lestrade
et al., 2019). The most likely explanation for the spread of these
tandem repeat(TR)-mediated resistance mechanisms in A.
fumigatus is the use of triazole fungicides in agriculture
(Verweij et al., 2009; Schoustra et al., 2019a). As the number of
resistance mutations and variations increases over time,
understanding the relationship between triazole fungicide
exposure and the development of triazole resistance mutations
is critical to contain this problem.

In order to optimally create genetic variation for adaptation to
a triazole-containing environment, A. fumigatus needs to
complete its reproduction cycle. A. fumigatus may benefit from
three reproduction modes including asexual, parasexual, and
sexual reproduction, each of which have specific benefits and
limitations (Zhang et al., 2021a). For A. fumigatus the sexual
cycle was detected in vitro in 2009 by O’Gorman et al. (2009),
who showed that A. fumigatus possesses a fully functional sexual
cycle and described the teleomorph Neosatorya fumigata. The
sexual cycle involves the fusion of two haploid nuclei of opposing
mating-types MAT1-1 and MAT1-2 to produce a diploid zygote
from which haploid spores are produced by meiotic cell division.
Sexual mating with meiotic recombination increases genetic
variation among progeny enabling the fungus to adapt and
survive in changing environments. It also enables the fungus to
get rid of deleterious mutations in contrast to strictly asexual
species that instead are expected to gradually accumulate
deleterious mutations, also named the Muller’s ratchet (Muller,
1964). Although the 50:50 distribution, or balancing selection, of
mating types in environmental A. fumigatus isolates suggests that
niches are present in nature that support sexual reproduction, to
date such niches have not been reported and mating has only
been achieved under laboratory conditions (Poggeler, 2002; Dyer
et al., 2003; Varga and Toth, 2003; O’Gorman et al., 2009).
Moreover, mature cleistothecia (fruiting bodies) were obtained
after six months of incubation on a parafilm sealed oatmeal agar
plate at 30°C in the dark, recently the supermaters were
discovered, which require much shorter time to produce
cleistothecia around 4 weeks (Sugui et al., 2011) and the
authors were still unable to induce a sexual cycle on any other
media or conditions (O’Gorman et al., 2009). It remains unclear
why so specifically oatmeal agar and incubation in the dark has
been successful for sexual reproduction of A. fumigatus,
especially considering it will be difficult to identify a natural
environment resembling these conditions. Most fungal species
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
reproduce asexually when conditions are favorable for growth
and reproduce sexually in nutrient-limiting conditions, which is
in contrast to what has been observed for A. fumigatus so far
(Dyer et al., 1992). The thick ascospore wall of A. fumigatus has
been suggested to protect sexual spores from different
environmental stresses including high temperature and
ultraviolet radiation. Given that A. fumigatus is a typical soil
fungus it can explain the induction of sex in the absence of light
(Sugui et al., 2011).

Sexual recombination has been suggested to play a role in
triazole resistance development in A. fumigatus, as the
environmental route involves resistance mutations characterized
by complex mechanisms such as a TR in combination with one or
more SNPs in the cyp51A-gene (i.e. TR34/L98H (Zhang et al.,
2017). As triazole resistant isolates that harbor either the TR or the
cyp51A-SNP are extremely rare, selection of TR-mediated
resistance mutations through asexual reproduction is unlikely
and has only been reported once in a clinical case (Hare et al.,
2019). As such complex changes may have developed through
meiotic recombination, we hypothesized that sexual recombination
can play a role in the development of TR-mediated resistance
mutations inA. fumigatus. Over the past years we have investigated
A. fumigatus population dynamics in plant-waste storage heaps,
especially those produced by flower bulb growers, which may
contain high levels of triazole fungicide residues (Zhang et al.,
2017; Schoustra et al., 2019a). Although samples from these sites
were shown to contain very high A. fumigatus colony forming unit
(CFUs) per gram (Schoustra et al., 2019a), supporting active
asexual reproduction, several observations indicated that a sexual
cycle might also be present in these hotspots. A study performed by
our group in 2017 revealed the presence of TR46-variants with three
repeats (TR3

46) instead of two copies in the promoter region of the
cyp51A gene as a possible result of unequal crossing over during
meiosis (Zhang et al., 2017). Further indications of sex in
composting flower bulb waste material were not a clonal
expansion but a high genetic diversity found among A. fumigatus
isolates recovered from these heaps and the fact that significant
growth of A. fumigatus CFUs was recorded after a 70°C heat shock,
a temperature that is known to kill asexual conidia. The question
now arises whether flower bulb waste stockpiles or compost heaps
can provide the conditions required for sex in A. fumigatus. In the
current study we set out to find evidence for sexual reproduction of
A. fumigatus in flower bulb-waste and to determine if this material
could provide conditions that support sexual recombination.
MATERIAL AND METHODS

Flower Bulb Waste Material and
A. fumigatus Isolates
Decaying flower bulb waste material used in this study was
obtained from flower bulb farmers in the north of the
Netherlands as part of previously conducted longitudinal
sampling studies (Zhang et al., 2017; Zhang et al., 2021b). All
samples were previously screened for A. fumigatus growth as part
of those studies on agar plates with and without triazole
supplementation (Tables 1, 2). For the sexual crossing
January 2022 | Volume 11 | Article 785157
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experiments samples from six flower bulb waste stockpiles were
selected that originated from different parts or stages of the
composting heap that all showed triazole-resistant A. fumigatus
growth and one sample was selected that showed no A. fumigatus
growth. For the direct detection and visualization of ascospores
in flower bulb waste material eight samples were selected that all
showed significant triazole resistant A. fumigatus growth after a
one-hour heat shock at 70°C. A. fumigatus isolates AfIR974 and
AfIR964 from (Sugui et al., 2011) were used to set up
sexual crosses.

Heat Shock Survival
It is assumed that conidia are heat sensitive and do not survive a
70°C heat shock of one hour, while ascospores can survive such a
heat shock. To test this, we determined the survival of conidia
(asexual) and ascospores (sexual) after a 70°C heat shock in flower
bulb waste material and in saline solution. Conidial suspensions
were made from an orange color mutant A. fumigatus isolate
(Schoustra et al., 2019b) and ascospore suspensions were made
from ascospores harvested from a cleistothecia from a standard
crossing (oatmeal agar) of A. fumigatus isolates AfIR974 and
AfIR964 (16 weeks old culture). Suspensions were counted and
different dilutions were prepared to be added to either 1 gram of
sterilized waste material in 9 ml saline solution (8% NaCl in
MilliQ) or directly added to 9 ml saline solution only. Due to the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
different color of conidia (orange) in contrast to ascospores (green)
both dilutions could be combined and because of different
expected heat survival rates the following number of spores were
used; 103, 104, 105, 106 or 107 for conidia and 102, 103 or 104 for
ascospores. The different suspensions were tested in duplicate,
heat shocked for 24 hours at 70°C in a water bath and 50 µl of the
suspension was plated out at 0, 1, 2, 4, 6 and 24 hours on a Malt
Extract agar plate at 37°C for 48 hours and colony forming units
(CFU) were counted. Measurements of the viability of the
ascospores was calculated via CFU count on the plate divided
by hemocytometer count and the effect of orange mutant spore
color on conidial survival upon heat was also tested. Due to the
heat resistant nature of ascospores an even longer heat shock was
additionally performed on 104/ml ascospore suspensions.
Suspensions were heat shocked in either of 1 gram of sterilized
waste material in 9 ml saline solution (wet heat shock) or directly
in sterilized waste material (dry heat shock) for up to 7 days and 50
µl was plated for counting CFU on a Malt Extract agar plate at
37°C for 48 hours on day 1, 2, 3, 4 and 7.

Direct Detection and Visualization of
Ascospores in Flower Bulb Waste Material
To demonstrate that A. fumigatus can undergo a sexual cycle in
flower bulb waste, microscopic examination for the presence of
ascospores was performed on selected samples. For this, a flow-
TABLE 1 | Sample characteristics of selected flower bulb waste material samples for sexual crossing experiments from (Zhang et al., 2017; Zhang et al., 2021b).

Sample Farmer Type of sample Weight
(grams)

Aspergillus fumigatus growth

No azole CFU/
gr

TEB (4mg/l) CFU/
gr

ITR (4mg/l) CFU/
gr

1 A Mature flower bulb compost 3.0-4.0 426 320 240
2 A Flower bulb waste on agricultural

field
1.5-2.0 400 300 0

3 A Mature flower bulb compost 2.0-3.0 1,600 1,600 1,600
4 A Top of flower bulb waste heap 2.0-3.0 44,700 4,000 4,400
5 A 1m inside flower bulb waste heap 1.5-2.0 515,000 410,000 350,000
H4 D 0.5 m inside flower bulb waste heap 2.0-3.0 560,000 515,200 43,000
45 C Fresh flower bulb waste material 5.0-6.0 0 0 0
January 2022 | Volume 1
TEB, tebuconazole; ITR, itraconazole; CFU, colony forming units.
TABLE 2 | Sample characteristics of selected waste material samples with Innosieve grid detection results of ascospore detection.

Sample Farmer Type of sample Aspergillus fumigatus growth Ascospore count

No azole CFU/
gr

TEB (4mg/l) CFU/
gr

ITR (4mg/l) CFU/
gr

32 A Residual flower bulb material 600,000 600,000 600,000 5
54 B Flower bulb material 600,000 600,000 600,000 0
55 C 1m inside flower bulb waste heap 1,000,000 400,000 340,000 3
61 C 1m inside flower bulb waste heap 950,000 950,000 950,000 0
62 C 1m inside flower bulb waste heap 980,000 980,000 980,000 0
74 C 1m inside flower bulb waste heap 1,200,000 1,100,000 1,100,000 0
78 C 1m inside flower bulb waste heap 1,100,000 400,000 430,000 4
82 C Before turning flower bulb heap, 1m

inside
760,000 22,000 13,000 4
TEB, tebuconazole; ITR, itraconazole; CFU, colony forming units.
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https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zhang et al. A Natural Niche for the Sexual Cycle in Aspergillus fumigatus
through method for rapid capture and detection of
microorganisms was used that has been developed by Innosieve
Diagnostics BV® (Wageningen, The Netherlands). This method
relies on three steps; 1) sample preparation that ensures separation
of microbes from clogging agents in the sample, 2) filtration and
subsequent retainment of microbes on a dedicated membrane and
staining, and 3) optical automated scanning of the membrane for
the presence of specific microbes using a MuScan™ device and
MuScan™ Image Analysis software for microbe location and
number. This approach had been shown successful for the
detection of Salmonella enterica in milk samples (Nguyen et al.,
2015) and fungal spores in greenhouses, but required optimization
for detection of A. fumigatus ascospores in compost. For A.
fumigatus a specific staining was developed to distinguish
conidia from ascospores, with a green dye that stained A.
fumigatus conidia (Solophenyl Flavine 7GFE500) (Hoch et al.,
2005) and a red dye (Innosieve Buffer F, IP rights by of Innosieve
BV®) that stained A. fumigatus ascospores. The protocol was
tested for -reactivity using fungal species that can be expected in
flower bulb waste and have a similar spore size to A. fumigatus,
including Botrytis cinerea, Penicillium species, Alternaria solani
and Fusarium graminearum (see Table S1). For the MuScan™

software to correctly judge the size and shape of A. fumigatus
spores, a microsieve grid was spiked with either conidia or
ascospores. Scanning Electron Microscopy (SEM; Electron
Microscopy Centre, Wageningen University and Research
Centre) was used to confirm size differences and structures of A.
fumigatus conidia and ascospores. The samples were mounted on
a SEM stub by carbon adhesive glue (EMSWashington USA) and
subsequently coated with 12nm Tungsten (Leica MED 020).
Samples were analyzed at 2 KV, 6 pA, in a field emission SEM
(Magellan 400, FEI, Eindhoven, the Netherlands). After full
optimization and validation of the A. fumigatus grid-based
detection in soil samples, eight independent flower bulb waste
samples that showed A. fumigatus growth after heat shock from
the previously published longitudinal study were analyzed (Zhang
et al., 2021b).

Sexual Crosses Using Flower Bulb Waste
Material as a Nutrient Source
In this study two sexual crossing experiments were set up on
flower bulb waste agar plates and in flower bulb waste tubes. For
the flower bulb waste agar plates, petri dishes (15 cm) were filled
about half with autoclaved waste material and 15 ml of 2%
agarose water medium and left to solidify with the top surface
just covered by the agar. Per waste sample three plates were made
and the total weight of waste material per petri dish was recorded
for each plate before adding the 2% agarose water medium
(Table 1). For the waste material tubes, 2 grams of sterilized
waste material of sample #5 was used but now directly put into
sixteen glass tubes without the addition of any agarose water
medium. The agar plates and glass tubes were inoculated with the
so called super-mater A. fumigatus isolates AfIR974 and AfIR964
that can undergo a relatively fast sexual cycle by showing sexual
fruiting bodies or cleistothecia after about roughly six weeks of
incubation at 30°C in the dark (Sugui et al., 2011). Inoculation
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
was done by adding 1 µl of a spore suspension of either mating
types of AfIR974/964 of 1*105 conidia/ml in four sectors of the
agar plates as described by O’Gorman et al. (2009). In the waste
material tubes, 50 µl of 1*107 conidia/ml of a mixture of the
isolates AfIR974 and AFIR964 were inoculated by pipetting on
the inner sides of the glass tube with the intention to make future
cleistothecia visible for inspection from the outside of the glass
tube during incubation. Plates were sealed with parafilm and
both plates as well as the glass tubes were incubated at 30°C in
the dark.
RESULTS

Heat Shock Survival
Different concentrations of conidia and ascospores were tested
for survival of a 70°C heat shock. Suspensions were made in
flower bulb waste material solutions to resemble the
circumstances of a stockpile. To observe if the nature of the
matrix or liquid suspension influences the exposure and effect to
the heat shock; saline solutions only were compared with saline
solution with flower bulb waste material as well as a dry sample
of flower bulb waste material only. Conidia showed an expected
100% viability by direct plating of the samples at timepoint 0.
While ascospores, that are known not to exhibit a 100% viability,
show for this crossing a 25% viability. For conidia, >99.9% were
killed within the first hours of the heat shock (Figure 1). At one
and two hours few viable conidia were counted from the highest
concentration of spiked samples corresponding with less than
0.0004% survival. All samples taken after two hours of heat shock
showed no growth and all conidia both in waste material as well
as in saline were killed (Figure 1). An additional experiment was
performed to identify whether the color of A. fumigatus has an
effect on the survival upon heat and showed that all orange and
green conidia were killed after one hour with no significant
differences (data not shown). The ascospores spiked samples
showed growth even after 24 hours of heat shock (Figure 1). The
survival of ascospores but not conidia of a 24-hour heat shock at
70°C was confirmed in our experiments, yet the survival
dynamics at such high temperature heat shock is not known,
therefore an additional heat shock experiment was done on
ascospore solutions only and now for up to seven days
germination of A. fumigatus in flower bulb waste material
solutions as well as in dry flower bulb waste material, better
resembling the circumstances of a compost heap. These results
showed that with an inoculum of 104/ml ascospores in 10 ml of
saline, flower bulb waste material solution or dry flower bulb
waste material, the ascospores remained viable at least up to four
days of heat shock, but not longer than seven days
(Figures 2, S1).

Direct Detection and Visualization of
Ascospores in Flower Bulb Waste Material
Using the flow-through method for capture and detection of
ascospores, a microsieve grid was spiked with conidia and
ascospores of A. fumigatus to correctly apply the MuScan
January 2022 | Volume 11 | Article 785157
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software for spore detection. SEM was performed on one of the
ascospore spiked grids as shown in supplemental Figures S1A,
B, as well as on a grid with flower bulb waste material after
sample preparation (Figures S2C, D). SEM itself is not effective
for identifying ascospores in waste material because the waste
material is too dense for single spore detection from the surface
only (Figure S2D). The SEM image showed a thick layer of
material that precluded single particle identification. By using a
fluorescent fungal staining, however, the MuScan system is able
to identify both conidia as well as ascospores specific for A.
fumigatus within the layer of waste material (Figures 3A, B).
Cross reactivity testing was performed using fungal species
expected in flower bulb waste material and with similar spore
size compared to A. fumigatus. Some of these species stained
positive for the green dye yet could easily be distinguished from
A. fumigatus by the MuScan software based on the size of these
spores. For the red dye only the ascospores of A. fumigatus
stained positive. All eight samples tested positive for A.
fumigatus conidia with the specific green staining and
corresponding size, four of these eight samples also tested
positive for A. fumigatus ascospores, with three to five
ascospore structures per sample (Table 2). The ascospores
stained had the expected size, and a surface with two
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
equatorial crests, consistent with A. fumigatus ascospores
(Table 2 and Figures 3A, B).

Sexual Crosses Using Flower Bulb Waste
Material as a Nutrient Source
On one of 21 plates, cleistothecia were visible as quickly as after
three weeks of incubation with flower bulb waste material
(number #5). Fifteen white yellowish cleistothecia were
observed in total on this plate. In contrast to regular oatmeal
agar plates (where cleistothecia are visible on the barrage zone of
two mating types), cleistothecia produced on the waste material
agar plates were only visible in limited spots and not throughout
the whole barrage zone (Figure 4A). We then inoculated
AfIR974 and AFIR964 A. fumigatus isolates in flower bulb
waste material (sample #5) in glass tubes without water agar to
more closely mimic conditions in stockpiles. After three weeks
we observed the presence of cleistothecia in 50% (8/16) of the
glass tubes. In total, we observed 17 cleistothecia, either via visual
inspection or through a stereo microscope and it cannot be
excluded that more cleistothecia were present but remained
undetected (Figure 4B). For both a waste material agar plate
and a waste material tube one cleistothecium was picked up and
crushed by using a needle inside an Eppendorf tube. A drop of
FIGURE 1 | Percentage survival of spiked ascospore and conidial after 70°C heat shock of 1h, 2h, 4h, 6h, 24h. The datapoints represent colony counts of single
measurements of biological duplicates and depicted is the mean +/- SEM as indicated with the error bars. Both A. fumigatus ascospores and conidia were spiked at
different concentrations ranging from 103 to 107 for conidia and 102 to 104 for ascospores in either saline (left panels) or flower bulb waste material (right panels). Percentage
survival is depicted for ascospores (upper panels) and conidia (lower panels) and show clear differences; while conidia cannot survive a one-hour heat shock, ascospores
are initially decreased after the first one-hour heat shock but especially for the spiked ascospores in flower bulb waste material, germination is rising back again to the initial
levels that were detected before the start of the heat shock. The initial peak of viability in the two upper panels is due to condia attached to the fruiting body wall.
January 2022 | Volume 11 | Article 785157
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the ascospore suspension was screened under a light microscope
and both cleistothecia showed typical ascospore phenotypes with
two equatorial crests together with occasional intact asci
(Figures 4C, D). After a 24 hours heat shock of the ascospore
suspension at 70°C, 50 µl was plated and A. fumigatus colonies
grew on a Malt extract agar plate after 48 hours of incubation at
37°C, thereby confirming to be viable ascospores.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
DISCUSSION

We provide evidence for an active sexual reproduction of A.
fumigatus in natural substrate in the environment, i.e. flower-
bulb waste. Our observations are supported by laboratory
experiments that confirm that A. fumigatus can form
cleistothecia with viable ascospores in flower bulb waste
FIGURE 2 | Ascospore growth after several days of heat shock at 70°C, datapoints represent colony counts of single measurements of biological duplicates and
depicted is the mean +/- SEM as indicated with the error bars. With an initial inoculation of 104 ascospores in saline (left) and flower bulb waste material (right), about
250 CFU are detected after 24 hours of heat shock. Ascospores show germination up to 4 days of continuous heat shock but not after seven days of heat shock.
FIGURE 3 | Innosieve grid detection by using an A. fumigatus specific fluorescent staining, the MuScan camera is able to identify both conidia (green fluorescence,
A) as well as ascospores (red fluorescence, in white circle, A and enlargement B) within the dense layer of a flower bulb waste material (sample #78).
January 2022 | Volume 11 | Article 785157
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material. A first indication for sexual reproduction of A.
fumigatus in the environment was an observation made during
investigation of dynamics of A. fumigatus triazole-resistant
phenotypes in flower bulb waste heaps with and without
triazole fungicide residues. After heat shock of samples
obtained from both heaps A. fumigatus colonies were
recovered, while we assumed that all Aspergillus conidia would
not survive such heat exposure. Furthermore, microsatellite
typing of these colonies showed a high genetic diversity, that is
not consistent with (clonal) asexual reproduction but could point
towards sexual reproduction (Zhang et al., 2017). Although
several attempts were made prior to this study to identify and
make cleistothecia or ascospores visible in flower bulb waste
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
material, we were unsuccessful due to technical limitations. In
this study however, we successfully used an optically flat micro
engineered membrane, developed by Innosieve Diagnostics BV®

to detect and selectively capture A. fumigatus ascospores in
flower bulb waste material.

Although a 70°C heat shock has been shown to be highly
effective to kill Aspergillus conidia, we were concerned that the
matrix used, i.e. degrading flower bulb waste material, may
reduce killing efficacy and post-heat shock regrowth could be
due to surviving conidia rather than ascospores. This is
confirmed by the saline only ascospore spiked samples that
showed a lower germination rate after 24 hours of heat shock
compared to flower bulb waste material spiked samples. The
FIGURE 4 | Visual and microscopic detection of cleistothecia formed on flower bulb waste material. The petri dish crossing showed limited and patch like growth
within the middle of the patch two visible cleistothecia (A, red arrows). In the glass tube a cleistothecia was visible by visual inspection from the outside of the tube
(B, red circle). Cleistothecia were crushed and the suspensions showed typical ascospore phenotype by microscopic inspection with two equatorial crests (C, red
arrows) together with occasional intact asci (D, red arrow) confirming a successful sexual crossing of A. fumigatus on sample #5 flower bulb waste material.
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flower bulb waste material therefore does provide a buffering
effect to the heat shock on conidia. As Figure 1 bottom graphs of
conidia spiked saline or waste material shown, we confirm that a
one-hour heat shock is effective to eliminate >99.9% of the
conidia, but not all. This is something to consider when
experimentally investigating survival of ascospores. Additional
experiments showed that ascospore survival occurs even after a
heat shock as long as 96 hours. It will be interesting to test
whether these results are true for all A. fumigatus crosses or
whether the genomic background of the parental isolates can
affect these outcomes (Swilaiman et al., 2020). The isolates used
in this study, AfIR974 and AfIR964, are natural isolates collected
from the environment in Ireland and therefore could mimic a
realistic, natural crossing. Another parameter to consider, that
was not tested for in this study, is the maturity of the cleistothecia
that is known to affect viability of ascospores (Sugui et al., 2011).
Ascospore viability can increase with the age of the cleistothecia
starting at 17% at four weeks up to 95% at 20 weeks.

Finally, proof of flower bulb waste stockpiles as natural niche
for sexual reproduction of A. fumigatus is shown with the results
from the Innosieve® grid-based detection. Where SEM analysis
cannot be performed on the dense waste material, a solid phase
cytometry sample preparation combined with a fluorescent fungal
staining did confirm the presence of ascospore structures in four
of eight waste material samples. Even though it was technically not
possible to culture and identify the observed ascospores as A.
fumigatus, these findings together support the occurrence of sex in
A. fumigatus in flower bulb waste. We then tested whether flower
bulb waste material can provide the required nutrients and
triggers to induce a sexual cycle in A. fumigatus. O’Gorman et
al. showed that A. fumigatus is able to undergo sexual
reproduction after six months of incubation on parafilm sealed
oatmeal agar at 30°C in the dark, while crosses using other media
including 2% MEA (Oxoid), Czapek Dox agar and Aspergillus
complete medium failed. Since then, many studies replicated these
results including our laboratory by specifically using A. fumigatus
isolates AfIR974 and AfIR964 from Sugui et al. (2011).
Cleistothecia can be visible within four weeks in all cases using
oatmeal agar as nutrient source. In this study, we show that a
different nutrient source than oatmeal can induce a sexual cycle,
namely samples from agricultural flower bulb waste stockpiles.
Cleistothecia were visible as quickly as three weeks after
inoculation of the mating isolates, showed the typical ascospores
upon crushing the fruiting bodies and also germinating after heat
shock of 70˚C. In our study only one of seven samples of flower
bulb waste material was successful in inducing a sexual crossing.
Sexual crossing was most frequent when inoculated in a glass tube
(50%), which could be due to three-dimensional access to
nutrients, compared to a flat (waste material) agar plate (<5%
cleistothecia formed). Additional experiments have been
conducted with other flower bulb waste material samples that
we collected at a later time point. Again, we were able to induce
sexual crosses on some of the flower bulb waste material samples
but not all, and therefore it seems that due to the heterogenic
composition offlower bulb waste material samples batch-to-batch
differences are present (data not shown).
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So why are flower bulb waste stockpiles beneficial for A.
fumigatus to undergo sexual reproduction? The possible
explanations are that (1) flower bulb waste provides favorable
conditions for sex; several key factors for sexual reproduction
under laboratory conditions that have been identified seem to be
present in flower bulb waste. Stockpiles of flower bulb waste
represent a multi-organic resource with inside the heap a warm,
dark, low oxygen/high CO2 environment. A. fumigatus isolates
show a 50/50 balancing selection of the mating type genes
(Paoletti et al., 2005; Swilaiman et al., 2020), which makes the
chance of finding an opposing mating type in flower bulb waste
stockpiles very likely. In addition, it is believed that
environmental changes affect the switching between asexual and
sexual reproduction. It has been argued that in many fungi, sex
occurs at the end of the growing season when the conditions for
somatic growth become adverse and at this moment the cost of
sex is low (Chamberlain et al., 1997; Aanen and Hoekstra, 2007).
Hence, a dynamic composting process with temperature
gradients (20-70°C) and gas changes might provide suitable
environments to undergo sex. (2) Sex could provide benefits for
the survival of A. fumigatus in the flower bulb waste stockpiles.
During the sexual cycle heat-resistant thick walled ascospores are
produced that can cope with unfavorable conditions. Many
planktonic organisms produce ‘resting’ stages by sexual
reproduction when the environmental conditions deteriorate,
such as Daphnia (Alekseev and Lampert, 2001) and in plants,
seeds can survive unfavorable conditions as well (Maynard-
Smith, 1978). In fungi, the outcome of sexual reproduction is
most often resting spores that are used to survive in extreme
conditions and to spread. For example, the dormant ascospores of
Neurospora are activated by fire, and then start to germinate
(Henney and Storck, 1964; Macfarlane, 1970). All resting spores
are thickly encysted in order to survive through stressful times. In
A. fumigatus, the sexual ascospores have a thick cell wall and the
capacity to survive adverse conditions, while asexual spores are
destined to germinate quickly or to act as fertilizing agents
(spermatia) (Chamberlain et al., 1997; Aanen and Hoekstra,
2007; Kwon-Chung and Sugui, 2013). Related to this ecological
specialization is the tendency of sexual reproduction to be
induced when the environments are harsh. In response to the
dynamic but harsh composting environment, A. fumigatus could
increase its survival rate via sexual reproduction. Sexual
reproduction also generates genetically variable genotypes via
recombination between parental alleles. Sex can speed up
adaptation and eliminate deleterious mutations much more
efficiently compared with asexual growth (Bell, 1982; Camps
et al., 2012; Losada et al., 2015). Therefore, highly diverse
ascospores enhance the survival rate of a fungus and can
maximize its success in changing environments. A changing
environment can for example be a triazole containing waste
heap, where triazole containing flower bulb waste is regularly
added. Via sexual recombination, the resistant allele can be re-
shuffled and may generate new variable resistance genotypes that
may be better adapted to the changing triazole environment. Our
previous work showed experimental crosses of two resistant TR46
isolates producing progeny harboring the triple TR46, which
January 2022 | Volume 11 | Article 785157
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conferred an increased triazole resistance phenotype compared
with the ancestors (Zhang et al., 2017). Even though we did not
show the azole resistant haplotypes arise as a consequence of sex
in this flower bulb waste, in any environment with triazole
pressure and an active sexual cycle favorable new offspring
genotypes can be selected.

In this study, we provide evidence that flower bulb waste is a
natural niche for A. fumigatus to undergo a sexual cycle, which to
date had only been observed under laboratory conditions. Our
observation was supported by successful crosses using flower
bulb waste samples as a nutrient under laboratory conditions.
Recombination of A. fumigatus as observed in the population
structure can now be explained by active sexual recombination in
nature. Furthermore, our observations may provide an
explanation for the development of TR-based triazole
resistance mutations in the environment.
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