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ABSTRACT

Accurate prediction of promoters is fundamental to
understanding gene expression patterns, where con-
fidence estimation is one of the main requirements.
Using recently developed transductive confidence
machine (TCM) techniques, we developed a new pro-
gram TSSP-TCM for the prediction of plant promoters
that also provides confidence of the prediction. The
program was trained on 132 and 104 sequences and
tested on 40 and 25 sequences (containing TATA
and TATA-less promoters, respectively) with known
transcription start sites (TSSs). As negative training
samples for TCM learning we used coding and intron
sequences of plant genes annotated in the GenBank.
In the test set of TATA promoters, the program cor-
rectlypredictedTSSfor35outof40 (87.5%)geneswith
a median deviation of several base pairs from the true
site location. For 25 TATA-less promoters, TSSs were
predicted for 21 out of 25 (84%) genes, including
14 cases of 5 bp distance between annotated and pre-
dicted TSSs. Using TSSP-TCM program we annotated
promoters in the whole Arabidopsis genome. The
predicted promoters were in good agreement with
the start position of known Arabidopsis mRNAs.
Thus, TCM technique has produced a plant-oriented
promoter prediction tool of high accuracy. TSSP-TCM
program and annotated promoters are available at
http://mendel.cs.rhul.ac.uk/mendel.php?topic=fgen.

INTRODUCTION

The RNA polymerase II (Pol II) promoter is a key region that
regulates differential transcription of protein coding genes.
The gene-specific architecture of promoter sequences makes
it extremely difficult to devise a general strategy for predicting
promoters. Promoter 50-flanking regions are especially poorly
described and understood. They may contain dozens of short

motifs (5–10 bases) that serve as recognition sites for proteins
involved in transcription initiation, and specific regulation of
gene expression. Each promoter has a unique selection and
arrangement of such elements generating a unique pattern of
gene expression. Several reviews of promoter prediction
approaches have been published recently (1–5).

The core promoter is a minimum promoter region that
is capable of initiating basal transcription. It contains the
transcription start site (TSS) and typically spans from �60
to +40 relative to the TSS. Approximately 30–50% of all
known promoters contain a TATA-box located from 45 to
25 bp upstream of the TSS. The TATA-box is apparently
the most conserved functional signal in eukaryotic promoters
and in some cases can direct accurate transcription initiation
by Pol II, even in the absence of other control elements. Many
highly expressed genes contain a strong TATA-box in their
core promoter. However, in some large groups of genes, like
housekeeping and photosynthesis genes, the TATA-box is
often absent, and the corresponding promoters are referred
to as TATA-less promoters. In these promoters, the exact
position of the transcription start point may be controlled
by the nucleotide sequence of the transcription initiation
region (Inr) or the recently found downstream promoter ele-
ment (DPE), which is typically observed 30 bp downstream of
the TSS (3,6).

The region 200–300 bp immediately upstream of the
core promoter constitutes the proximal promoter. The
proximal promoter usually contains multiple transcription
factor binding sites, which are responsible for specific tran-
scription regulation. The distal part of the promoter (usually
known as enhancer/silencer elements) is located further
upstream and may also include transcription factor binding
sites (1,2,4).

The first comprehensive review of the performance of
many general-purpose promoter prediction programs has been
presented by Fickett and Hatzigeorgiou (7). Although their
relatively small test set (18 sequences) had several problems
(8), the results demonstrated that the tested programs can
recognize just �50% of the promoters with a false positive
rate of �1 per 700–1000 bp [for more recent related reviews,
see (2,8,9)]. Ohler et al. (8) used interpolated Markov chains in
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their approach and demonstrated slightly improved promoter
prediction results, although they identified the same 50%
of promoters from the dataset analyzed by Fickett and
Hatzigeorgiou (7), while having one false positive prediction
for every 849 bp. Later, to further improve the accuracy of
eukaryotic promoter recognition, Ohler et al. (10) applied an
approach integrating some physical properties of DNA (DNA
bendability and GC-content) into their probabilistic promoter
recognition system McPromoter and achieved a reduction
of �30% of false positives, compared with a model solely
based on sequence likelihoods. The initial version of our
promoter predictor TSSW (11) had an accuracy of 42%
with a false positive rate 1/789 bp. Another promoter
identification program, Promoter 2.0, was designed by
Knudsen (12) applying a combination of neural networks
and genetic algorithms. Promoter 2.0 was tested on reco-
gnizing promoters in the complete Adenovirus genome
(35 937 bp). The program predicted all the 5 known promoter
sites on the plus strand and 30 false positive promoters. The
average distance between the actual and the closest predicted
promoter was �115 bp. The TSSW program with the threshold
to predict all the 5 promoters produced 35 false positives, but
its average distance between predicted and known TSS was
just 4 bp (2 promoters predicted exactly, 1 with 1 bp shift,
1 with 5 bp shift and the weakest promoter was predicted with
15 bp shift).

The current draft of the human genome sequence provides
the basis for several annotations of genes, both known and
predicted. These annotations, however, do not include pro-
moters. Mapping known expressed sequence tag (EST) and
mRNAs does not help: these sequences are usually 50 incom-
plete. The first attempt to map promoter locations to the chro-
mosome 22 sequence was based on the PromoterInspector
program (13). The program can identify �50% of known
promoters as genomic regions up to 1 kb in length by discrim-
inating them from the exon, intron and 30-untranslated region
(30-UTR) sequences.

Recently, Bajic et al. (14) reported the Dragon Promoter
Finder (DBF) program, which uses sensors for three functional
regions: promoters, exons and introns, and an artificial neural
network. Judging by the authors’ estimates, that approach
has a higher accuracy than three other promoter finding pro-
grams which it was compared: NNPP2.1 (15) (http://www.
fruitfly.org./seq_tools/promoter.html), Promoter2.0 (12) and
PromoterInspector (16). Another tool developed by Down
and Hubbard (17) reported a novel hybrid machine-learning
method capable of predicting >50% of human TSS with a
specificity of >70%.

The methods applied to the long chromosome sequence
(mentioned above) report potential starts of transcription as
regions of �1–2 kb. It is much less precise than the methods
that usually identify promoters within 100 bp and tested on
sequences (�3–10 kb), but the later methods clearly have a
much higher false positive rate when applied to long genomic
sequences. However, we can apply the ‘precise’ approaches to
identify promoters in chromosome sequences if we exclude a
lot of non-promoter sequences, such as known repeats and
internal gene regions (exons and introns). These regions are
identified in genome annotation projects by mapping repeats
and available EST sequences onto a genome or applying
computation gene-finding approaches. After that we can

search for promoters (using precise methods) in sequences
just before the mapped EST or predicted coding regions
(within intergenic space). This avoids scanning the whole-
genome sequence and as a result we achieve an acceptable
level of false positive predictions.

Wasserman et al. (18) have shown that 98% of experi-
mentally defined transcriptional factor binding sites in the
human and mouse orthologous genes, upregulated in the
skeletal muscle, are located in the most conservative regions
confined to 19% of human DNA sequences. We used several
types of conservative blocks to enhance the sensitivity and
specificity of the TSSW algorithm, providing pairs of aligned
orthologous genomic sequences as input data. Recently,
the draft sequence of the mouse genome (19) and a gene
expression map of human chromosome 21 orthologs in the
mouse (20) have been reported. By exploiting conservative
elements in pairs of orthologous genes of human and related
species, the PromH program was developed previously (21).
The program correctly predicted TSS for all 21 genes of the
TATA-promoter test set with a median deviation of 2 bp from
true site location. Only for two genes, there was a significant
(46 and 105 bp) discrepancy between predicted and annotated
TSS positions. For 38 TATA-less promoters from the second
test set, TSS was predicted for 27 genes, in 14 cases within
10 bp distance from the annotated TSS, and in 21 cases within
100 bp distance. While requiring the input of pairs of ortho-
logous sequences, such an approach demonstrated better
accuracy (on rather limited test data) than currently available
promoter predictors annotating single sequences.

However, it is important to improve the accuracy of
promoter prediction on single sequences (due to the frequent
lack of information about sequences of orthologous genes).
Moreover, no promoter prediction tool has been trained and
adapted for plants. In a recent review on in silico promoter
identification (16), the authors investigated the possibility of
predicting promoters based on the detection of CpG/CpNpG
islands in the Arabidopsis genome. They conclude that such
islands do not provide a straightforward indicator of promoter
location, but such features can be used as a component of a
more sophisticated promoter predictor. Here, we investigate
a new learning and discriminative technique called the trans-
ductive confidence machine (TCM), which has been trained
and tested on independent sets of well-known promoters.
The method presented in the paper allows us not just to
make predictions, but more importantly, it also gives valid
measures of confidence in the predictions for each individual
example in the test set. Validity in our method means that if we
set up a confidence level, say, 95%, then we can guarantee
that we are not going to have more than 5 errors out of 100
examples. Moreover, the method is flexible in the sense that it
can be used with almost all known classifiers, such as support
vector machine (SVM), Decision Trees and others. The accur-
acy of the prediction depends on how good the ‘underlying’
classifier is. The method can be applied to high-dimensional
data and requires just one assumption: the examples are
assumed to be independent and identically distributed (the
iid assumption). Some characteristics of promoters such as
the density of functional motifs do not follow normal distri-
bution, which was a limitation of the discriminant analysis
approach we used for promoter prediction in previous
works (11,21).

1070 Nucleic Acids Research, 2005, Vol. 33, No. 3

http://www


MATERIALS AND METHODS

Training and testing sequences

For training and testing procedures, we used 301 promoters
with annotated TSS from PlantProm DB (22). A total of 236
(132 TATA and 104 TATA-less) promoters were taken for
learning and 40 TATA promoters (PlantProm DB IDs:
PLPR0003, PLPR0010, PLPR0011, PLPR0014, PLPR0015,
PLPR0018, PLPR0022, PLPR0024, PLPR0025, PLPR0026,
PLPR0034, PLPR0039, PLPR0042, PLPR0043, PLPR0045,
PLPR0054, PLPR0057, PLPR0062, PLPR0064, PLPR0065,
PLPR0066, PLPR0067, PLPR0071, PLPR0072, PLPR0078,
PLPR0087, PLPR0090, PLPR0091, PLPR0111, PLPR0116,
PLPR0169, PLPR0171, PLPR0176, PLPR0186, PLPR0202,
PLPR0235, PLPR0243, PLPR0253, PLPR0264 and
PLPR0286) (PLPR0001, PLPR0009, PLPR0020, PLPR0027,
PLPR0037, PLPR0075, PLPR0164 and 25 TATA-less
promoters: PLPR0170, PLPR0180, PLPR0182, PLPR0184,
PLPR0189, PLPR0190, PLPR0191, PLPR0193, PLPR0199,
PLPR0200, PLPR0207, PLPR0239, PLPR0242, PLPR0252,
PLPR0254, PLPR0259, PLPR0269 and PLPR0271) were used
for testing. As negative samples (non-promoter sequences),
50 000 sequences from CDS and 50 000 sequences from
introns of plant genes annotated in GenBank were extracted.
The length of all promoter and non-promoter sequences was
351 bp.

Description of the method

Confidence and credibility. Let us assume that we are given
a training set of examples (x1, y1), . . . , (xl, yl), where xi is
a vector of attributes (characteristics described below; see
Table 1) and yi is a label (promoter or non-promoter), and our
goal is to predict the correct label yl+1, . . . , yl+k for a new (test)
set of xl+1, . . . , xl+k. We make only one assumption about the
data generating mechanism: all the examples have been gen-
erated independently by some fixed but unknown stochastic
mechanism (the iid assumption).

The method (called TCM or conformal predictors) is based
on the recently developed (23–26) computable approximation
to algorithmic randomness. To every possible value Y of yl+1,
we estimate the ‘randomness level’ (or ‘typicalness’) of the
sequence (x1, y1), . . . , (xl, yl), (xl+1, Y ) with respect to the iid

model; we can make a confident prediction if and only if
exactly one of these two (in the case of binary classifications)
sequences is typical. The randomness level is a universal
measure of typicalness with respect to the class of iid distri-
butions; if the randomness level is close to 0, it is untypical or
strange (27).

Here, the optimal algorithm for making predictions is
complemented by some measures of confidence and credib-
ility (24,27):

(i) Consider all possible values Y1, . . . , Yk for labels
yl+1, . . . , yl+k and compute the randomness level of
every possible completion

x1‚y1ð Þ‚ . . . ‚ xl‚ylð Þ‚ xlþ1‚Y1ð Þ‚ . . . ‚ xlþk‚Ykð Þ

(ii) Predict the set Y1, . . . , Yk corresponding to the completion
with the largest randomness level.

(iii) Output as the confidence in this prediction one minus the
second largest randomness level.

(iv) Output as the credibility of this prediction the randomness
level of the output prediction Y1, . . . , Yk (i.e. the largest
randomness level for all possible predictions).

If the confidence in our prediction exceeds 99% and the
prediction is wrong, the actual data sequence belongs to an a
priori chosen set of probability <1% (namely, the set of all data
sequences with randomness level <1%). Credibility reflects
how well our new example fits into our training set. Intuitively,
low credibility means that either the training set is non-random
or the test examples are not representative of the training
set (25).

One of the advantages of this newly developed algorithm is
its flexibility: almost all machine learning techniques can be
used for prediction. One way to approximate randomness level
is to use the SVM (24). Consider, for simplicity, the problem
of binary classification with one test example. A SVM maps
the original set of vectors into a high-dimensional feature
space, and then constructs a linear separating hyperplane (or
a linear regression function, in the regression case) in this
feature space. According to the SVM approach (28), we should
select a separating hyperplane with a small number of errors
(or, more generally, a small sum of penalties reflecting the
grossness of errors) and a large ‘margin’ (which can be inter-
preted as the distance from the separating hyperplane to the
nearest vectors).

With every possible label Y 2 f0, 1} (Y = 0 for the positive
samples, TATA or TATA-less promoters, and Y = 1 for the
negative samples, non-promoter sequences) for xl+1, we asso-
ciate the SVM optimization problem for the l + 1 examples
(the training examples plus the test example labeled with Y).
The solutions (Lagrange multipliers) a1, a2, . . . ,al+1, to this
problem reflect the ‘strangeness’ of the examples [ai being the
strangeness of (xi, yi), i = 1, . . . , l and al+1, being the strange-
ness of the (xl+1, Y )]. In other words using Lagrange multipliers
ai, we can approximate from below the randomness deficiency.
This was done in Gammerman et al. (23), where a general
function was introduced for the estimation of confidence and
credibility, while the SVM is used for prediction.

All ai are non-negative and, in practice, only a few of them
are different from zero (the support vectors). An easily com-
putable approximation to the randomness level is given by the

Table 1. Characteristics of promoter sequences used for TATA and TATA-less

promoter recognition and Mahalonobis distance [D2; (32)] showing power of

recognition of each characteristic

Characteristics D2 for TATA
promoters

D2 for TATA-less
promoters

Hexaplets �200 : �45 2.6 1.4 (�100 : �1)
TATA box score 3.4 0.9
Triplets around TSS 4.1 0.7
Hexaplets +1: +40 0.9
Sp1-motif content 0.9
TATA fixed location 0.7
CpG content 1.4 0.7
Similarity �200 : �100 0.3 0.7
Motif Density (MD) �200 : +1 4.5 3.2
Direct/Inverted MD �100 : +1 4.0 3.3 (�100 : �1)

MD is motif density, computed on known promoters; functional motifs were
taken from Plant REGSITE Database (http://softberry.com/berry.phtml?topic=
regsitelist).
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P-values associated with every completion (x1, y1), . . . , (xl, yl),
(xl+1, Y):

#fi : ai >alþ1g
l þ 1

in words, the P-value is the proportion of a’s which are at least
as large as the lasta (23,24). These approximations can be used
to assess the randomness level. ‘Randomness’ as a concept
only makes sense in connection with a given distribution (e.g.
binominal, or iid, etc.). ‘Algorithmic randomness’ is not
computable, and therefore requires some approximation,
and that is what we use to calculate it. We actually operate
not with randomness itself but ‘randomness deficiency’, or
‘strangeness’ and approximate it from below. It is reflected
in P-values we compute in the assumption that the data follow
iid distribution.

So far, we have assumed that the ‘strangeness values’ ais

used to approximate the randomness level are obtained from
the SVM algorithm. However, we can get useful ais from
many other learning algorithms, such as the nearest neighbors,
neural networks, decision trees (24,26).

Features and learning procedures used for recognition. For
the characterization of promoter sequences, we use the
sequence content and signal features that were found in our
previous works as being significantly different in promoter and
non-promoter sequences (11,21). The values of Mahalanobis
distances (D2) of individual characteristics reflect the power of
the feature to separate the signal from non-signal sequences
(Table 1). This analysis demonstrated that TATA-less pro-
moters have weaker general features than TATA promoters.
Probably TATA-less promoters possess a more gene-specific
structure and they will be extremely difficult to predict by any
general-purpose methods. Earlier (11,21) discriminant ana-
lysis was applied to combine these features in the linear dis-
criminant function. In this work, we applied a more powerful
pattern recognition technique that requires just one assump-
tion: the examples are independent and identically distri-
buted. In this study, a package of SVM (freely downloadable
at http://www.clrc.rhul.ac.uk/resources/svmdownloadoverview.
htm) with dot product kernel has been used to train two clas-
sifiers for TATA and TATA-less promoters. We trained our
SVM to distinguish between promoter and non-promoter
sequences using features discussed above. To estimate the
reliablity of the classification produced by SVM, we applied
TCM procedure [described above; for details see also
(24,26,27) and http://nostradamus.cs.rhul.ac.uk/promoters]
to measure the confidence values (P-values) for each of
SVM predictions. As predicted promoters, we selected
those SVM promoter assignments that have the confidence
level >0.95. The TCM procedure also provides a credibility
measure for different predictions. The measure of credibility
provides us with a filter mechanism with which we can ‘reject’
certain predictions. If for any task the consequences of making
a wrong prediction are quite severe, we can choose to reject
those predictions that have a low credibility value associated
with them. The more severe the consequences for making an
incorrect prediction are, the higher we can set the rejection
threshold. In this study, we accepted as promoters the predic-
tions with the credibility level >0.35 for TATA promoters and
>0.65 for TATA-less promoters.

Algorithm of promoter search. The TSSP-TCM program
classifies each position on a given sequence as TSS or non-
TSS based on two support vector classifiers (28) (for TATA
and TATA-less promoters) with dot product kernel function
and eight characteristics calculated in the (�200, +50) region
around the current position. If a TATA-box weight matrix
gives a score higher than some preliminary defined threshold
in the region (�40, �25) from the current position, then the
credibility value (23,24) of this position is estimated based
on the classifier for TATA promoters; otherwise, it will be
estimated by the classifier for TATA-less promoters. Optimal
thresholds of credibility value for TATA and TATA-less pro-
moters (0.35 and 0.65, respectively) have been defined on the
training dataset. For any pair of predicted TSS, located within
300 bp of each other, only the one with the highest credibility
value is retained.

RESULTS AND DISCUSSION

Testing of the method

The learning and testing procedure was repeated 40 times for
both TATA and TATA-less promoters (20 computations with
negative samples from CDS and 20 computations with negative
samples from introns). In every such training and testing pro-
cedure, randomly created sets of 1000 non-promoter sequences
and the same known 40 TATA and 25 TATA-less promoters
were used. Accuracy of recognition is presented in Table 2.

We observe very good accuracy of recognition of promoter
and non-promoter sequences taking into account that the
best promoter recognition programs have an accuracy of
�50–70%. Interestingly, for TATA and TATA-less promoters
the error rate of testing promoter and non-promoter sequences
of 351 nt length is higher when using negative samples from
introns and CDSs, respectively.

The real task of promoter prediction is slightly different
from just discriminating between promoter and non-promoter
regions. We should try to identify the most probable promoter
location in a long genomic sequence. For testing our recog-
nition function on genomic sequences, we used the same
40 genes with an annotated TATA promoter and 25 genes
with an annotated TATA-less promoter by analyzing their
known upstream regions. The length of these sequences
was 1000 bp or more (including upstream to CDS region
plus 30 bp of CDS). The total length of the 40 and 25 genomic
sequences mentioned was 75 259 and 42 556 bp, respectively.

TSSW (11) and TSSP-TCM programs classify each position
on a given sequence as TSS or non-TSS based on two linear
discriminant functions (for TATA and TATA-less promoters)
with eight characteristics calculated in the (�200, +50) region
around the current position. If the TATA-box weight matrix
gives a score higher than some preliminary defined threshold
in the region (�40, �25) from the current position, then that
position is classified based on the score for TATA promoters,
otherwise it will be classified by the score for TATA-less
promoters. For any pair of predicted TSS, located within
300 bp of each other, only the one with the highest score is
retained, except for one case: if a lower scoring position is
predicted as TATA-less promoters near a higher scoring
position predicted as TATA promoters, then the first position
is also retained as a potential promoter region. In the case of
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prediction of more than one promoter (TSS) with a high score
and if the CDS start is known, the TSS closest to the CDS start
was assumed as a predicted promoter. However, of course, it
might be the choice of the user.

Testing for genomic sequences was performed by using
training with negative samples from both CDSs and introns
(Table 3). However, comparing the results of both approaches,
we revealed that training on non-promoter sequences from
introns gives the best test results in the sense of both false
positives and false negatives. It seems reasonable because
upstream promoter regions are non-coding DNA that is very
similar to intron DNA. Therefore, we will discuss further the
use of the training ‘experience’ obtained with intron sequences.

For 35 of the 40 TATA promoters (87.5%) and 21 of the 25
TATA-less promoters (84%), a TSS very close to the known
one was predicted (Table 3). For 29 TATA promoter genes of
the 35 (72.5%), the distances between the known and nearest
predicted TSS were 0–5 bp. The distribution of predicted
TSS around real TSS is shown in Figure 1. For 14 TATA-less
promoter genes (56%), the distances between the known and
nearest predicted TSSs were 0–5 bp (Figure 2). It is interesting
that the TSSP-TSM program managed to identify the TATA-
less promoter relatively well in spite of the absence of the
major TATA-box signal. It is achieved in our model due to
significant input in the recognition from many other features of
promoter regions. Some of them are specific for TATA-less
promoters (such as hexaplet composition of +1 to +40 region
and Sp1 motif content) and they probably compensate for the
absence of a TATA-box.

Our results indicate that the TCM technique can be success-
fully applied to combine complex features of promoter
sequences and to design an accurate promoter identification
program. According to our estimations based on the latest
(May 2003) annotation of the Arabidopsis genome (GenBank
accession nos NC_003070, NC_003071, NC_003074,
NC_003075 and NC_003076), a gene density in the genome
is �4.4 kb per gene for 16 811 genes supported by cDNAs and
EST, and �7.1 kb per gene for all 27 128 genes. Therefore,
upstream regions of genes should be �1–4 kb and the deve-
loped approach, having a true prediction rate �85% and one
false positive prediction in �4000–5000 bp, can be used
for the annotation of promoter regions in plant genomes. Pro-
moter candidates generated in this way can be further verified

Table 2. Statistics of testing procedure for 40 TATA and 25 TATA-less

promoter sequences of 351 bpa

Promoter type Accuracy of discrimination Negative
samples from
CDSs (%)

Negative
samples from
introns (%)

TATA Mean prediction error for
positive samples (%)

7.4 3.5

Mean prediction error for
negative samples (%)

6.0 8.7

TATA-less Mean prediction error for
positive samples (%)

18.6 14.0

Mean prediction error for
negative samples (%)

16.9 29.5

aA total of 40 various sets of 1000 negative samples of the same length (351 bp),
randomly chosen from CDSs (20 sets, totally 20 000 sequences) and introns
(20 sets, totally 20 000 samples) of known plant genes. Confidence and
credibility levels were >0.9 (90%) and >0.06 (6%), respectively.

Table 3. Accuracy of prediction by TSSP-TCM on genomic sequencesa

Statistic characteristics For 40 TATA
promoters

For 25 TATA-less
promoters

False negatives 5 4
False positives 14 9
False positives’ density 1 per 5375 bp 1 per �4720 bp

aThe confidence level for the prediction of both promoter classes was 95%
or higher. The credibility level was >35% for TATA promoters and >60%
for TATA-less promoters. For every class of promoters only one predicted
TSS with the highest credibility level in an interval of 300 bp was taken.
TATA and TATA-less promoters predicted were separately estimated by
this statistical criterion.
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experimentally. Taking into account that currently we have
just several hundred experimentally tested promoter
sequences, the TSSP-TCM program may be of considerable
value for molecular biologists in deciphering the regulation of
genes encoded in sequenced genomes or in interpreting the
results of expression profiling.

The search for promoters in the genome of
Arabidopsis thaliana

Annotations of five chromosomes of A.thaliana (May 2003;
GenBank accession nos NC_003070, NC_003071,
NC_003074, NC_003075 and NC_003076) include 27 128
genes, where 16 811 of them have known cDNA/mRNA.
For testing the TSSP-TCM program on the genome level,
we selected 13 350 (out of 16 811) genes that have known
mRNA with 50-UTR > 20 bp. For every such gene, a region
(P � L, P + 30 bp) around the annotated CDS (started from
position P) was taken into search for promoters. L was the
distance to the previous gene or 5000 bp, if that gene is located
further than 5000 bp. If the length of upstream region was
<350 bp, than L = 350 bp was taken. The summary of promoter
search results is presented in Table 4.

By analyzing the location of TSS positions predicted by
TSSP-TCM (Figure 3), we could observe a very profound
peak near the start positions of known transcripts. Some dis-
crepancies here might appear due to non-complete sequencing
of mRNA 50 ends. It often happens that some number of
nucleotides is absent on both 50 and 30 ends of mRNA gen-
erated by cDNA sequencing. If we consider shorter intervals
(Figure 4), then we can see that the most often predicted pro-
moters are located within 1–10 bp of the putative mRNA start.
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Table 4. Summary of promoter prediction for 13 350 mRNA supported genes

of A.thaliana

Analyzed 13 350 genes
At least, 1 promoter found 9653 (72.3%) genes
At least, 1 TATA promoter found 6141 (46.0%) genes
At least, 1 TATA-less promoter found 6717 (50.3%) genes
The predicted TATA promoter is the

closest to the annotated mRNA start
4465 (46.3%) genes

The predicted TATA-less promoter is the
closest to the annotated mRNA start

5188 (53.7%) genes

Total length of analyzed sequences 27 709 288 bp
Total number promoters predicted 17 717
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Taking this into account, we have observed a very good
agreement between the predicted locations and the locations
of TSSs supported by mRNA. It prompted us to annotate the
promoters in the whole genome of Arabidopsis using regions
upstream of the annotated first coding exons.

The set of predicted promoters for 18 601 genes (out of
27 128 annotated ones) in the whole genome is presented
at our plant genomic server (http://mendel.cs.rhul.ac.uk/)
and might be used for further verification and experimental
studies of the regulation of plant genes. To date Arabidopsis
[(29); GenBank accession nos NC_003070, NC_003071,
NC_003074, NC_003075 and NC_003076] and rice (30,31)
genome sequences are available. Besides, several new plant
genome sequencing projects (such as Populus trichocarpa,
Lycopersicon esculentum, Zea mays and Medicago truncatula)
are underway. It is impossible in the near future to investigate
their genes and promoters by experimental techniques. The
computational methods help to speed up this process. Pro-
moter prediction generates a set of probable candidates, mak-
ing it possible to avoid the initial testing of thousands of
potential genomic fragments. Having cDNA libraries an
alternative strategy to identify promoters would be to align
full-length cDNA sequences to the genome sequence. How-
ever, most cDNA clones do not extend to the TSS. It is estim-
ated that only 50–80% of cDNA extend to the TSS, making it
unreliable to base conclusions on individual cDNA alignments
(10). TSSs can be located thousands of bases upstream of CDS
regions of a gene. Therefore, approximate gene location by
prediction of coding exons or mapping known cDNA
sequences does not provide enough precise localization of
TSS for experimental study. However, having annotated cod-
ing exons we can limit promoter search to intergenic regions
and apply our promoter prediction software to annotate pro-
moters in the whole genome. Owing to the much better pre-
diction accuracy of coding genes (compared with promoter
prediction accuracy) we believe that using the initial place-
ment of coding gene regions is a good strategy to reduce
promoter search space. With an average intergenic region
size �2000–3000 bp and false positive rate 1/5000 bp, we
will not generate as many false positives as when running
promoter prediction on whole-genomic sequences. We under-
stand that finding promoters in genomic sequences is far from
being a trivial problem. There are now <1000 experimentally
identified functional motifs of plant origin available for the
development of promoter recognition functions. More accur-
ate approaches will require knowledge of a significantly larger
set of plant regulatory motifs and probably their patterns.
Another problem that limits the development of more accurate
algorithms is the very small number of experimentally verified
plant promoter sequences (�500). It prevents the discovery
of some complex promoter features and their significant
combinations.

Our current predictions can be considered as the first draft of
promoter annotation and as the next step in the characteriza-
tion of genomes using computational tools (in addition to the
sets of computationally derived gene structures that are still
changing, but serve as important resources in genome studies).
Recently, we have developed a new promoter identification
program, PromH, which using pairs of orthologous gene
sequences (human and mouse) significantly improves the qual-
ity of promoter prediction (21). Having several annotated plant

genomes we plan to select their orthologous genes and apply
a plant-specific version of the PromHP program to further
improve promoter annotation.
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