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a b s t r a c t 

Acceleration methods in fMRI aim to reconstruct high fidelity images from under-sampled k-space, allowing 

fMRI datasets to achieve higher temporal resolution, reduced physiological noise aliasing, and increased statis- 

tical degrees of freedom. While low levels of acceleration are typically part of standard fMRI protocols through 

parallel imaging, there exists the potential for approaches that allow much greater acceleration. One such ex- 

isting approach is k-t FASTER, which exploits the inherent low-rank nature of fMRI. In this paper, we present a 

reformulated version of k-t FASTER which includes additional L2 constraints within a low-rank framework. 

We evaluated the effect of three different constraints against existing low-rank approaches to fMRI reconstruc- 

tion: Tikhonov constraints, low-resolution priors, and temporal subspace smoothness. The different approaches 

are separately tested for robustness to under-sampling and thermal noise levels, in both retrospectively and 

prospectively-undersampled finger-tapping task fMRI data. Reconstruction quality is evaluated by accurate re- 

construction of low-rank subspaces and activation maps. 

The use of L2 constraints was found to achieve consistently improved results, producing high fidelity reconstruc- 

tions of statistical parameter maps at higher acceleration factors and lower SNR values than existing methods, 

but at a cost of longer computation time. In particular, the Tikhonov constraint proved very robust across all 

tested datasets, and the temporal subspace smoothness constraint provided the best reconstruction scores in the 

prospectively-undersampled dataset. These results demonstrate that regularized low-rank reconstruction of fMRI 

data can recover functional information at high acceleration factors without the use of any model-based spatial 

constraints. 
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. Introduction 

fMRI is a non-invasive, whole-brain functional imaging technique

hat suffers from a trade-off between temporal and spatial resolution. Ac-

eleration aims to increase the temporal resolution without loss of spa-

ial resolution through higher sampling efficiency in conjunction with

dvanced image reconstruction that leverages additional information

nd/or constraints. By providing increased temporal degrees of freedom

n a given scan duration, acceleration can: improve sensitivity to tempo-

al features of the haemodynamic response; reduce physiological noise

liasing; and improve statistical power. Depending on the application,

he increased sampling efficiency garnered from acceleration could also

e used to reduce scan times, or to increase the spatial resolution. 

Various acceleration techniques have been widely adopted for fMRI.

arallel imaging methods rely on the spatial variation of sensitivity pro-

les of multi-channel receiver coils, which provide additional spatial

nformation in image reconstruction. This can occur in the image do-

ain (e.g. SENSE Pruessmann et al., 1999 ) or in the sampling domain
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e.g. GRAPPA Griswold et al., 2002 ). Simultaneous multi-slice imaging

 Setsompop et al., 2012 ; Barth et al., 2016 ) extends these in-plane tech-

iques to accelerate across slices without significant reduction factor

NR penalties when compared to 2D methods, since the under-sampling

an be offset by acquiring more slices (even accounting for the loss

n SNR due to Ernst angle and shorter TR), increasing the achievable

emporal resolution. Parallel imaging is conventionally a timepoint-by-

imepoint approach that does not leverage any temporal information

uring reconstruction. 

Methods that do jointly consider k-space and time are known as k-

 methods and can be broadly separated into three categories: meth-

ds that make a strong assumption about the spatiotemporal structure

 Madore et al., 1999 ; Tsao et al., 2003 ; Huang et al., 2005 ; Yun et al.,

013 ), methods that make a strong assumption about sparsity within

 pre-defined basis set (compressed sensing approaches) ( Lustig et al.,

007 ; Holland et al., 2013 ; Jeromin et al., 2012 ; Zong et al., 2014 ;

havarrías et al., 2015 ), and methods that assume the data fits a glob-

lly low-rank model ( Liang, 2007 ; Chiew et al., 2015 ). There are also

pproaches which combine these methods ( Chavarrías et al., 2015 ;
e 2021 
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edersen et al., 2009 ; Jung et al., 2009 ; Qin et al., 2019 ; Otazo et al.,

015 ; Petrov et al., 2017 ). By focusing on redundancies or structural

eatures in k-t space, k-t methods have the potential for much greater

egrees of acceleration than time-independent methods due to the extra

imension of shared information. 

Compressed sensing approaches use L1-constraint methods to pro-

ote sparsity in reconstruction. These approaches have proven very

ffective in other fields of dynamic MRI reconstruction, but have had

elatively limited adoption in fMRI, likely due to difficulty finding

uitable sparse representations for the relatively subtle BOLD signals.

hile initial exploratory work in compressed sensing reconstruction for

MRI focused on spatial-domain sparse transformations ( Holland et al.,

013 ; Jeromin et al., 2012 ), most recent work incorporating sparsity

ssumptions have focused instead on sparsifying the temporal domain

 Aggarwal and Gupta, 2017 ; Fang et al., 2016 ). Low rank + Sparse

 L + S ) methods ( Otazo et al., 2015 ; Petrov et al., 2017 ), are a recent

et of combined approaches that aim to isolate the functional informa-

ion in the sparse component of the reconstruction ( Singh et al., 2015 ;

ggarwal et al., 2017 ) while capturing the non-sparse background in

he low-rank component. The result of this approach is that the rank in

he L component is kept very low and that the majority of the important

OLD information is in the S component, with PEAR ( Weizman et al.,

017 ) a notable recent example that explored the idea of capturing more

OLD information in the L component. 

An alternative to sparse modelling of the BOLD signals is a conceptu-

lly simpler approach based on a regularized globally low-rank model

f the fMRI data. There is a correspondence between the approaches

hat use training data to estimate a sparse or low-dimensional basis

 Chavarrías et al., 2015 ; Jung et al., 2007 ) and low-rank models, since

ow-rank models by definition have few non-trivial components (i.e. the

ingular value distribution is sparse). However, low-rank models do not

equire prior knowledge of the sparse bases, and instead estimate the

patio-temporal basis representations for the data. The inherent low-

ank nature of fMRI ( Chiew et al., 2015 ), which can be understood as

he combination of a few spatially coherent temporal processes (i.e. ac-

ivation maps that identify voxels with a common time-series), forms

ne such exploitable structure in a k-t representation of the data. In

nalysis of fMRI data, for example, a dimensionality reduction is often

pplied as a pre-processing step ( McKeown et al., 1998 ), which explic-

tly enforces a low-rank representation of the system prior to resting-

tate analysis methods such as independent component analysis (ICA)

 Hyvärinen, 1999 ; Beckmann and Smith, 2004 ; Kiviniemi et al., 2003 ).

arious noise sources (e.g. thermal noise, physiological noise, etc.), mo-

ion, and image artefacts make the system only approximately low rank,

lthough some confounds can also be estimated as low-rank processes

 Salimi-khorshidi et al., 2015 ). 

Globally, low-rank methods can be used to represent space-time data

s a spatial subspace paired with a temporal subspace and associated

eighting factors. The Partially Separable Functions method (k-t PSF)

 Liang (2007) Lam et al., 2013 ) is a data-driven approach that first iden-

ifies a temporal subspace from fully-sampled low spatial resolution

nd high temporal resolution training data, and then uses this to re-

onstruct a high resolution spatial subspace from under-sampled data.

n alternative rank-constrained approach is k-t FASTER (fMRI Acceler-

ted in Space-Time via Truncation of Effective Rank ( Chiew et al., 2015 ;

hiew et al., 2016 ), which jointly identifies the subspaces that best de-

cribe the acquired data. Importantly, the only constraint imposed by

-t FASTER is that of fixed rank. The rank constraint alone is enough

o achieve modest acceleration factors ( Chiew et al., 2015 ), but rank-

onstrained methods may also be combined with coil sensitivity infor-

ation and non-Cartesian sampling ( Chiew et al., 2016 ) for increased

cceleration. 

In addition to the rank and coil sensitivity constraints, other informa-

ion may also be incorporated into the reconstruction. Tikhonov regu-

arization prevents overfitting on the temporal and spatial components,

nd serves as a way to penalize the energy content of the reconstruction.
2 
adial k-space trajectories have a higher sampling density in central k-

pace than peripheral k-space, and so reweighting the low-resolution

-space could allow the reconstruction to be more strongly constrained

n the densely sampled centre of k-space. The importance of central k-

pace more generally in MRI reconstruction has previously been used in

pproaches such as keyhole ( Yun et al., 2013 ), k-t SPARSE ( Lustig et al.,

007 ), and k-t PCA ( Pedersen et al., 2009 ). Temporal regularization of

ome form has previously been incorporated into fMRI reconstruction

n approaches like Dual TRACER ( Li et al., 2018 ) and temporal smooth-

ess for simultaneous multi-slice EPI ( Chiew and Miller, Dec. 2019 ),

ith the latter specifically demonstrating smoothness producing a net

mprovement in tSNR and GLM efficiency. With a temporally varying

ampling scheme, such as golden angle radial sampling (e.g. TURBINE

raedel et al., 2017 ), enforcing temporal smoothness can be an effective

ay to reduce aliasing artefacts with a fractional penalty to the resulting

emporal degrees of freedom. 

In this paper, we explore extensions to the k-t FASTER approach

hat are formulated within an alternating minimization framework that

ncorporates L2-based regularization in tandem with the previously es-

ablished fixed-rank constraints. We explore specific L2 constraints that

orrespond to Tikhonov regularization, low-resolution priors, and tem-

oral subspace smoothness. Using L2-based constraints allows for inter-

retations of the constraints as Gaussian priors, as they are robust and

elatively simple to implement. We compare the proposed approaches to

nconstrained k-t FASTER and k-t PSF reconstructions of retrospectively

nd prospectively under-sampled datasets, which can be conceived of as

pecial cases within this regularization framework. We evaluate these

ifferent methods with regards to the accuracy of the spatial and tem-

oral components, and the sensitivity and specificity of statistical pa-

ameter maps (activation). 

. Material and methods 

.1. Theory 

.1.1. Reformulation of k-t FASTER 

The original k-t FASTER methodology used an iterative hard thresh-

ld + matrix shrinking approach ( Chiew et al., 2015 ) to enforce a fixed

ow-rank constraint on the reconstructed image time series. To enable

s to easily introduce additional constraints on the spatial and temporal

ubspaces, we reformulate the low-rank k-t FASTER optimization as a

atrix factorization problem. This alternate k-t FASTER formulation is

quivalent to the original k-t FASTER formulation ( Mason (2020) ), with

he main difference being the manner in which the rank constraint is

nforced. 

, 𝑇 = 𝑎𝑟𝑔𝑚𝑖 𝑛 𝑋,𝑇 ( ‖E(X ∗ T ′ ) − d ‖2 2 ) 
such that ∶ rank ( 𝑋 ) = rank ( 𝑇 ) = 𝑟 (1) 

Eq. (1) uses the following variables - E: sampling and multi-coil en-

oding function; d: multi-coil under-sampled k-t fMRI data; X: spatial

omponents of decomposition; T: temporal components (T’ = Hermitian

djoint of T); ‖ ‖2 : L2 norm, and r: rank constraint. For non-Cartesian

ampling, E will contain an NUFFT operator ( Fessler and Sutton, 2003 ).

The rank constraint is implicitly enforced in our formulation through

he shape of X and T, and so will be omitted from Eqs. (2) –(5) for brevity.

To solve the non-convex low-rank reconstruction, a minimization

pproach is used which alternately optimizes two convex subproblems

 Jain et al., 2013 ). These subproblems solve for either the spatial (X) or

emporal (T) components, respectively, while the other variable is fixed.

he spatial dimensions are vectorized, such that the product X 

∗ T’ forms

 2D space-time low-rank matrix that is our estimate of the fMRI time-

eries, and the 3D image volumes are a re-formatting of the 1D spatial

ector. The decomposed matrices X and T form a low-rank decomposi-

ion, with the low-rank structure encoded in the dimensionality of the

atrices. X and T are not necessarily forced to be orthogonal, although
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Fig. 1. A schematic overview of a reconstruction via various constrained-subspace approaches. For the LRP, X prior and T prior are created using a windowed version 

of the under-sampled data according to only the rank constraints and coil sensitivity information. For Tikhonov, X prior and T prior are zero-filled. X prior and T prior are 

fed as a constraint into the final reconstruction, combining with the data consistency term on an unwindowed dataset to produce the final output. The temporal 

subspace smoothness schematic shows a finite difference matrix ∇ applied solely to the temporal component matrix T, before also being combined with the data 

consistency term. 
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rthogonalization was found to speed up reconstruction where no ad-

itional constraints were present (i.e. k-t FASTER and the prior gen-

ration), with no significant change in reconstruction output recorded.

seudocode is included in Appendix A, and full implementation details

re included in Appendix B. 

.1.2. Soft constrained-subspace approaches 

The alternating minimization approach allows us to easily add addi-

ional subspace-specific constraints into Eq. (1) , allowing us to enforce

2 constraints concurrently with the low-rank constraint. The relative

nfluence of any L2 constraints within a reconstruction are controlled

y regularization parameters ( 𝜆). The original k-t FASTER approach

 Eq. (1) ) can be derived by setting 𝜆 = 0 in all the following equa-

ions. Formulations with non-zero and non-infinity 𝜆 will be referred

o as softly constrained. Fig. 1 contains schematics that demonstrate the

arious approaches. 

Tikhonov 

The most straightforward constrained-subspace approach derives

rom methods used for collaborative filtering ( Koren (2009) ), which of-

en uses Tikhonov regularization on both component matrices (X and T).

2-regularization terms are included to serve as energy minimization

erms for each variable, which prevent matrix entries from becoming

oo large: 

, 𝑇 = 𝑎𝑟𝑔𝑚𝑖 𝑛 𝑋,𝑇 

(‖E ( X ∗ T ) − d ‖2 2 + λX ‖ X ‖2 2 + λT ‖ T ‖2 2 
)

(2)

Low-Resolution Priors 

For data acquired using trajectories with non-uniform sampling den-

ities that sample the centre of k-space each TR, one can formulate an

2 regularization corresponding to Low-Resolution Priors (LRP). In uni-

orm radial sampling drawn from multiple spokes (TRs) within a plane,

 central window of radius 𝑘 _ 𝑚𝑎𝑥 
𝑅 

fulfils the Nyquist sampling criteria in

he azimuthal direction. Additionally, these low spatial frequencies rep-

esent the net balance of temporal processes at the ultimate temporal

esolution, but without capturing detailed spatial features. This central

indow can be more strongly weighted during a final reconstruction to

ccurately capture these high temporal resolution processes. 

The LRP constraints (X prior and T prior ) are created by windowing the

ull k-space dataset with a Tukey window (FWHM: 𝜋∗ 𝑘 _ 𝑚𝑎𝑥 ) and then
2 𝑅 

3 
econstructing X and T using Eq. (1) , albeit with d referring to windowed

-space data, analogous to the estimation of the temporal subspace from

raining data in the k-t PSF approach. The final reconstruction is then

eighted by the LRPs along with the full unwindowed sampled data

 Eq. (3) ). 

, 𝑇 = 𝑎𝑟𝑔𝑚𝑖 𝑛 𝑋,𝑇 

(‖E ( X ∗ T ) − d ‖2 2 + λX ‖X - X 𝑝𝑟𝑖𝑜𝑟 ‖2 2 + λT ‖T - T 𝑝𝑟𝑖𝑜𝑟 ‖2 2 
)

(3) 

The previously proposed k-t PSF method represents a special case

f the more general LRP framework. This method reconstructs the spa-

ial coefficients against a temporal basis (or prior) estimated from low-

esolution training data. k-t PSF can be formulated in the Eq. (3) frame-

ork by setting 𝜆X = 0 and 𝜆T = ∞. The temporal subspace is constrained

o be identical to this predetermined basis, which is labelled T prior : 

 = 𝑎𝑟𝑔𝑚𝑖 𝑛 𝑋 
(‖E ( X ∗ T ) − d ‖2 2 

)
; 

𝑇 = T 𝑝𝑟𝑖𝑜𝑟 (4) 

Temporal Subspace Smoothness 

A temporal subspace smoothness term aims to preserve the relatively

mooth BOLD response (particularly at high acceleration) and reduce

he magnitude of high temporal frequency under-sampling artefacts.

rajectories with a sampling point-spread function that changes every

rame (e.g. golden angle radial trajectories) can result in high temporal

requency under-sampling artefacts, and so are well suited to this ap-

roach. The reconstruction is governed by Eq. (5) . ∇ is a finite-difference

perator acting on the temporal dimension of each temporal process,

nd 𝜆∇ is the corresponding weighting parameter: 

, 𝑇 = 𝑎𝑟𝑔𝑚𝑖 𝑛 𝑋,𝑇 

(‖E ( X ∗ T ) − d ‖2 2 + λ∇ ‖∇ T ‖2 2 
)

(5)

.2. Experimental details 

We evaluated the different reconstructions (Tikhonov-constrained,

RP-constrained, smoothness-constrained, k-t FASTER, and k-t PSF)

ith both retrospectively under-sampled data in various SNR regimes,

nd with prospectively under-sampled data. The reconstructions are

valuated based on how accurately the spatial, temporal, and functional

nformation is captured across a range of acceleration factors. 
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Fig. 2. A demonstration of the flexibility of a golden angle sampling scheme, 

and of the k-space windowing required to create LRP constraints. EPI planes 

(left) are rotated by ≈ 111.25° around the phase-encoding axis. These rotated 

planes can then be flexibly combined. If many planes are used (top, blue) then a 

clean image is easily generated, but at the cost of temporal resolution. If fewer 

planes are used (middle, yellow) then more images are generated per second, 

but with an increased number of artefacts. The central part of under-sampled k- 

space satisfies the Nyquist criterion, even if the full extent of the under-sampled 

k-space does not. By windowing this central k-space (green, bottom), an accurate 

low-resolution depiction of the underlying data can be created. 
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Table 1 

The reconstruction details for the different acceleration factors 

used in reconstructing Prospective Dataset A. 

Dataset Blades TR frame (s) R 𝐵𝑙𝑎𝑑𝑒𝑠 

𝐹𝑟𝑎𝑚𝑒𝑠 
Frames 

Long 12,800 7.5 1.05 150 85 

Short 6400 1.0 7.85 20 320 

Short 6400 0.5 15.71 10 640 

Short 6400 0.3 26.18 6 1066 
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.2.1. Data acquisition 

All datasets were generated from a 30s/30s on/off finger-tapping

ask, and recreated 100 × 100 images with a 2 mm isotropic voxel res-

lution. An SVD compressed the 32-coil channel to the 8 most dom-

nant components for speed/memory purposes ( Zhang et al., 2013 ;

uehrer et al., 2007 ). All data were acquired on a 3T system (Prisma,

iemens Healthineers, Erlangen Germany) with informed consent in ac-

ordance with local ethics. 

In order to fulfil the non-uniform sampling requirements of the LRP

onstraints and the changing sampling PSF requirement of the smooth-

ess constraints, all acquisitions in k-space followed the TURBINE tra-

ectory ( Graedel et al., 2017 ; McNab et al., 2009 ), a 3D hybrid radial-

artesian EPI sequence which rotates an EPI blade around the phase

ncoding axis at constant azimuthal increments of the Golden Ratio an-

le ( 𝜋/ Φ ≈ 111.25°) ( Winkelmann et al., 2007 ). This scheme provides

 near-uniform radial sampling of k-space from any arbitrary post-hoc

ombination of consecutive blades, allowing for flexible degrees of ac-

eleration ( Fig. 2 ) ( Kim et al., 2011 ). The under-sampling (or accelera-

ion) factor R is defined here as the ratio of sampling lines required to

ully sample k-space to the number of sampling lines acquired. In radial

ampling, R = 1 requires 𝜋/2 times more lines than Cartesian sampling.

Retrospectively under-sampled datasets 

“Retrospective Dataset A ” was created by retrospectively resampling

ach frame of a single fully sampled dataset (300 frames, TR frame = 1 s)

n k-space with a TURBINE pattern. The original dataset is used as a

omparative ground truth, and was acquired as a full volume through

 TURBINE acquisition with 20 blades/frame (TR blade = 50 ms, TE blade 

 30 ms, R = 7.85), an acceleration factor shown to produce high fi-

elity reconstructions with a k-t FASTER approach ( Chiew et al., 2016 ).

 single axial slice of one subject with clear bilateral activation was

hosen for reconstruction (out of 72 slices in the original dataset). No

ank reduction was applied to the original data. The dataset was sam-

led from a magnitude-only ground truth, with no added noise or phase

ariation. The retrospective acceleration factors used are R = 15.71,

1.42, 39.27, and 52.36 (corresponding to 10, 5, 4, and 3 blades/frame

espectively). 

“Retrospective Dataset B ” was created by adding complex Gaussian

oise in k-t space to retrospective dataset A at R = 31.42, to highlight

he performance difference between the different approaches with addi-

ional thermal noise. Noise was added to form new noisy datasets with

igh (SNR = 100), medium (50), and low (20) SNRs, with the original
4 
ataset considered noiseless for the purposes of comparison. For each

NR, five unique instantiations of the noise were added to the underly-

ng data before reconstruction. These values are representative of actual

MRI SNR values ( Welvaert and Rosseel (2013) ). This additional Gaus-

ian noise only models additive thermal noise as a step towards more

ealistic data (coherent noise sources such as physiological noise with

emporal autocorrelation are not modelled here). 

Prospectively under-sampled datasets 

The following prospectively under-sampled datasets were generated

rom TURBINE acquisitions. Slices were first reconstructed by perform-

ng an inverse FFT along the phase-encode (z) direction before a k-t

econstruction was carried out on each (x-y) k-space plane. The experi-

ent type varies between datasets, but the acquisition parameters were

he same in all cases (TR blade = 50 ms, TE blade = 30 ms, flip angle = 15°,

W = 1786 Hz/px). 

“Prospective Dataset A ” used a TURBINE acquisition across eight dif-

erent slices centred on the motor cortex of a single subject. A short

xperiment (320s, five 30s on/off task epochs) and a long experiment

640s, ten epochs) were carried out consecutively on the same subject.

n R = 1.05 reconstruction of the long dataset contains enough tempo-

al Degrees-of-Freedom to characterize the underlying functional signal

nd provide high-quality activation maps, serving as a fully-sampled

pproximate "ground truth" reference against which the reconstruc-

ion of the accelerated short dataset can be separately verified. While

round truths are difficult to establish in prospectively under-sampled

atasets, a comparison to either similarly acquired data over a longer

imeframe or a moderately under-sampled version of the same dataset

an be reinterpreted as a close approximation to the truth for compar-

tive purposes. The different acceleration factors in the short dataset

 R = 7.85, R = 15.71, R = 26.18) lead to different temporal resolutions

nd temporal degrees of freedom, as well as affecting other statistical

roperties (such as physiological noise variance). While the most gen-

ral method would reconstruct all eight slices simultaneously to cap-

ure shared temporal processes, the extra computational power required

or this was not considered worth the benefits, and hence slices were

econstructed independently. The reconstruction details are listed in

able 1 . 

“Prospective Dataset B ” comprises four single-slice datasets taken

rom separate experiments (all 300 s, five on/off epochs) across two sub-

ects. Two of the acquisitions are centred on the motor cortex, two are

entred on the visual cortex. The reconstructions will be labelled Motor

, Visual 1, Motor 2, and Visual 2 to reflect the location and subject. In

his dataset, an R = 7.85 k-t FASTER reconstruction (TR frame = 1.0 s) is

sed as a ground truth (an approximation which is justified by the results

ound from the Prospective Dataset A in Fig. 7 ), as well as from previ-

us results in the literature ( Chiew et al., 2016 ). This “truth ” is only an

pproximation, and should serve as guidance to a good reconstruction,

ather than a definitive measure. Only the highest acceleration factor

 R = 26.18, TR frame = 0.3 s) and best-performing constraints (Tikhonov

nd Smoothness) from Prospective Dataset A are tested in this dataset,

long with k-t FASTER for comparative purposes. The reconstruction

etails are listed in Table 2 . 

.2.2. Selection of reconstruction parameters 

A logarithmic grid search over potential 𝜆X and 𝜆T candidates was

arried out for all datasets, constraints, and acceleration factors. The
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Table 2 

The reconstruction details for the different acceleration factors 

used in reconstructing Prospective Dataset B. 

Name Blades TR frame (s) R 𝐵𝑙𝑎𝑑𝑒𝑠 

𝐹𝑟𝑎𝑚𝑒𝑠 
Frames 

Motor 1 6000 0.3 26.18 6 1000 

Visual 1 6000 0.3 26.18 6 1000 

Motor 2 6000 0.3 26.18 6 1000 

Visual 2 6000 0.3 26.18 6 1000 
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rid search for retrospective dataset A is shown in Fig. 3 to demonstrate

he typical effects of varying 𝜆 on the reconstructed spatial and temporal

nformation for the different constraints, with boundary cases shown for

= 0 (zero prior influence) and 𝜆 = ∞ (the solution is fixed to the prior).

he special boundary case of ( 𝜆X = 0, 𝜆T = 0) defines k-t FASTER for

ll constraints and the special case of ( 𝜆X = 0, 𝜆T = ∞) defines k-t PSF

ith LRP constraints. As the smoothness constraints rely on a single

eighting parameter ( 𝜆∇ , the results are shown as a line graph. 

The reconstruction rank was fixed at 16 for all reconstructions, in-

luding priors (this rank matches a value used in recent literature for

ow-rank task fMRI Chiew et al., 2018 ). A variety of acceleration factors

ere tested. The convergence criterion was defined as the normalized

radient for the whole cost function CF ( Eq. (6) ), evaluated after the

emporal subproblem optimization for iteration number i . 

|𝐶 𝐹 𝑖 − 𝐶 𝐹 𝑖 −1 |
𝐶 𝐹 𝑖 

< 𝜀 (6)

A criterion of 𝜀 = 10 − 5 was used for both retrospective datasets,

hich was chosen as the value at which a k-t FASTER reconstruction

ith different random initializations was found to converge to identi-

al subspaces. For the prospective datasets, 𝜀 = 10 − 3 was found to be

ore optimal. This lower convergence criterion was found to produce

lightly improved statistical parameter maps (defined using the metrics

f Section 2.2.3 ), which may be a result of overfitting occurring at the

ore precise criterion used in both retrospective datasets. The differ-

nt criteria chosen here were selected to ensure a very high level of

greement regardless of the initialization, and were chosen using the

-t FASTER reconstruction without additional subspace constraints. Fu-

ure experiments may well benefit from more liberal criteria to enable

aster reconstruction, without necessarily experiencing any loss in re-

onstruction quality. 

.2.3. Evaluation and fMRI analysis 

Reconstruction image quality can be difficult to determine

 Wang et al., 2004 ), with more incoherent (‘noise-like’) artefacts usu-

lly preferable to coherent artefacts, and the first component of the sub-

pace dominating most image quality metrics (such as root mean square

rror or structural similarity index). Spatial artefacts can also make

onventional metrics like SNR (or simple measures of noise) harder to

uantify. 

Instead, the spatial and temporal subspaces were directly compared

o the retrospective ground truth subspaces using canonical correlation

nalysis. Canonical correlation measures the cosine of the principal an-

les (the alignment) between subspaces ( Knyazev and Argentati (2002) ),

ith higher values reflecting more aligned subspaces, and a value equal

o the rank of the subspace (16 in all cases) demonstrating complete

lignment. A Canonical Correlation Score (CCS) was created by divid-

ng the canonical correlation by the maximal rank of the decomposed

atrices, providing a normalized metric measuring the alignment of the

ubspaces. X CCS and T CCS respectively refer to the CCS for spatial and

emporal subspace analyses. As a subspace alignment metric, CCS does

ot account for the magnitude of the estimated components, only their

elative alignment. This potential shortcoming is accepted for two rea-

ons: firstly, the data consistency term will generally ensure that the

elative magnitude of the signal is well captured and secondly, any ICA
5 
nalysis run on the data will also be scale-independent ( Hyvärinen and

ja (2000) ). CCS cannot be used where dimensionality varies between

wo, so this metric was only used in evaluations of the retrospective

ampling comparisons. 

For all datasets, task fMRI analysis was performed in FEAT (FSL)

 Smith et al., 2004 ). Because the fMRI is smooth, increasing tempo-

al resolution in data also increases the autocorrelation of the mea-

ured signal. Where this results in smooth residuals (e.g. due to physi-

logical noise or imperfect modelling), assuming a known null distri-

ution can inflate calculated z-statistics ( Feinberg et al., 2010 ). The

esulting z-statistic maps were null-corrected using mixture modelling

 Beckmann and Smith (2004) ) to account for residual autocorrelation,

nd deviations in effective temporal degrees of freedom that arise from

igh acceleration factors in the prospective datasets. Reconstructed

rospective data are aligned to the ground truth reference using FLIRT

 Jenkinson and Smith (2001) ) prior to analysis. Receiver Operating

haracteristic (ROC) curves were calculated to measure the false pos-

tive rate (FPR) against true positive rate when comparing the recon-

tructions against the activation map of a fully sampled reconstruction.

 threshold of z ≥ 3.1 was used to threshold the retrospective truth, z ≥ 4.8

as used for Prospective Dataset A, z ≥ 4.0 was used for Motor 1/Visual

 in Prospective Dataset B, and z ≥ 2.7 was used for Motor 2/Visual 2 in

rospective Dataset B (these values were selected heuristically based on

natomical veracity of known regions of expected activation). Z -statistic

arameter maps are shown at a false positive rate of 0.0015 in order to

acilitate visualization. The ROC curves will be focussed on low FPRs,

s the z-statistic corresponding to high FPRs would never be used in

tudies. The Area Under the Curve (AUC) of the full ROC curve allows

or a simple comparison of many reconstructions, but the underlying

-statistic maps also provide valuable information as to the spatial loca-

ion of false positives and false negatives. 

. Results 

Optimal values of 𝜆X , 𝜆T , and 𝜆∇ are evaluated for each dataset,

ethod, and acceleration factor, and then the optimized reconstructions

re evaluated against the reconstructions using the k-t FASTER and k-

 PSF methods. The optima are selected using a heuristic combination

f the CCSs (retrospective datasets only), ROC AUCs, and qualitative

ssessments of z-statistic activation maps. 

.1. Retrospective Dataset A results 

The influence of 𝜆X and 𝜆T on the recovered temporal and spatial

omponents for different constraints is shown in Fig. 3 . The LRP con-

traints are defined by a peak in spatial CCS and a broad plateau in

emporal CCS (although the gradient is quite shallow near the peak).

he Tikhonov constraints were defined by a line of peak values normal

o 𝜆X = 𝜆T , suggesting a 1D search could suffice to find an optimal 𝜆

airing. For Tikhonov and LRP constraints, the upper-left-hand corner

f every 𝜆 grid represents k-t FASTER, and the far left point represents

-t FASTER in the 1D plot. The upper-right-hand corner of the LRP con-

traint 𝜆 grids represents k-t PSF. The optimal 𝜆 values are shown in

able 3 , and were constant across acceleration factors, except for the

ighest acceleration factor ( R = 52.36). 

Z -statistic activation maps were derived for all approaches using the

ptimized 𝜆 values at R = 31.42 ( Fig. 4 ) and R = 52.36 ( Fig. 5 ), and

re overlaid on the mean dataset image. The ROC curves and activation

aps are consistent with the results of Fig. 3 , with the Tikhonov and

RP constraints performing better than the other k-t methods at both

cceleration factors, albeit with the Tikhonov regularization marginally

utperforming LRP-constrained reconstruction at R = 52.36. The clean-

ess of the dataset appeared to allow very high reconstruction factors

hich were not found to be possible in more realistic data. 
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Fig. 3. The canonical correlation scores (CCS) of retrospective dataset A vs a ground truth for a): Tikhonov-constrained reconstructions, b): LRP-constrained recon- 

structions, c): Temporal Subspace Smoothness reconstructions. X CCS and T CCS refer to the spatial and temporal Canonical Correlation Scores respectively. The 

acceleration factors shown are: R = 15.71 (10 blades/frame), R = 31.42 (5 blades/frame), R = 39.27 (4 blades/frame), and R = 52.36 (3 blades/frame). The 𝜆 values 

encoding the pre-existing k-t FASTER and k-t PSF methods are shown on the right for each constraint. 

6 
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Fig. 4. R = 31.42 (5 blades/frame) retrospec- 

tive dataset A reconstructions. a) ROC curves, 

legend lists full curve AUC. b)-f) Activation 

maps using a z-statistic corresponding to an 

FPR of 0.15%. g)-k) A medial zoom of the 

associated activation maps. b/g) Tikhonov: 

𝜆X = 10 − 5 , 𝜆T = 10 − 5 , c/h) LRP: 𝜆X = 10 − 5 , 

𝜆T = 10 − 5 , d/i) Temporal subspace smoothness: 

𝜆∇ = 10 − 5 , e/j) k-t FASTER, f/k) k-t PSF. Maps 

b)-k) use green true positive pixels, red false 

positives, and blue false negatives. 

Table 3 

The optimal 𝜆 values for each method in retrospective dataset A. Results within 

0.001 of the best ROC AUC score and 0.01 of the best CCS values are shown in 

bold. 

R Method 𝜆X 𝜆T 𝜆∇ X CCS T CCS ROC AUC 

15.71 Tikhonov 10 − 5 10 − 5 0 0.89 0.91 0.9983 

LRP 10 − 5 10 − 5 0 0.88 0.91 0.9985 

Smoothness 0 0 10 − 5 0.85 0.91 0.9983 

k-t FASTER 0 0 0 0.84 0.91 0.9983 

k-t PSF 0 ∞ 0 0.34 0.28 0.8956 

31.42 Tikhonov 10 − 5 10 − 5 0 0.80 0.85 0.9984 

LRP 10 − 5 10 − 5 0 0.78 0.82 0.9984 

Smoothness 0 0 10 − 5 0.74 0.85 0.9975 

k-t FASTER 0 0 0 0.73 0.85 0.9973 

k-t PSF 0 ∞ 0 0.22 0.20 0.7052 

39.27 Tikhonov 10 − 5 10 − 5 0 0.76 0.83 0.9974 

LRP 10 − 5 10 − 5 0 0.72 0.78 0.9968 

Smoothness 0 0 10 − 5 0.71 0.84 0.9956 

k-t FASTER 0 0 0 0.70 0.84 0.9956 

k-t PSF 0 ∞ 0 0.21 0.22 0.5213 

52.36 Tikhonov 10 − 5 10 − 5 0 0.73 0.82 0.9967 

LRP 10 − 4 10 − 6 0 0.67 0.78 0.9962 

Smoothness 0 0 10 − 4 0.65 0.80 0.9938 

k-t FASTER 0 0 0 0.63 0.81 0.9927 

k-t PSF 0 ∞ 0 0.21 0.23 0.5741 
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.2. Retrospective Dataset B results 

Optimal 𝜆 was found to increase as SNR decreased for Tikhonov and

RP results. The following values were used for both Tikhonov and LRP

onstraints: high SNR (SNR = 100, 𝜆X = 10 − 4 , 𝜆T = 10 − 5 ); medium SNR

SNR = 50, 𝜆X = 10 − 4 , 𝜆T = 10 − 4 ); low SNR (SNR = 20, 𝜆X = 10 − 3 ,

T = 10 − 4 ). The temporal subspace smoothness results used 𝜆∇ = 10 − 4 

n all cases, although the variation in results was small for 10 − 4 ≤ 𝜆∇ ≤

0 − 1 . 

The mean AUC of the noisy parameter map ROCs compared to a

oiseless truth are summarized in Fig. 6 a, with all reconstructions los-
7 
ng fidelity as SNR decreased. The noiseless reconstructions are equiv-

lent to the data shown in Fig. 4 . Maps comparing thresholded z-stat

aps with the ground truth for each method are shown in Fig. 6 b, with

ull visualizations of all reconstruction activation maps and ROC curves

hown in Supplementary Figs. 3 –5 . The maps are overlaid on top of the

ean functional image of each reconstruction. In t-tests performed be-

ween the different constraints within the three non-noiseless SNRs, all

econstructions within an acceleration factor were significantly differ-

nt ( p < 0.05) except Tikhonov vs LRP at high SNR, k-t FASTER vs k-t

SF at low SNR, and LRP vs Smoothness at low SNR 

Tikhonov-constrained reconstruction outperformed all other meth-

ds, identifying plausible activity even at the lowest SNR tested. LRP and

emporal smoothness constraints represent improvements on the previ-

usly proposed techniques (k-t FASTER and PSF), with all constrained

esults better than all k-t FASTER results at medium and low SNR. The

-t FASTER approach appears highly susceptible to noise, with a roughly

quivalent noiseless AUC score to the other methods at R = 31.42 ( Fig. 5 )

apidly decreasing as SNR decreased. The k-t PSF approach failed to cap-

ure activation even for the noiseless simulated dataset at this accelera-

ion factor. 

.3. Prospective Dataset A results 

This section presents results on the first prospectively under-sampled

 “real ”) experiments, with three different acceleration factors tested:

 = 7.85 (20 blades/frame), R = 15.71 (10 blades/frame), and R = 26.18

6 blades/frame). The optimal 𝜆 values were found to be dependant on

oth R and the chosen constraint in the prospective dataset (the distri-

ution of reconstruction scores with respect to 𝜆 were similar to Fig. 3 ,

nd so are not shown here). The only exception is that the LRPs were

ess dependant on 𝜆T , with a broader range of values producing scores

lose to the optimum. Optimal 𝜆 values for this dataset are shown in

able 4 . 

The ROC curves for the optimal 𝜆 at each acceleration factor for

ach method are shown in Fig. 7 . The activation maps for every sec-
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Fig. 5. R = 52.36 (3 blades/frame) retrospec- 

tive dataset A reconstructions. a) ROC curves, 

legend lists full curve AUC. b)-f) Activation 

maps using a z-statistic corresponding to an 

FPR of 0.15%. g)-k) A medial zoom of the 

associated activation maps. b/g) Tikhonov: 

𝜆X = 10 − 5 , 𝜆T = 10 − 5 , c/h) LRP: 𝜆X = 10 − 4 , 

𝜆T = 10 − 6 , d/i) Temporal subspace smoothness: 

𝜆∇ = 10 − 4 , e/j) k-t FASTER, f/k) k-t PSF. Maps 

b)-k) use green true positive pixels, red false 

positives, and blue false negatives. 

Table 4 

The optimum 𝜆 values in Prospective Dataset A for each constraint at each acceleration factor. The time in brackets 

shows the split between the time taken to generate the priors and the final reconstruction. Results with the shortest 

reconstruction time or within 0.001 of the best ROC AUC score are shown in bold. 

R 𝐵𝑙𝑎𝑑𝑒𝑠 

𝐹𝑟𝑎𝑚𝑒𝑠 
Method 𝜆X 𝜆T 𝜆∇ Mean Recon Time (hours) ROC AUC 

7.85 20 Tikhonov 10 − 1 10 − 2 0 2.9 0.9915 

LRP 10 − 1 10 − 7 0 (1.7 + 1.6) 3.3 0.9913 

Smoothness 0 0 10 − 3 1.4 0.9911 

k-t FASTER 0 0 0 1.4 0.9906 

k-t PSF 0 ∞ 0 (1.7 + 0.3) 2.0 0.9884 

15.71 10 Tikhonov 10 − 1 10 − 2 0 6.3 0.9871 

LRP 10 − 1 10 − 3 0 (26.9 + 6.4) 33.3 0.9851 

Smoothness 0 0 10 + 1 11.2 0.9880 

k-t FASTER 0 0 0 5.8 0.9644 

k-t PSF 0 ∞ 0 (26.9 + 0.3) 27.2 0.9000 

26.18 6 Tikhonov 10 − 2 10 − 1 0 11.6 0.9785 

LRP 10 − 3 10 − 7 0 (192.3 + 11.3) 203.6 0.9586 

Smoothness 0 0 10 + 2 29.6 0.9875 

k-t FASTER 0 0 0 13.0 0.9410 

k-t PSF 0 ∞ 0 (192.3 + 0.3) 192.6 0.4613 
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nd slice of the R = 26.18 results are shown in Fig. 8 . The full selection

f activation maps for all slices and acceleration factors can be seen in

upplementary Figs. 6–8. All activation maps are overlaid on the mean

unctional image, with an example function image for each R = 26.18

ataset shown in Supplementary Fig. 9. The effects of the different re-

onstruction approaches on tSNR and signal autocorrelation are shown

n Supplementary Figs. 10 and 11 respectively. 

At the lower acceleration factor ( R = 7.85), all approaches ap-

ear approximately equivalent, with k-t PSF performing worst with

UC = 0.9884 and all other methods having AUC > 0.99. At the medium

cceleration factors ( R = 15.71), the soft subspace constraints outper-

ormed k-t FASTER (AUC = 0.9644) and k-t PSF (AUC = 0.9000) with

UC > 0.98. At the high acceleration factor ( R = 26.18, Fig. 9 ), the

ikhonov-constrained results and smoothness results outperformed all

ther methods with AUCs of 0.9785 and 0.9875 respectively, and the

w  

8 
RP constrained method (AUC = 0.9586) performing similar to k-t

ASTER (AUC = 0.9410) at this acceleration factor. Here, the smooth-

ess constraints outperformed the Tikhonov constraints by a score of

.09, whereas the Tikhonov constraints either performed equivalently

r outperformed the smoothness constraints in all previous scenarios. 

.4. Prospective Dataset B results 

This section presents results on the second set of prospectively

nder-sampled experiments, with only one acceleration factor tested:

 = 26.18 (6 blades/frame). The ground truth is taken as the R = 7.85

20 blades/frame) k-t FASTER reconstruction of a slice for comparative

urposes. The optimal 𝜆 values for the smoothness constraint were found

o be consistent with Prospective Dataset A at this acceleration factor,

hereas the optimal Tikhonov 𝜆 values varied between slices ( Table 5 ).
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Table 5 

The optimum 𝜆 values in Prospective Dataset B for each constraint at each acceler- 

ation factor. The reconstructions here were done on varying numbers of cores due 

to computation constraints, and so timings are not shown. Results with the best 

ROC AUC score are shown in bold. 

Name R 𝐵𝑙𝑎𝑑𝑒𝑠 

𝐹𝑟𝑎𝑚𝑒𝑠 
Method 𝜆X 𝜆T 𝜆∇ ROC AUC 

Motor 1 26.18 6 Tikhonov 10 − 5 10 − 4 0 0.9927 

Smoothness 0 0 10 + 2 0.9974 

k-t FASTER 0 0 0 0.9898 

Visual 1 26.18 6 Tikhonov 10 − 3 10 − 2 0 0.9941 

Smoothness 0 0 10 + 2 0.9959 

k-t FASTER 0 0 0 0.9868 

Motor 2 26.18 6 Tikhonov 10 − 1 10 − 1 0 0.9958 

Smoothness 0 0 10 + 2 0.9978 

k-t FASTER 0 0 0 0.9936 

Visual 2 26.18 6 Tikhonov 10 − 2 10 − 1 0 0.9816 

Smoothness 0 0 10 + 2 0.9957 

k-t FASTER 0 0 0 0.9662 

Fig. 6. 6a: Retrospective dataset B reconstruction AUC results. Each bar rep- 

resents the mean AUC of five different instantiations of Gaussian noise in k-t 

space at a specific SNR for a specific reconstruction method, except for the left- 

hand set, which represent a single noiseless reconstruction. The error bars show 

the range of AUC values. 6b: An example activation map at each noise value 

for each reconstruction method. See Supplementary Figs. 3–5 for the full set of 

activation maps and the individual ROC curves. As with Figs. 4-5 , green pixels 

represent true positives, red pixels represent false positives, blue pixels represent 

false negatives. The z-statistics threshold yielded a false positive rate of 0.15%. 
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Fig. 7. The ROC curves across eight slices for a) R = 7.85 (20 blades/frame), b) 

R = 15.71 (10 blades/frame), and c) R = 26.18 (6 blades/frame). The ground 

truth is the long dataset taken under similar experimental conditions, at a thresh- 

old of z ≥ 4.8. The false-positive rate is shown on the x-axis up to 0.02, in order to 

allow visualization of the analytically relevant representation of the activation 

maps. 

t  

a  

m  

t  

f  

t

4

 

d  

d  

c  

r  

s  

T  

c  

e  

o  

f

 

fi  

i  

d  
The ROC curves for the optimal 𝜆 at each acceleration factor for each

ethod are shown in Fig. 9 . The smoothness constraint appeared to pro-

uce the best ROC AUC score in all cases, with Tikhonov outperform-

ng the k-t FASTER approach. The activation maps shown in Fig. 10 . In

ome cases, the specific 0.15% false positive rate threshold meant that

 method with a lower ROC AUC score produced a more accurate map.

he underlying mean image is generally cleaner in the two constrained

ethods when compared to k-t FASTER. 

. Discussion 

This study demonstrates the impact of three different L2-based con-

traints in a global low-rank optimization framework for accelerated

MRI data reconstruction. In instances of high acceleration or low SNR,
9 
he constrained approaches are able to better identify true regions of

ctivation in a finger-tapping study, as well as producing solutions that

ore closely map to the spatial and temporal subspaces of a ground

ruth. These results highlight the viability of non-linear reconstruction

rameworks in fMRI that do not rely explicitly on sparse modelling of

he BOLD signals. 

.1. Comparison between methods 

Across the different evaluated datasets a clear trend emerged: the ad-

ition of soft subspace-constraints to the k-t FASTER formulation pro-

uces improved subspace alignment and ROC AUC scores at high ac-

eleration/low SNR. Collectively, the qualitative and quantitative met-

ics reveal that very high acceleration factors are possible with these

oft constrained-subspace low-rank approaches, in the right conditions.

he conditions tested in this paper show that the fMRI signal of interest

an be represented by a small number of high-variance components, as

licited with a finger-tapping motor task experiment. The effectiveness

f this approach in other, lower-variance examples such as resting-state

MRI or more subtle task fMRI experiments remains to be seen. 

The non-linear reconstruction framework only aimed to recover the

rst 16 components in a low-rank representation of the signal, result-

ng in feasible reconstructions at very high acceleration due to the re-

uced matrix degrees of freedom in the estimated output. The high ac-
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Fig. 8. Prospective Dataset A, R = 26.18. The activation maps for every second 

slice of the reconstruction, at a threshold defined by a 0.15% volumetric false 

positive rate. Supplementary Fig. 8 shows the activation maps of all slices. 
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2  
eleration factors in the retrospective dataset A (e.g. R = 52.36) were

hosen to differentiate between different constraints, and are not con-

idered representative of realistic acceleration factors. The acceleration

actors reported for the prospective datasets ( R = 26.18) are consider-

bly higher than those reported in previous studies of low-rank fMRI

econstruction using realistic data, which is facilitated largely by the

dditional soft subspace-constraints. However, as evidenced in Supple-

entary Fig. 11, some care must be taken in interpreting the actual

emporal resolution of the reconstructions, particularly with the tem-

oral smoothness constraints, and effective acceleration factors may be

ower than the nominal reported under-sampling factors. To account

or this, effective temporal degrees of freedom resulting from tempo-

al smoothing constrained reconstruction can be estimated analytically

 Chiew and Miller, Dec. 2019 ), or corrected for using a statistical mix-

ure modelling procedure to normalize the null-distribution of the z -

tatistics ( Beckmann and Smith (2004) ). 

The Tikhonov constraints produced high fidelity reconstructions in

oth retrospective and prospective under-sampling, even at accelera-

ion factors or SNR levels where other methods began to fail (e.g. the

rospective R = 26.18/TR = 0.3 s results, or the low SNR retrospec-

ive dataset B results). Additionally, Tikhonov-constrained reconstruc-

ions were the fastest to reconstruct out of all the softly constrained

econstructions while its optimal 𝜆 pairing could be found through a

-D parameter search only - reducing the dimensionality of the design

onstraints. 

However, the Tikhonov reconstructions were outperformed by the

emporal subspace smoothness approach in the reconstructions of the

rospectively under-sampled data, despite that same smoothness ap-

roach only providing a relatively small improvement over k-t FASTER

n both retrospective datasets. However, the retrospective datasets were

onstructed under conditions that were favourable for k-t FASTER, with-

ut any additional phase modulations or physiological noise (beyond

hat was in the original dataset). The scale of improvement is also

orth noting, with the AUC scores showing Tikhonov outperforming

moothness by an absolute value of + 0.3% in the most discriminatory

esult of retrospective dataset A ( R = 52.36, 0.9967 vs 0.9938), but

moothness outperforming Tikhonov by + 0.9% in the highest accel-
10 
ration factor tested in the Prospective Data A ( R = 26.18, 0.9875 vs

.9785), and an average + 0.6% improvement at the same acceleration

actor for Prospective Dataset B. This smoothness improvement is in

ddition to the improvement the Tikhonov approach manages over all

ther methods ( + 3.75%/ + 0.7% total over k-t FASTER in Prospective

ataset A/B), while also occurring in the dataset most representative

f real data. Both Tikhonov and Smoothness constraints also generally

mprove the mean functional image compared to k-t FASTER (the back-

round of Fig. 8 / Fig. 10 over which the activation maps are overlain).

he outstanding question from these findings is then whether all real-

ata reconstructions favour smoothing constraints, or are there a set of

onditions in real data that would favour Tikhonov constraints? 

The low-resolution priors were unable to match the performance of

he Tikhonov constraints in any dataset, nor the temporal smoothness in

rospective Dataset A. The false positives in the LRP-constrained z-stat

aps were localized close to the area of interest, indicating the influence

f the prior on the resulting potential reduction in effective spatial reso-

ution. By comparison, at lower SNR the k-t FASTER approach produced

alse positives which were less localized to voxels adjacent to true pos-

tive activations. As a generalization of the k-t PSF approach, this may

eflect the intrinsic limitation of generating priors from low-resolution

raining data for constraining a high-resolution reconstruction. Further-

ore, reconstruction times for the LRP constrained reconstructions were

he longest by far. 

The k-t PSF method did well at R = 7.85 in the real prospective data,

nd has not to our knowledge been previously tested without sparsity

onstraints in an fMRI framework. However, the formulation of k-t PSF

sed in this paper did not produce robust solutions in the other datasets

r at the higher acceleration factors tested This is also consistent with the

erformance of the low-resolution prior method, where both methods

hat constrained the reconstruction based on a low-spatial resolution

emporal basis were not as successful as the other constraints in under-

ampled signal recovery. 

The optimal regularization factors varied due to a number of factors.

ikhonov/LRP 𝜆 values were strongly dependant on SNR in Retrospec-

ive Dataset B, weakly dependant on R within a dataset, and varied be-

ween datasets at a given R. The smoothness weighting varied strongly

ith R in Prospective Dataset A, but was found to be consistent for all

rospective Dataset B reconstructions at that R, and was also consis-

ent across SNRs in Retrospective Dataset B. At R = 26.18, Tikhonov

alues of 𝜆X = 10 − 2 , 𝜆T = 10 − 1 and Smoothness values of 𝜆∇ = 10 + 2 

ere the most common optimal regularization parameters in prospec-

ive reconstructions under the experimental parameters tested in this

aper. It is clear that a soft constraint can help guide the dataset to im-

roved reconstruction scores, but as with many regularization methods,

he identification of optimal 𝜆 parameters will require some care. 

.2. Limitations and future work 

One limitation of this work is the small sample of datasets used

o evaluate the methods, and further testing on additional datasets

ith physiological noise models or other confounding factors would

e needed to establish robustness. This would allow more insight into

he robustness of the Tikhonov and smoothness constraints, the opti-

al 𝜆 values, and the impact of coherent noise contamination or auto-

egressive noise properties on the different approaches. In addition, fur-

her dataset testing could assess the impact of motion. Motion can vi-

late the low-rank assumptions in fMRI, with motion-related variance

wamping BOLD fluctuations, and so adequate motion-correction is re-

uired. However, a major challenge is that this effect cannot be cor-

ected post-hoc using conventional time-series registration, but needs

o correct the k-space data prior to low-rank reconstruction. The data

ollected for this study was performed on healthy volunteers with very

ittle apparent motion, although the TURBINE k-space trajectory enables

otion correction using low spatial resolution navigators ( Graedel et al.,

017 ). One solution could involve combining TURBINE’s self-navigation
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Fig. 9. The ROC curves for each different slice of Prospective Dataset B at R = 26.18 (6 blades/frame), compared to an R = 7.85 k-t FASTER reconstruction of the 

same slice thresholded at either z ≥ 4.0 (Motor 1/Visual 1) or z ≥ 2.7 (Motor 2/Visual 2). The false-positive rate is shown on the x-axis up to 0.02, in order to allow 

visualization of the analytically relevant representation of the activation maps. 

Fig. 10. Prospective Dataset B, R = 26.18. The activation maps for each recon- 

struction, at a threshold defined by a 0.15% volumetric false positive rate. The 

background brain is the mean temporal image for that reconstruction. 
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11 
apabilities with a joint estimation of the subspaces and motion param-

ters, leveraging an assumption that a motion-free reconstruction would

ave the lowest rank or nuclear norm. While the TURBINE acquisition

cheme was used to help fulfil the non-uniform sampling density re-

uirement of the LRP constraints, alternative sampling schemes could

lso be tested to explore how well the smoothness and Tikhonov con-

traints generalize. Aside from the potential motion-correction benefits,

URBINE was chosen for this paper due both to its inherent flexibility in

cceleration and the noise-like aliasing produced in under-sampling. In

ontrast, standard approaches with Cartesian sampling, like 3D EPI or

lipped-CAIPI SMS EPI, do not provide sufficient sampling incoherence

or effective use of low-rank constraints ( Chiew et al., 2016 ). However,

nvestigation of novel sampling trajectories for non-linear reconstruc-

ion models is a topic of increasing interest ( Lazarus et al., 2019 ), and

t would be interesting to determine more optimal trajectories for these

ow-rank reconstruction models. 

The joint-optimization of two subspaces in alternating minimiza-

ion provides a flexible reconstruction framework, but could benefit

rom speeding up. The slowest reconstructions took up to 10 s of hours

er slice for both Tikhonov and smoothness-constrained reconstruction

 Table 2 ). While Toeplitz Embedding was used to speed up iterative use

f the NUFFT ( Ahmad et al., 2011 ; Chan and Ng (1996) ), the reconstruc-

ion code has not been optimized for speed and these computation times

ould likely be reduced significantly. In addition to code optimization,

ubproblem parameters such as the convergence factor 𝜀 and the number

f internal iterations in each linear subproblem (see Supplementary Fig.

) were both chosen to be deliberately conservative for this exploratory

nalysis and could be fine-tuned for faster reconstructions in future. 

. Conclusions 

Low-rank reconstructions in fMRI can benefit from additional reg-

larization, particularly at high acceleration factors or in low-SNR

egimes. The L2-based constrained-subspace approaches studied here

ere shown to improve upon methods like k-t FASTER in realistic fMRI

ata at acceleration factors of R > 10, although there is an associated
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ncrease in reconstruction time as currently implemented. The improve-

ents with the soft subspace constraints were most apparent at the high-

st acceleration factor tested ( R = 26, nominal TR = 0.3), and particu-

arly pronounced for the Tikhonov constraints and temporal smoothness

onstraints. 
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ppendix A: Pseudocode 

nput 

: multicoil under-sampled k-t fMRI data 

: Sampling and multi-coil encoding operator 

X : spatial regularization weighting factor 

T : temporal regularization weighting factor 

∇ : temporal smoothness regularization weighting factor 

Initialize 

X prior 0 col _ 1 : Temporal Mean (The average image over all time) 

X prior 0 cols _ 2∶r : 0 

T prior 0 : Randomly orthogonal rows 

Create Priors 

d win = window (d) 
hile not converged do 

X prio r i+1 ← 𝑎𝑟𝑔𝑚𝑖 𝑛 X prior ( ‖E( X prior T prio r i ’ ) − − d win ‖2 2 ) 
T prio r i+1 ← 𝑎𝑟𝑔𝑚𝑖 𝑛 T prior ( ‖E( X prio r i+1 T prior ’ ) − − d win ‖2 2 ) 
nd while 

Final Reconstruction 

X 0 = X prior 
T 0 = T prior 

hile not converged do 

X 𝑖 +1 ← 𝑎𝑟𝑔𝑚𝑖 𝑛 𝑋 ( ‖E( X T i ’ ) − −d ‖2 2 + λX ‖X − − X prior ‖2 2 ) 
T i+1 ← 𝑎𝑟𝑔𝑚𝑖 𝑛 𝑇 ( ‖E( X i+1 T ’ ) − −d ‖2 2 + λT ‖T − − T 𝑝𝑟𝑖𝑜𝑟 ‖2 2 + λ∇ ‖ ∇ T ‖2 2 ) 
nd while 

Output 

 = X 

∗ T’: Final reconstructed x-t fMRI data 

Test code for running the main algorithm of this paper can be

ound at https://github.com/harrytmason/constrained- lowrank- recon ,

nd the data can be downloaded from the Oxford Research

rchives, https://ora.ox.ac.uk/objects/uuid:78743195-4217-4e83-

749-d74941b3b2ac . 
12 
ppendix B: Implementation Details 

There are a few ways to tackle a k-t space reconstruction problem

hat constructs a low-rank matrix (e.g. minimizing the nuclear norm:

he sum of the singular values ( Zhang et al., 2013 ); or matrix completion

 Zong et al., 2014 )). The approach used in our formulation is known as

lternating minimization ( Mason, 2020 ), which reconstructs the decom-

osed matrices at a fixed rank, pre-selecting an arbitrary low-rank value

elow the maximum potential rank of the system. Each row in X repre-

ents a separate voxel, each row in T represents a frame in time, and the

ank is encoded through the columns of both matrices. An additional

daptation employed during prior generation is the forced orthogonal-

zation of the system when alternating between the two subproblems

here no alternate regularization exists (e.g. where 𝜆X = 𝜆T = 𝜆∇ = 0). 

Our reconstruction problem was solved using the minres.m function

n MATLAB R2019a. NUFFT calculations used the Fessler toolbox [38].

anonical correlations were calculated using the subspacea.m function

 Singh et al., 2015 ) rather than the inbuilt canoncorr.m function, in or-

er to avoid the extra alignment that occurs during demeaning (which

s only significant for low canonical correlation scores). Reconstructions

ere run on a parallel computing cluster, using 4-core Intel CPUS (Ivy-

ridge, Skylake, Haswell) ranging from 2.4-2.6 GHz with an 8GB maxi-

um of RAM. 

For windowing, a Tukey parameter of 0.4 was used with full-width

alf-maximum at 𝜋∗ 𝑘 _ 𝑚𝑎𝑥 2 𝑅 . For the generation of the priors, a 1D Tukey

indow was applied along each acquired blade in k-space, and a 2D

ersion of the window was applied to the priors in Cartesian k-t space

ost prior-generation, but pre-final reconstruction with the full k-space.

his ensured no leakage of energy into the higher frequencies, as the

indowed data in a consistency term does not strictly enforce the output

o only the central k-space. 

The overall convergence criterion was a normalized cost function

radient; it was evaluated after the temporal subproblem in each cy-

le, relative to the cost function at the previous post-temporal iteration.

he CCS metric was used to establish robustness within a given accel-

ration factor with respect to the convergence criterion, by reconstruct-

ng from different randomly initialized X and T matrices and measur-

ng the agreement of those reconstructions with respect to the principal

ngles at different levels of convergence. Reconstructions were carried

ut across all k-t methods (except k-t PSF) on retrospective dataset A,

nd are shown in Supplementary Figure 1. R = 52.36 was considered the

aximum acceleration factor at which accurate comparisons could be

ade. 

The differing size of the spatial and temporal subproblem means the

patial and temporal problems require different convergence and/or it-

ration parameters (typically there are 1-2 orders of magnitude more

oxels than frames). We chose parameters that made the system spend

0x as long in the spatial subproblem (50 iterations per temporal sub-

roblem, 500 per spatial subproblem, with a subproblem tolerance of

0 − 15 in case of early convergence). The effect of varying the number of

terations of each subproblem against the cycles between the subprob-

em is shown in Supplementary Figure 2. An internal iteration number

f 50 was chosen to guarantee convergence, but this has the potential

o be optimized for speed. 

Toeplitz embedding exploits the Gram matrix ( E’E ) formed by

ourier encoding to produce a block Toeplitz structure. These can be

mbedded in block Circulant matrices, which can be fully explained

y their first column, and are diagonalized by FFTs. Toeplitz Em-

edding speeds up the computation from O(N 

2 ) to O(NlogN). Mark

hiew’s tools for implementing can be found at https://users.fmrib.

x.ac.uk/ ∼mchiew/Tools.html . 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi: 10.1016/j.neuroimage.2021.118235 . 

https://github.com/harrytmason/constrained-lowrank-recon
https://ora.ox.ac.uk/objects/uuid:78743195-4217-4e83-a749-d74941b3b2ac
https://users.fmrib.ox.ac.uk/~mchiew/Tools.html
https://doi.org/10.1016/j.neuroimage.2021.118235
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