
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 972037, 12 pages
doi:10.1155/2012/972037

Research Article

Extraction of Lesion-Partitioned Features and Retrieval of
Contrast-Enhanced Liver Images

Mei Yu,1, 2 Qianjin Feng,1 Wei Yang,1 Yang Gao,1 and Wufan Chen1

1 School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
2 Shandong Medical College, Linyi 276000, China

Correspondence should be addressed to Qianjin Feng, qianjinfeng08@gmail.com and Wufan Chen, wufanchen@gmail.com

Received 22 March 2012; Revised 24 June 2012; Accepted 16 July 2012

Academic Editor: Guilherme de Alencar Barreto

Copyright © 2012 Mei Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The most critical step in grayscale medical image retrieval systems is feature extraction. Understanding the interrelatedness between
the characteristics of lesion images and corresponding imaging features is crucial for image training, as well as for features
extraction. A feature-extraction algorithm is developed based on different imaging properties of lesions and on the discrepancy in
density between the lesions and their surrounding normal liver tissues in triple-phase contrast-enhanced computed tomographic
(CT) scans. The algorithm includes mainly two processes: (1) distance transformation, which is used to divide the lesion into
distinct regions and represents the spatial structure distribution and (2) representation using bag of visual words (BoW) based
on regions. The evaluation of this system based on the proposed feature extraction algorithm shows excellent retrieval results for
three types of liver lesions visible on triple-phase scans CT images. The results of the proposed feature extraction algorithm show
that although single-phase scans achieve the average precision of 81.9%, 80.8%, and 70.2%, dual- and triple-phase scans achieve
86.3% and 88.0%.

1. Introduction

Computed tomographic (CT) is a primary imaging tech-
nique for the detection and characterization of focal liver
lesions. Currently, CT is widely used for the diagnosis of liver
tumors. A vast amount of information can be obtained from
CT; however, even experienced radiologists or physicians
have difficulty interpreting all the images in a certain cases
within short duration. Moreover, the interpretation among
radiologists shows substantial variation [1, 2], and its
accuracy varies widely given the increasing number of images
[3].

Studies on CT images retrieval have precedents [4]; how-
ever, existing medical image processing technologies are not
sufficiently mature. Thus, diagnostic results are often less
than ideal. Nationally, along with the developments in image
processing and artificial intelligence, designing and devel-
oping systems for computer-aided diagnosis to characterize
liver lesions have received considerable attention over the
past years, because these systems can provide diagnostic
assistance to clinicians for the improvement of diagnosis

[5, 6]. Organically combining the key technologies of image
processing and medical imaging has become a main research
goal to provide scientific, convenient, and accurate medical
means and to support diagnostic recommendations for radi-
ologists. Such systems are implemented by image retrieval
systems that enable radiologists to search for radiology
patients in database and return the cases that are similar in
terms of shared imaging features with their current cases.
Currently, many image retrieval applications are used in
the medical field. These applications are not only capable
of retrieval of similar anatomical region [7–9], but also of
similar lesions [10–13].

The most critical step in image retrieval systems is feature
extraction, especially for grayscale medical images. Although
low-level features, such as gray, texture, and shape [14,
15] are commonly used for visual perception of radiologic
images, they cannot express the image or distinguish lesions
adequately. Unfortunately, clinical diagnostic decisions are
generally made based on medical imaging behavior of
lesions. Therefore, the understanding of interrelatedness



2 Computational and Mathematical Methods in Medicine

Input image

Partitioned region 

Form codebook

Represent each  
region of image 

Represent each image 

Return images 

sorted by similarity
to query image

Fe
at

u
re

 e
x-

pr
es

en
ta

ti
on

R
et

ri
ev

al

Fe
at

u
re

 e
x-

pr
es

en
ta

ti
on

Training Testing

Region 1 · · · Region N Region 1 · · · Region N

Region 1 · · · Region NRegion 1 · · · Region N

Region 1 · · ·
· · · · · ·

Region N

Figure 1: Flow chart of system based on our algorithm.

among the characteristics of lesion images and correspond-
ing imaging features is critical for image training [16] as well
as for features extraction. Several radiological studies have
recently reported the relationship among the correlations
[17].

The aims of the current study are three. (1) A feature
extraction algorithm of hepatic lesions is provided con-
sidering the views of radiologists concerning diagnosis in
triple-phase CT; (2) a content-based image retrieval (CBIR)
system is developed. This system can facilitate the retrieval of
radiology images that the lesions have with similar appearing
to the query patient, and (3) a basis evaluation of this
system is implemented. Hepatocellular carcinoma (HCC),
hemangiomas, and cysts are the most common malignant
and benign liver tumors. The proposed feature algorithm is
derived from distinct imaging characteristics of lesion images
and the surrounding liver parenchyma in triple-phase CT

images, which comprise the diagnosis perspective of clini-
cians or radiologists for three types of tumor patients.

2. Methods

Figure 1 presents a summary of the current system based on
the proposed feature extraction. The specific development
and implementation are detailed below.

2.1. Liver Lesions. Triple-phase contrast-enhanced CT scans
play an important role in the diagnosis of liver tumors,
because triple-phase images fully display the characteristics
of blood supply richly of HCC (Figure 2). In the arterial
phase, most of lesions with rich blood supply appear hyper-
enhancement. Density is significantly higher than that of
normal hepatic parenchyma, because hepatic parenchyma
has not reached the enhanced peak. In the portal venous
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Figure 2: Triple-phase contrast-enhanced CT images. The row is liver cancers, hemangiomas, cysts. The vertical column is arterial phase,
portal venous, and delayed-phase scans.

phase, the parenchyma reaches its peak, whereas the lesion
almost joins the blood supply. The tumor is characterized by
low-density nodules relative to parenchyma. “Fast in and fast
out” is the most characteristic movement of HCC with rich
blood supply.

The CT scan is the preferred imaging methods for hepatic
hemangiomas. The enhanced characteristic of a heman-
gioma is as follows. The edge of the lesion in the arterial
phase usually appears heavily enhanced, and the contrast
agent gradually enters the lesion, traveling from the edge
to the centre over time, which provides a reliable basis
for diagnosing HCC and hemangioma. “Fast in and slow
out” is the most characteristic movement for hemangiomas.
Therefore, the density of the lesion is higher than that of
parenchyma in the arterial phase and is lower than that of
parenchyma in the portal venous lesion, which is also the
typical behavior that distinguishes HCC and hemangiomas.

Liver cysts are commonly benign, and triple-phase
enhanced CT scans of such cysts appear as single or multiple,
round or oval, and with a smooth edge and uniform low
density. The value of CT is close to water. Images of liver
cysts are subjected to no further enhancement after contrast
enhancement.

Two facts summarize the characteristics of triple-phase
contrast-enhanced CT images. First, most lesions of HCC
and hepatic hemangiomas have special characteristic
changes, whereas no change occurs in that of cysts. Second,
the surrounding liver parenchyma information of a lesion is
important because of the discrepancy in density between the
lesion and the adjacent normal parenchyma in triple-phase
scans. Thus, according to the above analysis, a feature
extraction algorithm of lesions is proposed considering the
specific behavior of focal liver lesions and their surrounding
liver parenchyma after enhancement.
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Figure 3: Partition of hepatic lesion. (a) is the lesion with external neighborhood and (b) is 4 regions divided.

2.2. Computer-Generated Features. Representation of Bag of
Visual Words Combined with Distance Transformation. The
proposed feature extraction algorithm aims to meet the
requirements of radiologic diagnosis views, as derived
formed from the analysis in Section 2.1. The algorithm
includes mainly two processes: (1) distance transformation,
which is used to divide the lesion into distinct regions
and represents the spatial structure distribution and (2)
the representation of bag of visual words (BoW) based
on regions, which is the key step. Generally, the lesion is
divided into three regions in the experiments, to best fit
the imaging analysis of radiologists in triple phases for the
diseases described above. The effect of number selection on
the performance of CBIR is discussed later in this document.
The algorithm is described below.

2.2.1. Partition of the Lesion through Distance Transformation.
The concept of distance transformation has been widely used
in image analysis, computer vision, and pattern recognition
since its introduction by Rosenfeld and Pfaltz [18] in 1966.

Distance transformation is conducted against binary
images to produce a grayscale image, such as the distance
image. The gray values of every pixel point in the distance
image are the distances between the pixel and its nearest
background pixels. In two-dimensional space, a binary image
contains only two kinds of pixels: target pixels and back-
ground pixels. The value of a target pixel is 1, and the value
of a background pixel is 0. Currently, a variety of distance
transformation algorithms is used, and these algorithms
adopt mainly two types of distance: non-Euclidean distance
and Euclidean distance. The former method commonly
includes city-block, chessboard, and chamfer. City block
distance transformation is used in this paper because the
distance value after transformation is an integer, which is
more convenient for the subsequent partition of lesions.

Then, the distance transformation image of the binary
image is obtained. Set p, q as the quotient and the remainder,
respectively, resulting from the division of the number of
layers by three. Divide the lesion into three regions, and the
number of layers in each region become p, q and p + q,
respectively, from the boundary of the lesion to the center.

Apart from considering the lesion changes, the density
discrepancy between the adjacent normal liver parenchyma

and the lesion in triple phase scans is also a foundation for
the diagnosis of radiologists. Therefore, the surrounding liver
parenchyma of lesions is considered as the fourth region
(Figure 3). Assuming the bounding box of the lesion region
is K ′ × L′ if each side of the box has an extension of two
pixels, a bounding box that includes the lesion with size
(K ′ + 4) × (L′ + 4) is finally obtained. Thus, the new box
not only contains the tumor, but also its surrounding normal
liver parenchyma.

2.2.2. Regional BoW. Typically, BoW representation involves
four major steps: (1) patches of interest image regions are
detected; (2) patches are locally described using feature vec-
tors (local descriptor); (3) features are quantized and labeled
in terms of a predefined dictionary, that is, the construct
process of codebook; (4) histograms are constructed by
accumulating the labels of the feature vectors of each image
in database.

In the following experiments, the BoW approach, used
generally, follows the traditional visual codebook method
[19–22]. The approach is accomplished by selecting patches
from images, characterizing them with the vectors of the
local visual descriptors, and labeling the vectors using a
learned visual codebook. The occurrence of each label is
quantified to build a global histogram that summarizes the
image content. The histogram is then subjected to distance
metric methods to estimate the disease category label of
the images. The patches are extracted from each pixel point
of the tumor images. The codeword vocabulary is typically
obtained by clustering the descriptors of the training images.
The intensity values are adopted to characterize the local
visual descriptors, which implicitly reflect the category of
the lesion in CT images, thereby providing more important
information. Unsupervised K-means clustering is chosen as
the base codebook learner in the current paper.

The selected size of square patches is seven. This selection
considers the limitation of too many images in the database
and the size restriction of lesions like cysts. Basically, an
image is represented by a histogram of word frequencies that
describes the probability density over the code words in the
codebook. The background gray value of a radiologic image
is 0. Thus, the patches that contained more background
pixels are removed to save time and simply computational.
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Figure 4: The BOW feature extraction based on regions of lesion.

The number of pixels with a value in patch not equal to 0 is
set to be greater than 15 in this paper. For the vocabulary V =
{v1, v2, . . . , vN} with N code words, the traditional codebook
model estimated the distribution of the code words in an
image of r patches {p1, p2, . . . , pr} by x = [x1, x2, . . . , xN ]T ,
where

xi =
r∑

i=1

⎧
⎨
⎩

1 if vi = arg min
u∈V

dist
(
u, pk

)
,

0, otherwise,
(1)

denoting dist(μ, pk) to be the distance between code word μ
in vocabulary and image patch.

The quantized vectors of each region of the lesion are
obtained using the method described above. The final feature
of the lesion is expressed as the arrangement. The process
of BoW is shown in Figure 4. The features of each patient
in different phases are calculated to determine the average
of all corresponding images. For example, if an HCC patient
has six images (one arterial phase image, three portal venous
phase images, and two delayed phase images), the features
used in retrieval of the portal venous phase, dual-phase
(arterial phase plus portal venous phase), or triple-phase are
the corresponding average of features of three images, four
images, or all six images.

2.3. Common Low-Level Features. For each lesion, multiple
features are computed within the lesion region of interest
(ROI).

2.3.1. Intensity Features. The following five intensity features
are calculated: mean, standard deviation, entropy, skewness,
and kurtness of gray-level histogram [23].

2.3.2. Texture Features. Gray-level cooccurrence matrix
(GLCM) [23–25] and Gabor [26, 27] describe the texture

characteristics of each ROI. Sixteen GLCM features are
calculated in the current experiments using contrast, homo-
geneity, energy, correlation for four angles (i.e., 0◦, 45◦,
90◦, 135◦), and distance of 1. Next, 48 Gabor features are
computed from the mean and standard deviations of the
energy in the frequency domain over four scales and six
orientations. The mean and standard deviations of high-
frequency coefficients of its three-level Daubechies4 wavelet
decomposition are computed, resulting in 12 features.

2.3.3. Shape Features. The statistics of wavelet coefficients
of the shape signature are used to characterize the shape of
tumors. The one-dimensional shape signature S(i), based on
radial distance, is defined as follows:

S(i) =
√

(x(i)− Cx)2 +
(
y(i)− Cy

)2
, (2)

where x(i) and y(i) are the coordinates of the ith point on
the tumor boundary and cx and cy are the coordinates of the
centroid of the tumor region. Twelve features are computed
from the mean and variance of the absolute values of the
wavelet coefficients in each subband by the five-level one-
dimensional wavelet decomposition.

This computation yields a total of 93 features.

2.4. Similarity Distance Measure. When the feature vectors
containing detailed imaging information of lesions are com-
puted, the system calculates similar distance measures
between them, that is, similarity between the corresponding
images. The similarity of lesions is defined as the distance
between the corresponding elements of the respective feature
vectors that describe the lesions. Previous studies have
shown that well-designed distance metrics can result in
better retrieval or classification performance compared with
Euclidean distance [28–31]. The goal of distance metric
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learning is to determine a linear transformation matrix to
project the features into a new feature space that can optimize
a predefined objective function. The distance metric learning
algorithms used in this paper are L1 distance, L2 distance,
regularized linear discriminant analysis (RLDA) [32–34],
and linear discriminant projections (LDP) [35–37].

The distance in the L1 norm is known as Manhattan
distance. The L2 norm distance is called the familiar
Euclidean distance. The L1 and L2 distance are described as
follows:

Distance-L1
[
xl, xq

]
=

N∑

i=1

∣∣∣xli − x
q
i

∣∣∣,

Distance-L2
[
xl, xq

]
=
⎛
⎝

N∑

i=1

(
xli − x

q
i

)2

⎞
⎠

1/2

,

(3)

where xq, xl represent the features of the query cases and the
cases in the database and N is the dimension of features.

The RLDA was first presented in [32]. Ye and Wang
then proposed an efficient algorithm to compute the solution
for RLDA [33]. The performance of RLDA exceeds that of
ordinary linear discriminant analysis (LDA) methods [34].
The numbers of samples is set to M. When M and the feature
dimension N are large, applying RLDA is not feasible because
of the memory limit. Considering N is large in the current
paper, the dimension is first reduced to M−1 using principal
component analysis (PCA), after which RLDA is applied.
Parameter α controls the smoothness of the estimator in
RLDA. The value of α is set to 0.001.

The details of the LDP have been inferred from the
previous papers. The LDP approach has three advantages.
First, LDP can be adapted to any dataset and any descriptor,
and may be directly applied to the descriptors. Second, LDP
is not sensitive to noise and is thus suitable for work on
hepatic CT images. Third, LDP can be trained much faster
because the k-nearest of each sample point does not need
to be determined [37]. Moreover, LDP has been proven to
produce better results than some other approaches.

2.5. Lesion Database. All the imaging data of hepatic CT
images for experiments were acquired from the General
Hospital of Tianjin Medical University between February
2008 and October 2010. CT examinations were performed
with a 64-detector helical scanner (LightSpeed VCT; GE
Medical Systems, Waukesha, Wis). The following parame-
ters were used: 120 kVp, 200–400 mAs, 2.5–5 mm section
thickness, and a spatial resolution of 512 × 512 pixels. The
imaging data included three diseases: HCC, hemangiomas,
and cysts. In all, 1248 DICOM lesion images (498 HCC, 481
hemangiomas, and 269 cysts) were found in 187 patients
(89 HCC, 54 hemangiomas, and 44 cysts) wherein each
patient corresponded to 2–10 images. All images were
classified into arterial phase, portal venous phase, and
delayed phase, wherein the number is 388, 443, and 417,
respectively. All the images in the database were manually
delineated using semiautomatic segmentation to ensure the
effectiveness of the CBIR system, and some inaccurate results

were reevaluated by medical imaging experts blinded to the
final diagnosis to obtain more precise lesion data.

In the current study, a patient is a query case. Each patient
has more than one lesion. For example, he/she may have
some cysts or have got hemangioma as well as cysts. However,
only one typical lesion is selected from each image of each
patient, and the lesions in each patient are the same. All the
images of each patient are used for query. The features of
the patient are the average value of features of the images in
single-, dual-, and triple-phase scans.

2.6. Evaluation Measures. Precision and recall are com-
mon criteria used in evaluating the effectiveness of CBIR.
Precision indicates the accuracy of retrieval, that is, how
exclusively the relevant images are retrieved. Precision and
recall ratio can be defined as follows:

Precision = Number of relevant images retrieved
Total number of image retrieved

,

Recall = Number of relevant images retrieved
Total number of relevant image

.

(4)

The higher the value of these two indicators, the better
the retrieval system. The two indicators are usually mutu-
ally contradictory. In theory, as precision increases, recall
decreases, and vice versa. Therefore, generic retrieval systems
that optimally balance these two indicators achieve better
retrieval performance. Generally, the ultimate goal of the
proposed CBIR system is to achieve retrieval results that
better reflect the actual categories of the query case. The
CBIR system retrieves similar cases and thereby calculates a
decision value (i.e., similar distance) that describes the sim-
ilarity to the query case. Therefore, precision is needed. The
higher the precision, the more relevant cases are retrieved,
which indicates that the CBIR system has important clinical
applications. The evaluation measurement is mainly the
average precision, which is defined as the average ratio of the
number of relevant images returned over the total returned
images. Therefore, in the current experiment the following
measures are used to evaluate the CBIR system.

(i) Here, P(10), P(20), and P(n), the average precisions
after the top 10, 20, and n patients are returned when
lesion images are ranked according to similarity to a
query lesion.

(ii) Mean average precision (MAP) is the mean of the
average precisions when the number of images
returned is varied from 1 to the total number of
images.

(iii) Precision versus recall graph.

2.7. Training and Evaluation. All the experiments are based
on 187 patients, using the K-fold cross-validation (K-CV)
method. K-CV is used for the allocation of the samples.
All the samples are evenly divided into K , where in K–1
samples are chosen to training, and the remainder performs
the validation alternately. In this paper, the sampling plan for
K-CV is as follows: 187 cases are evenly divided into K , and
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Figure 5: The average precision histogram of staging retrieval-
based 3 regions using four distance metrics.

each is used for testing set, whereas the other K − 1 samples
are used for training sets. Thus, an K-CV experiment needs
to establish K-models, that is, perform the K tests. Generally
in practice, the value of K needs to be sufficiently large to
enable a sufficient number of training samples, which enables
the distribution features of images in training sets to be
sufficient for describing the distribution features of the entire
image sets. Thus, the distribution features of images in the
entire database are not significantly influenced when some
images of a new patient are added. A K value equal to 10
is considered adequate; hence the value is set to 10 in the
experiment. Each patient in each test is searched as a query
case. Thus, the average precision of each test and the MAP of
10 tests are obtained.

3. Experiment and Results

The effectiveness of the proposed feature extraction method
was verified by retrievals of single-, dual-, and triple-phase
scans to maximize the average precision of a large hepatic
CT image dataset. Four experiments were performed: (1)
verification of the proposed algorithm given different con-
ditions; (2) comparison between general low-level features
and high-level BoW features, (3) exploration of the selection
of region number, and (4) identification of the amount of
clusters influence. PCA was used for dimension reduction
because of the initial huge dimension first. Arterial phase,
portal venous phase, and delayed phase are abbreviated as
AP, PVP, and DP.

3.1. Retrieval Results of Regional BoW. The retrieval per-
formance of the proposed feature extraction algorithm in
single-, dual-, and triple-phase scans is shown in this
experimental. The dual-phase not only refers to arterial plus
portal venous phase, but also to portal venous plus delayed
phase. Figure 5 provides the retrieval results based on three

regions of lesions using the four distance metric methods
mentioned above in terms of P(70). The figure shows that
the results of single-phase scan are lower than the results of
two dual-phase and triple-phase scans, and that the use of
RLDA and LDP generate better results than the use of L1 and
L2.

Table 1 shows the retrieval performance based on three
regions, together with their surrounding liver parenchyma in
triple phase scans in terms of MAP, P(10) and P(20). The
estimated P(20) of single-phase scans using RLDA and LDP
is lower than 85.8%, whereas the P(20) of dual-phase and
triple-phase scans is higher than 91.2%, except for PVP +
DP. Figure 5 and Table 1 indicate that the dual-phase and
triple-phase scans are more precise than the single-phase
scans, because regional BoW-based features greatly express
the characteristics of the three tumors in the triple phases,
that is, HCC and hemangiomas mostly exhibit characteristic
changes, whereas no change occurs in cysts. Therefore, the
proposed feature extraction method agrees with the diagno-
sis of the radiologist for the three lesions. In short, although
single-phase scans may play an important role in diagnosis
or detection, dual-phase and triple-phase scans also ensured
more accurate diagnosis than single-phase scans. The found-
ing demonstrates that arterial and portal venous phase scans
play a major role in diagnosis, and explains why radiologists
directly diagnosed some hepatic diseases only through dual-
phase scans (i.e., artery plus portal venous phase).

Figure 6 shows the precision versus recall curves of the
three regions, as well the region with their surrounding
liver parenchyma in triple phases. The figure shows that the
retrieval performance of the latter is better than performance
of the former, regardless of single-, dual-, or triple-phases
scans. Thus, the results that consider the surrounding liver of
the lesion are more accurate because the discrepancy in den-
sity between the lesions and their adjacent liver parenchyma
in the triple phase scans is also considered by radiologists as
the basis for HCC, hemangiomas, and cysts diagnoses.

The validation of our proposed algorithm can be seen
from different perspectives. Figures 7 and 8 separately com-
pare the performance among three regions of lesion and the
whole lesion, as well as the comparison between two cases
with surrounding liver parenchyma. Figures 7 and 8 show
that the results based on the regions always outperform the
whole lesion with or without surrounding liver tissues in
triple phases. This result can be attributed to the imaging
characteristics of the enhanced images, quantitatively
expressed by the proposed feature extraction algorithm.

3.2. Comparison of Common Low-Level Features and High-
Level BoW Features. Common low-level features were com-
pared with the proposed feature extraction algorithm in
terms of precision versus recall curves. Figure 9 provides the
results using shape alone (denoted as S), combination of
shape and intensity (denoted as In+S), combination of shape,
intensity, and texture (denoted as In+S+T), BoW alone,
and combination of all features mentioned in Section 2.3
in PVP, dual-phase and triple-phase scans. As shown, the
combination of intensity and shape outperforms shape
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Figure 6: Precious versus recall curve in triple phases based on 3 Regions and 3 Regions with neighborhood, and SLR represents surrounding
liver parenchyma.

Table 1: Retrieval result based on 3 regions with surrounding liver parenchyma.

Staging scan
MAP P(10) P(20)

RLDA LDP RLDA LDP RLDA LDP

AP 0.6160 0.6135 0.8259 0.8192 0.8259 0.8190

PVP 0.6288 0.6333 0.8445 0.8575 0.8445 0.8575

DP 0.5972 0.5960 0.7707 0.7723 0.7707 0.7723

AP + PVP 0.6650 0.6651 0.9146 0.9144 0.9141 0.9144

PVP + DP 0.6522 0.6536 0.8845 0.8900 0.8845 0.8900

AP + PVP + DP 0.6755 0.6681 0.9292 0.9127 0.9292 0.9123

alone, whereas the combination of intensity, shape, and
texture yields better results than the combination of intensity
and shape. BoW alone outperforms the combination of
common features, whereas the combination of all features
mentioned is superior to BoW alone. Notably, the CBIR
system based on our algorithm is better than the system
based on other different feature extraction algorithms from
Figure 9 due to the fact that our proposed approach can
express the imaging characteristics of lesions in triple phases.

3.3. Discussion of the Number of Regions for Lesions. The
number of regions that the lesion is divided into is set as
parameter s. The effects of parameter s on our retrieval
system are discussed in this section. Table 2 shows the average
precision after retrieving the top 20 cases with the parameter
s from 2–5. For convenience, only the dual-phase and triple-
phase scans were used. When s is 2 and 5, the results of all
multiple phases are below 90%; when s is 3 and 4, the results
of some multiple phases are better than 90%; when s equal
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to 3, the best retrieval performance is achieved of all the s
values, as shown in Table 2.

3.4. Influence of the Amount of Clusters. Figure 10 shows the
effects of the amount of clusters (i.e., codebook size) using
distance metric L1, L2, RLDA, LDP. The plots show that
performance increases with the number of codebook sizes;
however, a large dictionary results in high computation cost.
Thus, the codebook size is set to1024 in our paper.

4. Conclusion

We have developed a regional BoW feature extraction algo-
rithm for lesion images. The proposed algorithm is mainly
based on the imaging characteristics of lesion visible on
contrast-enhanced triple-phase CT images. Our CBIR sys-
tem, which incorporates the proposed feature extraction
algorithm, can practically retrieve three types of liver lesions
that appear similar. The accurate assessment of our approach
shows reasonable retrieval results that are in accordance
with the diagnoses of radiologists. Our system can aid in
decision-making related to the diagnosis of hepatic tumors
and support radiologists in multiphase contrast-enhanced
CT images by showing them similar patients in lesions.

5. Discussion

The development of a feature extraction algorithm for lesion
images is presented in this paper. Our experiments show that
a CBIR system incorporated with this algorithm can yield
excellent retrieval results. The development of this algorithm
considers the imaging characteristics of three lesions and
their surrounding normal liver parenchyma in contrast-
enhanced triple-phase CT images. This algorithm combines
feature vectors with the characteristic of the ROI, which is
very essential in retrieval systems. Thus, our algorithm is

Table 2: Retrieval results with different number of regions.

s AP + PVP PVP + DP AP + PVP + DP

2
RLDA 0.8795 0.8670 0.8969

LDP 0.8849 0.8724 0.8968

3
RLDA 0.9141 0.8845 0.9292

LDP 0.9144 0.8900 0.9123

4
RLDA 0.9080 0.8836 0.8906

LDP 0.9136 0.8895 0.9079

5
RLDA 0.8621 0.8443 0.8742

LDP 0.8621 0.8382 0.8799

powerful and more advantageous compared with common
low-level feature vectors. The system may serve as useful
aided diagnosis system for inexperienced or experienced
radiologists in searching databases of radiologic imaging and
obtaining good retrieval results.

A number of studies have been conducted on var-
ious hepatic tumor imaging technologies [23, 24, 26].
Mougiakakou et al. [23] defined an aided diagnosis system
for normal liver, hepatic cyst, hemangioma, and HCC in
nonenhanced CT scans. Zhang and his colleagues [24] used
an aided diagnosis system to segment and diagnose enhanced
CT and MR images of HCC. More recently, a CBIR system
that closely resembles the current study was presented [26].
In this system, metastases, hemangiomas, and cysts were all
visible on portal venous phase images. However, the images
used common low-level features such as intensity, texture,
and shape, and did not consider the imaging characteristics
of lesions in multiphase scans. In our opinion, multiphasic
imaging is central to current clinical diagnosis.

In the present paper, the use of BoW was verified to be
effective. Although existing image retrieval technologies
achieved some good performances, they still have some
limitations. Most of image retrieval technologies are based on
the underlying characteristics of the images and used low-
level features. Therefore, they are unable to resolve the
semantic gap problem, which is the inconsistency between
the low-level visual features and the high-level semantic
features. BoW, as a high-level feature [38], has obtained great
success in text retrieval problem, because of its speed and
efficiency, and has been gaining recognition in its use in
problems such as object recognition and image retrieval from
large databases [22]. The BoW framework ignores the spatial
configuration between visual words (i.e., the link between
the characteristics and location) and can cause information
loss. However, this framework can quickly and easily build a
design model. In the proposed feature extraction algorithm,
the spatial structure information of images is considered by
dividing the lesion into three regions, which compensates
for the lack of BoW. Thus, BoW successfully represents the
regional features.

Semantic features are not considered in our study
because of two factors. First, if the query patient remains
undiagnosed, semantic features cannot be used because of
lack of radiology reports. Second, radiologists may use dif-
ferent terminology to describe the same observation [39, 40].
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Figure 8: Precision-recall curve of dual-phase and three-phase scanning retrieval, and SLR represents surrounding liver parenchyma.
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Figure 9: Precision-recall curve using different features in PVP, dual-phase and triple-phase scans.

Thus, some inevitable subject factors exist in the semantic
annotation.

The number of regions that the lesions are divided into is
set mainly due to the triple phase scans of the three tumors.
The optimal number of regions is 3, as revealed in our
previous some experiments, and we have verified that
retrieval performance is the best of the number from 1 to
5. Dividing the lesion into three regions fits the best imaging
behavior of lesion in triple phases described in Section 2.1.
Thus, our selected number of regions is theoretically con-
ducive to our proposed feature extraction algorithm.

Our retrieval system was implemented and evaluated
according to the patients, namely, the images were grouped
according to the patient and the patient is the primary unit of
the query and retrieval. This scheme is very different from the
traditional CBIR system, where single image or single slice
is used as query and retrieval. This patient-based fashion is
more helpful for the diagnosis aid, because the multiphase

images from the retrieved patient obviously could supply
more information than just one image for making decision
for current query patient. The development of our feature
extraction algorithm is focused on the views of imaging find-
ings of the three lesions in triple-phase scans. Therefore, the
retrieval process in our experiments follows single-, dual-,
and triple-phase scans to verify the practicality of our
retrieval system based on the proposed method.

Our study mainly has two main limitations. The first is
number of lesions types used, which was limited to three. The
proposed feature extraction algorithm was developed based
on the imaging characteristics of three lesions (HCC, heman-
giomas, and cysts) in contrast-enhanced triple-phase images.
HCC is a common malignant tumor, whereas hemangiomas
and cysts are the common benign cells. Studies on hepatic
lesions and lesions in other body areas can be extended
in future work to encourage continued development of
relevant feature extraction methods. The second limitation
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Figure 10: The average precision of top 20 cases returned in triple-
phase scan with different dictionary sizes.

is the segmentation of lesions used in our system. Lesions
should first be segmented from abdominal CT images
because lesions contained important imaging information
for image retrieval. Several segmentation algorithms [24]
have been proposed to achieve automatic or semiautomatic
segmentation in medical image analysis. However, because
of the complexity of medical images and lesion infiltration,
no standard method can generate satisfactory segmentation
results for all hepatic-enhanced images. Consequently, man-
ual segmentation is employed by imaging experts to obtain
more accurate lesion images.

In conclusion, the CBIR system based on our proposed
feature extraction algorithm has practical application in
aided diagnosis, which can help radiologists to retrieve
images that contain similar appearing lesions.
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