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Abstract

Our understanding of most biological systems is in its infancy. Learning their structure and intricacies is fraught with
challenges, and often side-stepped in favour of studying the function of different gene products in isolation from their
physiological context. Constructing and inferring global mathematical models from experimental data is, however, central
to systems biology. Different experimental setups provide different insights into such systems. Here we show how we can
combine concepts from Bayesian inference and information theory in order to identify experiments that maximize the
information content of the resulting data. This approach allows us to incorporate preliminary information; it is global and
not constrained to some local neighbourhood in parameter space and it readily yields information on parameter robustness
and confidence. Here we develop the theoretical framework and apply it to a range of exemplary problems that highlight
how we can improve experimental investigations into the structure and dynamics of biological systems and their behavior.
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Introduction

Mathematical models of biomolecular systems are by design and

necessity abstractions of a much more complicated reality [1,2]. In

mathematics, and the theoretical sciences more generally, such

abstraction is seen primarily as a virtue which allows us to capture

the essential features or defining mechanisms underlying the

workings of natural systems and processes. But while qualitative

agreement between even very simple models and very complex

systems is easily achieved, formally assessing whether a given

model is indeed good (or even just useful) is notoriously difficult.

These difficulties are exacerbated in no small measure for many of

the most important and topical research areas in biology [3–5].

The regulatory, metabolic and signalling processes involved in cell-

fate and other biological decision-making processes are often only

indirectly observable; moreover, when studied in isolation their

behavior can often be markedly altered compared to the

experimentally more challenging in vivo contexts [6]. The so-

called ‘‘inverse problem’’ — to learn, construct or infer

mathematical or mechanistic models from experimental data —

is often considered (see e.g. Brenner [7]) as one of the major

problems facing systems biologists.

These challenges have prompted the development of novel

statistical and inferential tools, required to construct (or improve)

mathematical models of such systems. We can loosely group these

methods into (i) those aimed at reconstructing network models

[8–10] (using correlations or statistical dependencies in observed

datasets), (ii) methods to estimate (biochemical reaction) rate

parameters of models describing the dynamics of biological

systems [11–13], and (iii) approaches that allow us to rank or

discern between different candidate models/hypotheses [14,15].

The first set of challenges is typically faced when dealing with new

systems where little information is known, and where network-

inference algorithms offer a convenient way of generating novel

mechanistic hypotheses from data. Here we address the second

point. In particular, we start from a model that describes how the

abundances of a set of molecular entities, x, change with time, t;
the rate of change in x(t) over time is typically described in terms

of (ordinary, partial or stochastic) differential equation systems,

dx(t)

dt
~Fq(x,h);

where x is a k-dimensional vector describing the system’s state and

h~(h1 . . . ,hl) is an l-dimensional vector containing the model

parameters. Finally, q denotes the particular experimental setup

under which data are collected. This dependence is generally

tacitly ignored but, as we will show below, explicitly incorporating

the experimental approach (and the fact that different experimen-

tal choices are typically available) into the model and any down-

stream statistical analysis allows us to develop strategies that yield

more detailed insights into biological systems, and better models

thereof. The aims of the present study are to develop experimental

design strategies that allow us to infer the (unknown or only poorly

known) model parameter, h, and to reduce the uncertainty in the

predicted model behavior.
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Inferential tools have been developed that, given some observed

biological data and a suitable mathematical candidate model,

provide us with parameters that best describe the system’s

dynamics. Unfortunately obtaining reliable parameter estimates

for dynamical systems is plagued with difficulties [16,17]. Usually

sparse and notoriously noisy data are fitted using models with large

number of parameters [18]. As a result, over-parameterized

models tend to fit to the noisy data but may loose confidence in

predictive behavior. Conventional fitting approaches to such data

routinely fail to capture this complexity by underestimating the

uncertainty in the estimated parameters, which substantially

increases the uncertainty in prediction of model behavior.

We use Q~fq1, . . . ,qDQDg to denote the total set of available

experimental assays that could be used to probe a system in a

given situation. These might, for example, include knock-out or

knock-down mutants, transcriptomic or proteomic assays, different

time-courses or different environmental conditions (or both), etc.

Here we remain very flexible as to which type of experimental

setup is included in Q, but merely acknowledge that it is rarely

possible to probe all important aspects of a system simultaneously.

Instead different techniques require different sample preparations

etc , and therefore separate experiments. Here we account also for

the possibility, that for two different experimental set-ups, q and q’,
the mathematical model may differ; therefore the dependence on q
is made explicit in our notation Fq. For example, if species xk is

knocked out in experiment q�, we can ignore any terms referring

to it when modelling Fq� .

Performing different experiments is costly, however, in terms of

both money and time, and not all experiments are equally

informative. Ideally we would like to perform only those

experiments which yield substantial and relevant information. We

regard any information that decreases our uncertainty about

model parameters or model predictions as relevant. As we will show

below, what is substantial information is then easily and naturally

resolved. We will show, for example, that experimental interven-

tions differ in the amount of information they provide e.g. about

model parameters. Equally some experiments provide insights that

are more useful for making predictions about system behavior than

others. It may seem surprising that we consider parameter

inference and prediction of output separately, but this merely

reflects the fact that not all parameters contribute equally to system

output: varying some parameters will have huge impact on the

output, while varying other parameters will lead to negligible

changes in the output. By making the reduction in uncertainty of

predicted model behavior the target of experimental design we

explicitly acknowledge this.

Experimental design in systems biology is different from classical

experimental design studies. The latter theory was first developed

at a time when the number of alternative hypotheses was smaller

than the amount of available data and replicates [19]. Systems

biology, on the other hand is hypotheses rich and data rarely

suffice to decide clearly in favour of one model unambiguously.

Moreover for dynamical systems, as a host of recent studies have

demonstrated, generally less than half of the parameters are tightly

confined by experimental data [16,17]. Together these two

challenges have given rise to a number of approaches aimed at

improving our ability to develop mechanistic models of such

systems. Here we meld concepts from Bayesian inference and

information theory to guide experimental investigations into

biological systems to arrive at better parameter estimates and

better model predictions.

Several authors have used the information theoretical frame-

work, in particular the expected gain in Shannon information to

assess the information content of an experiment [20–24]. Although

the methodology of Bayesian experimental design is well

established, its applicability has been computationally limited to

small models involving only several free parameters. Recently their

use for systems biology becomes possible as a result of increased

computational resources. Vanlier et. al proposed an approach that

uses the Bayesian predictive distribution to asses the predictive

power of experiments [25]. Huan and Marzouk used a framework,

which is similar to ours, in that it maximizes mutual information

via Monte Carlo approximation to find optimal experiments [26];

but they only focus on parameter inference and ignore prediction.

Furthermore they only apply their method to systems with small

number of parameters. Here we demonstrate how such an

approach can be utilized to analyse multi-parameter models

described by ordinary differential equations (ODEs) regarding

both, parameter inference and prediction of system behavior. The

latter is especially useful when one aims to predict the outcome of

an experiment which is too laborious or impossible to perform.

Our approach improves on previous methods [25–32] in a

number of ways: first we are able to incorporate but do not require

preliminary experimental data; second, it is a global approach that

is not limited to some neighbourhood in parameter space unlike

approaches solely based on e.g. the Fisher information [29,33];

third, we obtain comprehensive statistical predictions (including

confidence, sensitivity and robustness assessments if desired); and

we are very flexible in the type of information that we seek to

optimize.

Below we first develop the theoretical concepts before demon-

strating the use (and usefulness) of the Bayesian experimental

design approach in the context of a number of biological systems

that exemplify the set of problems encountered in practice. In

order to demonstrate the practical applicability of our approach

we investigate two simple models (repressilator and Hes1 systems),

as well as a complex signalling pathway (AKT) with experimen-

tally measured dynamics.

Results

Information content of experimental data
To achieve their full functionality mathematical models require

parameter values that generally need to be inferred from

experimental data. The extraction of this information is, however,

Author Summary

For most biological signalling and regulatory systems we
still lack reliable mechanistic models. And where such
models exist, e.g. in the form of differential equations, we
typically have only rough estimates for the parameters that
characterize the biochemical reactions. In order to improve
our knowledge of such systems we require better
estimates for these parameters and here we show how
judicious choice of experiments, based on a combination
of simulations and information theoretical analysis, can
help us. Our approach builds on the available, frequently
rudimentary information, and identifies which experimen-
tal set-up provides most additional information about all
the parameters, or individual parameters. We will also
consider the related but subtly different problem of which
experiments need to be performed in order to decrease
the uncertainty about the behaviour of the system under
altered conditions. We develop the theoretical framework
in the necessary detail before illustrating its use and
applying it to the repressilator model, the regulation of
Hes1 and signal transduction in the Akt pathway.

Information Content of Biological Experiments
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a nontrivial task and is further compounded by the need to assess

the statistical confidence of parameter estimates. In the Bayesian

framework for example, we seek to evaluate the conditional

probability distribution, p(hDx), which relates to the prior

knowledge p(h) and the distribution of data, x, given parameters,

p(xDh), via Bayes’ formula

p(hDx)~
p(xDh)p(h)Ð
p(xDh)p(h)dh

: ð1Þ

The posterior probability density function, p(hDx), describes the

probability of finding a parameter h in the volume element dh of

parameter space, given the data, the model and the prior

information. From this distribution we can obtain all relevant

information about the parameters: how sensitive the solution is to

varying them individually or together; how correlated different

parameters are with one another; if there are non-linear

dependencies among the parameters; and the level of precision

with which each parameter is known in light of the data. A highly

readable and enlightening account of the Bayesian formalism is

given e.g. in [34]. Finding the posterior, p(hDx), is usually achieved

by means of powerful (if costly) computational algorithms such as

Markov chain Monte Carlo (MCMC) and sequential Monte Carlo

(SMC) methods, which also exist in the approximate Bayesian

computation (ABC) framework [15,35,36].

Rather than providing a single parameter estimate the posterior

distribution allows us to assess how well a parameter is constrained

by data (see Figure 1 A). More formally, we measure the

uncertainty about a parameter information-theoretically in terms

of the Shannon entropy [37],

H(H)~{

ð
p(h)log( p(h))dh, ð2Þ

for the prior and

H(HDx)~{

ð
p(hDx) log (p(hDx))dh, ð3Þ

for the posterior. The information gained by collecting data x can

then be expressed as H(H){H(HDx). The output of the

experiment, however, is in turn ‘‘random’’ with distribution

p(x), and therefore the average posterior uncertainty is

HX (HDX )~

ð
H(HDx)p(x)dx, ð4Þ

which leads to the average information gain called mutual

information between X and H,

I(X ,H)~H(H){HX (HDX ): ð5Þ

When faced with different experimental setups, q, and hence

different datasets, Xq, choosing the set(s) which maximize I(Xq,H)

will provide the best insights into the system via improved

parameter estimates [20,38,39]. This observation is the basis of

our experimental design methodology which consists of computing

the mutual information I(Xq,H) for every experiment q and

selecting the experiment resulting in the highest mutual informa-

tion (see Methods for computational details). Once the chosen

experiment has been carried out, the new data are used to update

the model and the posterior distribution of the parameters (see

Figure 1 B).

Given the importance of the predictive role of mathematical

modelling it is also of interest to reduce the uncertainty of model

predictions; intriguingly and perhaps counterintuitively — but

demonstrably and provably (see below and Supplementary Material)

— better parameter estimates are not necessarily required for

better, more certain model predictions. Therefore, instead of

focussing on parameter inference we can directly seek to identify

the experimental condition q� which minimizes the uncertainty in

the predicted trajectories Y . Analogously to the previous case

minimizing uncertainty in predictions of Y means to maximize

mutual information between X and Y (see Methods):

I(X ,Y )~H(Y ){H(Y DX ): ð6Þ

Below we use three examples of different complexity to show

how this combination of rigorous Bayesian and information

theoretical frameworks allows us to design/choose optimal

experimental setups for parameter/model inference and predic-

tion, respectively.

Experiment selection for parameter inference
To investigate the potential of our experimental design method

for parameter estimation we first apply it to the repressilator

model, a popular toy model for gene regulatory systems [40]. It

consists of three genes connected in a feedback loop, where each

gene transcribes the repressor protein for the next gene in the loop

(see Figure 2 A and B).

To infer the parameters of this model, h, a, a0, and b, we

propose 5 sets of possible experiments: the original repressilator

model (set 1) which is described in Figure 2 A and corresponds to

the ordinary differential equations in Figure 2 B, and 4
modifications of the original model, see Figure 2 C. The suggested

4 experiments are hypothetical, but can be linked to potential

experiments. For example, a decrease in the parameter a0

corresponds to a decrease of the basal transcription rate, which

could be achieved with inhibitors or site-directed mutation of the

corresponding transcription factor binding site. The proposed

modifications can lead to different dynamics, and this in turn can

lead to a higher mutual information between the parameters and

the resulting mRNA and protein trajectories, which are here the

output of the system. The information content increases as

differences in the outputs resulting from different parameter values

increase. In Figure S1, we illustrate the link between the increase

in mutual information and the dynamics of the system for three

different regimes.

To determine which experiment to carry out we compute the

mutual information between the parameter prior distribution and

the system output via Monte-Carlo estimation. We use uniform

priors over ½1,10� for h, over ½0,20� for a0, over ½500,2000� for a,

and over ½0,10� for b. Figure 3 shows that experiment 2 and 5 have

highest mutual information, i.e. carrying out those experiments

will decrease the uncertainty in the parameter estimates most. To

confirm this we simulate data for the 5 experiments using the

parameter (h�,a�,a�0,b�)~(2,10,1000,5). The simulated data are

shown in Figure S2. Based on these data we perform parameter

inference using an approximate Bayesian computation approach

[41] for each experiment separately and compare the posterior

distributions shown in Figure 3. We observe that using the data

generated from set 1 (original repressilator system) only 2
parameters can be inferred with confidence: h and a0. By contrast,

the data generated by set 2 and set 5 allow us to estimate all 4
parameters. In addition, for each experiment we compute the

Information Content of Biological Experiments
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reduction of uncertainty from the prior to the posterior

distribution. The results are consistent with the results using

mutual information and confirm that we should choose experi-

ment 2 or 5 for parameter inference. In practice not all molecular

species may be experimentally accessible and it is therefore also of

interest to decide which species carries most information about the

parameters. We can estimate the mutual information between the

parameter and each species independently, and, for example, for

experimental set 5 we observe that mRNA m1 and m2 as well as

protein p1 carry equally high information. This mutual informa-

tion for each mRNA and each protein is plotted in Figure S3.

Sometimes we are interested in estimating only some of the

parameters, e.g. those that have a direct physiological meaning or

are under experimental control. To investigate this aspect we

consider the Hes1 transcription factor that plays a number of

important roles, including in the cell differentiation and segmen-

tation of vertebrate embryos. Oscillations observed in the Hes1

system [42] might be connected with formation of spatial patterns

during development. The Hes1 oscillator can be modelled by a

simple three-component ODE model [43] as shown in Figure 4 A.

This model contains 4 parameters, k1, P0, n, and h, and 3 species:

Hes 1 mRNA, m, Hes 1 nuclear protein, p1, and Hes 1 cytosolic

protein, p2. It is possible to measure either the mRNA (using real-

time PCR) or the total cellular Hes 1 protein concentration

p1zp2 (using Western blots). We investigate whether protein or

mRNA measurements provide more information about the model

parameters. Thus we estimate the mutual information between

mRNA and parameters, and between protein and parameters.

Figure 4 B shows that mRNA measurements carry more

information about all of the parameters.

This can again be further substantiated by simulations. We

perform parameter inference based on such simulated data

(simulated data are shown in Figure S5) and compute the

difference between the entropy of the prior and that of the

resulting posterior distribution. The results shown in Figure 4 C

are consistent with the predictions based on mutual information:

mRNA measurements carry more information for parameter

inference. Interestingly, however, although the mutual information

computation indicates that the protein measurements should

contain more information about parameter k1 than about the

other parameters, this is not confirmed by the difference in

entropy result for this simulated data set. This divergence is due to

the fact that the mutual information measures the amount of

information contained on average over all the possible behaviours of

the system, whereas Figure 4 C represents the decrease in entropy

from the prior to the posterior distribution given specific data. The

differences in entropy for other data sets simulated using different

parameter regimes are thus in better agreement with the mutual

information results. We confirm this in Figure S6 where we show the

results of the same analysis based on a different simulated data set.

Experiment selection for prediction
We next focus on a scenario where we aim to predict the

behaviour of a biological system [44] under conditions for which it

Figure 1. Information content of experimental data and flow chart of the experimental design method. (A) The regions of plausible
parameters values for three different experiments. Each ellipse defines the set of parameters which are commensurate with the output Xq of an
experiment q. In this example, the data Xq3

leads to the most precise inference of the parameters. The parameters which explain the output of all the
three experiments are at the intersection of the three ellipsoids. (B) Flowchart of the experimental design method. Given a mathematical model of the
biological system, a set of experiments and the target information —which can be either a set of parameters to infer or a description of the
experiment to predict — the Bayesian Experimental Design method determine the experiment to carry out. Once the experiment has been
performed, the experimental data are then used to provide target information and to improve the model. Thereafter, the process can be iterated to
select other experiments in order to improve the accuracy of the target information. (C) Link between the total and conditional entropies and the
mutual information of experimental data X and parameters h.
doi:10.1371/journal.pcbi.1002888.g001
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is not possible to obtain direct measurements. We consider as an

example the phosphorylation of Akt and ribosomal binding

protein S6 in response to a epidermal growth factor (EGF) signal.

Figure 5 A shows the pathway of interest: the EGF growth factor

binding to the activated receptor EGFR leads to phosphorylation

of EGFR and a signal cascade which results in the phosphorylation

of Akt (pAkt) which in turn can activate downstream signalling

cascades and leads to the phosphorylation of S6 (pS6); a

corresponding mathematical model is shown in Figure S7 [45].

We are interested in predicting the dynamics under multiple

pulsed stimuli with EGF in the presence of background noise, as

shown in Figure 6 A. We consider 5 pulses of intensity 1 ng/ml

and length 60 seconds spaced by 400 seconds with additive

background noise. This input is difficult to realize in an

experimental system (let alone an animal or clinical setting). Using

an initial data set, see Figure 5 B, we can infer system parameters

using ABC SMC. The resulting fit to the data using the inferred

parameters are shown in Figure S8. From the resulting posterior

distribution we then sample 1000 parameter combinations and

simulate the model with the 5-pulse-stimulus in order to predict

the time courses of phosphorylated EGF receptor (EGFR),

phosphorylated Akt and phosphorylated S6; based on just the

estimated parameters these predictions are, however, associated

with high uncertainty, see Figure 6 B.

To obtain better predictions we can use data from other

experiments measuring the time course of the 3 species of interest

for a experimentally more straightforward input signals chosen

from among 12 possible stimuli: impulse, step or ramp stimuli with

different EGF concentrations (see Figure 6). To determine which

of those inputs would result in the most reliable predictions we

compute the mutual information between the time courses for the

different potential experimental inputs and the time-course of the

target 5-impulse noisy stimulus. We incorporate initial information

about model parameters by computing the mutual information

based on the posterior distribution inferred above. Figure 6 C

shows that a step stimulus of intensity 3 ng/ml has the highest

mutual information and therefore reduces the uncertainty of the

predicted behavior of our target stimulus pattern.

In Figure 6 D we show that this does indeed yield much

improved predictions compared to the initial prediction. This

reduction in uncertainty about predicted model behaviour results

from the difference in the posterior distributions obtained under

different stimulus regimes; by focussing on predictive ability we

focus implicitly on data that is informative about those parameters

that will affect the system behaviour most under the target (5-

pulse) stimulus. The posterior distributions are represented in

Figure 6 E for two parameters, the EGFR turn over and the

EGFR initial concentration, which appear to be essential for the

Figure 2. The repressilator model (as described in [40]) and the set of possible experiments. (A) Illustration of the original repressilator
model. The model consists of 3 mRNA species (coloured wavy lines, labeled m1, m2 and m3) and their corresponding proteins (circles shown in the
same color with labels p1, p2 and p3). The 3 regulatory DNA regions are not modeled explicitly but included in the mRNA production process. They
are shown for illustration purpose only. (B) The ordinary differential equations which describe the evolution of the concentration of the mRNAs and
proteins over time. (C) Four potential modifications of the wild-type model. For each experimental intervention the modified parameters are listed
(colours are as in A). The modifications of the wild-type model consist of decreasing one or several of the parameters of the system: in sets 2, 3 and 5,
the regime of the parameter a is changed; in sets 3, 4 and 5, respectively, parameters a0 , a and b are modified for only one gene which breaks the
symmetry of the system.
doi:10.1371/journal.pcbi.1002888.g002
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prediction of the evolution of Akt/S6 phosphorylation patterns

under the 5-pulse stimulus. Those two parameters were not

inferred using the initial dataset alone, whereas the addition of the

outcome of the step stimulus experiment suggested by our methods

infers these parameters at the required precision.

This ability to predict the time courses extends to much greater

signal distortion and even with a noise level of 100 percent of the

signal intensity we find that our experimental design method yields

similar improvements in the predictions. This additional analysis

of the new input signal is shown in Figure S10 and S11. We

observe that the direct target (EGFR receptor) as well as activated

AKT (pAKT) efficiently filter out the noise but capture the 5

pulses; EGFR activation quickly returns to base level in response

to the higher frequency background noise. This indicates that

there might be a constant low concentration of activated EGFR

(pEGFR), but the activation of S6 has very different characteristics

and is far less robust to noise. The level of noise is amplified as can

be observed in the pS6 time course. This might suggest that the

downstream molecule pS6 has a longer time delay to react to a

signal. Moreover, pS6 does not have time to relax to its baseline

between the 5 pulses, which leads to incremental signal

amplification. This behavior fits with the low-pass filter charac-

teristics previously described [45]. In further support earlier studies

[46] found that a downstream molecule can be more sensitive to

an upstream activator than the direct target molecule of the

activator. This might explain that the activation of EGFR and

AKT is more robust to noise than the downstream molecule, S6.

Discussion

We have found that maximizing the mutual information

between our target information — here either model parameter

values or predictions of system behaviour — and the (simulated)

output of potentially available experiments offers a means of

arriving at optimally informative experiments. The experiments

that are chosen from a set of candidates are always those that add

most to existing knowledge: they are, in fact, the experiments that

most challenge our current understanding of a system.

This framework has a number of advantages: First, we can

simulate cheaply any experimental set-up that can in principle be

implemented; second, using simulations allows us to propagate the

model dynamics and to quantify rigorously the amount of

(relevant) information that is generated by any given experimental

design; third, our information measure gives us a means of

meaningfully comparing different designs; finally, our approach

can be used to design experiments sequentially — our preferred

Figure 3. Experiment choice for parameter inference in the repressilator model. Top: The mutual information I(h,X ) between the
parameters h and the output of each set of experiment (in dark green), and the entropy difference between the prior distribution and the posterior
distribution. The posterior distribution is based on data obtained from simulation of the system for each experiment (in light green). The error bars on
the mutual information barplots show the variance of the mutual information estimations over 3 independent simulations. Bottom: For each set of
experiment we show the histogram of the marginal of the posterior distribution of every parameters. The red line indicates the true parameter value.
doi:10.1371/journal.pcbi.1002888.g003
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route as this will enable us to update iteratively our knowledge of a

system along the way — or in parallel, i.e. selecting more than one

experiment. Previous approaches had taken a more local approach

[25,29,30,47] that relied on initial parameter guesses and often data;

our approach also readily incorporates different stimulus patterns [48].

Here we have focussed on designing experiments that increase

our ability to estimate model parameters and to predict model

behaviour. The latter depends on model parameters in a very

subtle way: not all parameters affect system output equally and

under all conditions. Target conditions could, for example, include

clinical settings which are generally not experimentally amenable

(at least in early stage research); here the current approach offers a

rationale for designing [49] therapeutic interventions into complex

systems based on investigations of suitable model systems. In this

study we provide an approach to chose the optimal experiment out

of a finite and discrete set of possible experiments. Experimental

design with a continuous set of experiments requires a different

approach, as for example shown in [50].

With an optimal design we can overcome the problems of sloppy

parameters [16] (which are, of course, dependent on the

experimental intervention chosen [17]) and can narrow down the

posterior probability intervals of parameters. We would like to

reiterate, however, the importance of considering joint distributions

rather than merely the marginal probabilities of (or the confidence

regions associated with) individual parameters: parameters of

dynamical systems tend to show high levels of correlation (i.e. we

can vary them simultaneously in a way that does not affect the output

of the system — at least in some areas of parameter space) and their

posterior probability distributions often deviate from normality (which

also motivated the use of information theoretical measures which can

deal with non-linearities and non-Gaussian probability distributions).

We tested and applied our approach in three different contexts:

while the repressilator serves as a toy model with hypothetical data

and experiments, the Hes1 transcription regulatory system and the

EGF induced Akt pathway are relevant biological systems. The

question to answer in the Hes 1 system, which molecular species to

measure, is a common question in laboratories. The presented

study of the Akt system does not only demonstrate how to chose

experiments for prediction of system behaviours, but it is also an

example for stimulus design.

The approach we presented here yields the potential for model

discrimination or checking the target of our analysis [48,51], and,

for example, choose experimental designs that maximize our ability

to distinguish between competing alternative hypotheses or models.

All of this is straightforwardly reconciled in the Bayesian framework,

which also naturally lends itself to such iterative procedures where

Figure 4. Experiment selection for parameter inference in the Hes 1 model. (A) Diagram of the Hes 1 model and the associated ordinary
differential equations. The model shows a cell (green box) with its nucleus (white circle). Hes 1 mRNA (wavy line with label m) is produced inside the
nucleus and translated into Hes 1 cellular protein (p1), which in turn is then transported into the nucleus and becomes nuclear Hes 1 protein (p2). p2
is regulating the production of m. (B) The mutual information between each parameters and the output of the system for respectively mRNA
measurement (left) and total cellular Hes 1 measurement (right). The barplot represents the mean and the variance over 3 repetitions of the Monte-
Carlo estimation. (C) Estimation of the difference between the entropy of the parameter prior and the entropy of the posterior distribution given one
dataset. The dataset results from simulation of the Hes 1 system. The parameter kdeg was set to be 0.03 min21 as experimentally determined by [42].
doi:10.1371/journal.pcbi.1002888.g004
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‘‘today’s posterior’’ is ‘‘tomorrow’s prior’’ and models are under-

stood increasingly better as new, more informative data are

systematically being generated.

Methods

Information theoretic design criteria
Our aim is to choose an experiment q from a set of candidate

experimental setups, Q, which either reduces uncertainty about

model parameters or uncertainty of an outcome of a particular

condition q� for which data are impossible or difficult to obtain. In

the information theory framework, these two goals boil down to

determining an experiment q[Q which contains maximal informa-

tion about the parameter or the desired predictions for condition q�.
In order to present in more details these two goals and for better

understanding we revise some concepts of information theory [34].

We define the entropy H(X ) of a random variable X , which

measures the uncertainty of the random variable,

H(X )~{EX ( log (p(X )))~{

ð
log (p(x))p(x)dx ð7Þ

Figure 5. The EGF-dependent AKT pathway and an initial dataset. (A) Diagram of the model of the EGF-dependent AKT pathway. Epidermal
growth factor (EGF, red triangle) is a stimulus for a signalling cascade, which results in the phosphorylation (green circle) of Akt (blue square) and S6
(purple square). EGF binds to the EGF membrane receptor EGFR (orange), which is generated from a pro-EGFR. The Binding results in the
phosphorylation of the receptor, which consequently leads to the activation of downstream cascades (thick black circle). This simplified model was
shown to capture the experimentally determined dynamics [45]. (B) A impulse input of EGF over 60 seconds with an intensity of 0:1 ng/ml (top) and
the resulting time course of phosphorylated EGF receptor (pEGFR), phosphorylated Akt (pAKT) and phosphorylated S6 (pS6) in response to this
stimulus (bottom). Data were provided by the authors of [45].
doi:10.1371/journal.pcbi.1002888.g005
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and the mutual information I(X ,Y ) between two random variables

X ,Y , which is the reduction of the uncertainty that knowing Y

provides about X ,

I(X ,Y )~H(X ){EY (H(X DY ))~

ðð
p(x,y) log

p(x,y)

p(x)p(y)
dxdy, ð8Þ

where p(x,y) is the joint probability density function of X and Y

while p(x) and p(y) are the marginal probability density functions.

We denote by EX the expectation with respect to the probability

distribution of X . Here we follow the convention where capital

letters stand for random variables while lower-case stand for a

particular realization of a random variable.

Reducing uncertainty in model parameters
We first consider the task of choosing an experiment that will on

average provide most information about model parameters

measured through the reduction in their respective uncertainties.

In the information theoretic language, as by Lindley [20] and later

by Sebastiani and Wynn [52] the initial (prior) uncertainty is given

by the entropy H(H) of the prior distribution p(h), which after

data xq have been collected (in experimental setup q) gives rise to

Figure 6. Experiment selection for prediction in the EGF-dependent AKT pathway. (A) The noisy 5-impulses EGF input signal: the 5 pulses
are of intensity 1 ng/ml and length 60 seconds spaced by 400 seconds with an additive background noise which is the absolute value of a gaussian
white noise of variance t2~0:1. (B) The predicted time course of the proteins pEGFR, pAKT and pS6 under the noisy 5-impulses EGF input signal
based on the initial dataset. (C) The mutual information between the time course of the 3 species of interest under the noisy 5-impulses EGF input
signal and the time course of the species under each of the following 12 possible experiments: an impulse stimulus of length 60 seconds with 5
possible intensity (0:3, 1, 3, 10 and 30 ng/ml), a step stimulus of length 60 minutes with 4 possible intensity (0:1, 0:3, 1 and 3 ng/ml) and a ramp
stimulus of length 60 minutes with 3 possible final intensity (0:03, 0:3 and 3 ng/ml). (D) The predicted time course of the proteins pEGFR, pAKT and
pS6 under the noisy 5-impulses EGF input signal based on the outcome of the step stimulus with intensity 3 ng/ml, which is the experiment with the
highest mutual information. The scale of the y-axis is different for Figures (B) and (D). (E) The posterior distribution of two parameters (EGFR turnover
and EGFR initial condition) when using the initial dataset alone (left) and when using the initial dataset and the outcome of the step stimulus with
intensity 3 ng/ml (right). The scale of the EGFR turnover is the prior range for the figure on the left panel whereas it is 100 times smaller for the figure
in the right panel.
doi:10.1371/journal.pcbi.1002888.g006

Information Content of Biological Experiments

PLOS Computational Biology | www.ploscompbiol.org 9 January 2013 | Volume 9 | Issue 1 | e1002888



the entropy H(HDxq) of the posterior distribution p(hDxq). The

information gained about the parameter by collecting the data xq

is then H(H){H(HDxq). On average, however, the decrease of

uncertainty about H after data are collected in an experiment q is

given by I(Xq,H). Therefore, in order to reduce parameters’

uncertainties one should choose an experiment that maximizes the

mutual information between Xq and H.

Here we specifically consider models such that the output is of

the form

xq~m(h,q)zE ð9Þ

where m is a deterministic function and E an uncorrelated, zero

mean, gaussian random variable with variance s2 (our approach is

readily extended to stochastic systems). In such a model

maximization of mutual information I(H,Xq) is equivalent to

maximization of the entropy H(xq). This observation described

first in [52] results directly from the fact that the mutual

information I(H,Xq) can be written as the difference between

H(Xq) and EH(H(XqDH)) and that

EH(H(XqDH))~{

ðð
p(h)p(xqDh) log p(xqDh)

� �
dxqdh

does not depend on the experiment q. Indeed, Equation (9) implies

that p(xqDh) is the probability of the experimental noise E. Therefore

maximization of I(Xq,H) is equivalent to maximization of H(Xq).

However, this is only the case for the mutual information between

the ouput xq of an experiment q and the parameter of the system H.

Whenever we are interested in the increase of information about

only one component of the parameter vector, or in reducing

uncertainty about an experimental outcome we need to use the

mutual information and not the entropy.

Reducing uncertainty in an experimental outcome
Similar reasoning leads us to a criterion for selecting an

experiment q that reduces uncertainty about predictions for the

system output under a different set of conditions or experiment q�.
Choosing q that maximizes I(Xq,Xq� ) leads to an experiment that

on average reduces the uncertainty of predictions for condition q�

most. This can be seen by rewriting (8)

I(Xq,Xq� )~H(Xq� ){EXq H(Xq� DXq)
� �

: ð10Þ

Estimation of the mutual information
The mutual information for models of type (9) can be estimated

using Monte Carlo simulations [26,53]. We first focus on the

mutual information between parameters H and the output Xq of

an experiment q, which can be written as a function of the prior

distribution p(h), the probability of the output given the parameter

p(xqDh) and the evidence p(xq) as follows

I(H,Xq)~

ðð
p(h,xq) log

p(h,xq)

p(h)p(xq)
dhdxq

~

ðð
p(h)p(xqjh) log

p(xqjh)

p(xq)
dhdxq:

ð11Þ

Drawing a sample fh(i)g1ƒiƒN1
from the prior distribution p(h)

we obtain a Monte-Carlo estimate,

I(H,Xq)&
1

N1

XN1

i~1

log
p(x(i)

q Dh(i))

p(x
(i)
q )

, ð12Þ

where for all 1ƒiƒN1, x(i)
q is an output of the system for the

parameter h(i). For models of type (9) p(xqDh) is the probability

density function of a Gaussian distribution with mean m(h,q) and

covariance s2I taken at xq. To compute the quantity in (12) we

have to estimate the evidence p(x(i)
q ), which can be done via

Monte Carlo simulation: given a N2-sample fh(j)gN1z1ƒjƒN1zN2

drawn independently from the prior distribution p(h) with

fh(i)g1ƒiƒN1
we have

p(x(i)
q )~

ð
p(x(i)

q Dh)p(h)dh&
1

N2

XN1zN2

j~N1z1

p(x(i)
q Dh(j)): ð13Þ

Combining equations (12) and (13), we obtain the following

estimate of the mutual information between the parameter h and

the output xq,

I(H,Xq)&
1

N1

XN1

i~1

log p(x(i)
q Dh(i)),

� �
{ log

1

N2

XN1zN2

j~N1z1

p(x(i)
q Dh(j))

0
@

1
A

2
4

3
5: ð14Þ

Similarly, we can estimate the mutual information between any

single component hc of the d-dimensional parameter vector, H,

and the output Xq. We denote by H�cc the d{1-dimensional vector

containing all the components of H except the c-th one.

Integrating over h�cc, the mutual information between Hc and Xq

is equal to

I(Hc,Xq)~

ðð
p(hc,xq) log

p(hc,xq)

p(hc)p(xq)
dhc dxq

~

ðð
p(h,xq) log

p(hc,xq)

p(hc)p(xq)
dhdxq

~

ðð
p(h)p(xqDh) log

p(xqDhc)

p(xq)
dhdxq

and can be estimated through Monte Carlo simulation by

I(Hc,Xq)&
1

N1

XN1

i~1

log
p(x(i)

q Dh(i)
c )

p(x
(i)
q )

ð15Þ

As previously the evidence p(x(i)
q ) can be estimated from a sample

drawn from the prior without great difficulty. On the other hand,

the estimation of the numerator p(x(i)
q Dh(i)

c ) requires an additional

integration over h�cc. We then have

p(x(i)
q Dh(i)

c )~

ð
p(x(i)

q Dh(i)
c ,h�cc)p(h�ccDh(i)

c )dh�cc&
1

N3

XN3

j~1

p(x(i)
q Dh(i,j)) ð16Þ

where for each 1ƒiƒN1, fh(i,j)g1ƒjƒN3
is a sample drawn from

p(h) under the constraint that h(i,j)
c ~h(i)

c . Putting all the terms

together, we obtain the following estimation of the mutual

ð14Þ
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information between Hc and Xq: given a sample fh(i)g1ƒiƒN1zN2

drawn from p(h) and a N1|N3-sample fh(i,j)g1ƒiƒN1, 1ƒjƒN3

such that for all i, j, h(i,j) is drawn from p(hDh(i)
c ),

I(Hc,Xq)&

1

N1

XN1

i~1

log
1

N3

XN3

j~1

p(x(i)
q jh(i,j))

 !
{ log

1

N2

XN1zN2

k~N1z1

p(x(i)
q jh(k))

0
@

1
A

2
4

3
5: ð17Þ

To finish we consider the estimation of the mutual information

between the output of the system for two different experiments q
and q�. We have

I(Xq,Xq� )

~

ðð
p(xq,xq� ) log

p(xq,xq� )

p(xq)p(xq� )
dxq dxq�

~

ððð
p(xqjh)p(xq� jh)p(h) log p(xq,xq� ){ log p(xq){ log p(xq� )

� �
dhdxq dxq�

where we used the fact that Xq and Xq� are independent

conditionally to a parameter h. This equation leads to a Monte

Carlo estimation from a N-sample fh(i)g1ƒiƒN drawn from the

prior given by

I(Xq,Xq� )&
1

N1

XN1

i~1

log
1

N2

XN1zN2

j~N1z1

p(x(i)
q jh(j))p(x

(i)
q� jh

(j))

0
@

1
A

2
4

{ log
1

N3

XN1zN2zN3

k~N1zN2z1

p(x(i)
q jh(k))

0
@

1
A

{ log
1

N4

XN

l~N1zN2zN3z1

p(x
(i)
q� jh

(l))

0
@

1
A
3
5

where N1zN2zN3zN4~N.

Technical details. We implemented the algorithms in

Python. The numerical solutions of the models were obtained

using the solver for ordinary differential equations of the package

cuda{sim [54], which allows for parallel implementation on

graphical processing units (GPUs). The algorithm to obtain the

Monte Carlo estimates was also parallelized using GPUs. For the

repressilator, we assume measurement noise E with variance

s2~5. To estimate the mutual information between the output

and the parameter, we use N1~100000 and N2~4500000. The

mutual information between the output of the system and each

parameter in the Hes1 example is computed using s2~0:5, and

N1~N2~N3~5000. For the AKT model, the variance of the

measurement noise is equal to 10, N1~1000, and

N2~N3~N4~4500.

Approximate Bayesian Computation (ABC)
Once data x� have been collected, we use an Approximate

Bayesian Computation framework [55,56] to infer the posterior

parameter distribution p(hDx�). This is a simulation-based method

which mainly consists in sampling the parameter space from a

prior distribution p(h), simulating the system for each sampled

parameter (often called particle) and selecting the particles such

that the simulated data are less than some maximal distance away

from the observed data. Those particles define an estimate of the

posterior distribution given the observed data:

p(hDx�)&
p(h)

Ð
x

p(xDh) D(x,x�)ƒddx

p(x�)

Specifically we use an ABC scheme based on sequential Monte

Carlo, which has been developed for likelihood-free parameter

inference in deterministic and stochastic systems [41]. We use the

implementation of this method of the package called

ABC{SysBio [57].

Estimation of the entropy
The estimation of entropy has been performed only to test and

confirm our experimental choice, which is based on Monte Carlo

estimation of mutual information. For each experiment q we

compute the difference between the entropy H(H) of the prior

distribution p(h) and the entropy H(HDxq) of the posterior

distribution p(hDxq). The entropies H(H) and H(HDxq) are

approximated using a histogram-based estimators. This discretiza-

tion of the parameter space leads to a change of scale in the

entropy measure. This explains why the scales of the differences

between estimated entropies and the estimated mutual informa-

tion differ despite the fact that the mutual information I(H,Xq) is

the expectation over all possible data xq of the difference between

H(H) and H(HDxq). It is also well known that such histogram

approach leads to a biased estimate of the entropy [58]. However,

since the bias only depends on the number of bins and the sample

size, we can compare the estimation results among experiments as

long as these algorithm parameters are kept the same.

Technical details. To compute the entropy H(HDxq) for

each experiment q in the repressilator example we compute a 4-

dimensional histogram to discretise the posterior distribution

(for all 4 model parameters) using 100 bins for each dimension

resulting in a total of 108 bins. We use the R package entropy
[59] to estimate the entropy. For the Hes 1 model we computed

histograms over the marginals posterior distribution, to

measure the entropy of each parameter separately. Here we

used 1000 bins.

Experimental data
The experimental data sets used to investigate the Akt model

were collected and published by the lab of S. Kuroda. The data

are normalised Western blot measurements as described in [45].

Supporting Information

Figure S1 Information content of different parameter regimes.

The mutual information I(x,h) depends on the dynamics of the

system given the prior of the system parameters: the more the

dynamics for different parameter values differ from each other, the

higher is the information content. To visualize this we compute the

mutual information between one parameter and the outcome of

the system for three different regimes in the repressilator example.

Noting that a0 is a bifurcation parameter and a0~2:55 is a Hopf

bifurcation point, we choose 3 different prior regimes for a0:

p1(a0)*U(0:5,1:5), p2(a0)*U(3,4) and p3(a0)*U(10,11). We

keep the remaining 3 parameters constant: h~2, a~1000 and

b~5. For these three priors we estimate the mutual information

I(x,a0) and represent the dynamics of the output of the system.

We observe that the dynamics resulting from the first prior regime

are most diverse and therefore I(x,a0) has the highest value

(118:78+2:2710{3) compared to the remaining two parameter

regimes (113:48+2:4210{3 for p2(a0) and 113:41+4:9210{4 for

ð17Þ
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p3(a0)). Shown is the bifurcation diagram for parameter a0 with its

stable (solid lines) and unstable (dashed lines) states. Estimation of

mutual information was performed for 3 different parameter

regimes. For illustration we plot the mean (dark blue), 25 and 75

percentiles (blue) and the 5 and 95 percentiles (light blue) of

trajectories simulated with 10000 parameter sets, where a0 is

uniformly sampled and the remaining parameters are kept

constant (h~2, a~1000 and b~5).

(TIFF)

Figure S2 The simulated evolution of the mRNA and protein

concentration in the repressilator model for each experimental

setup. The parameter vector used for simulations is

(h�,a�,a�0,b�)~(2,10,1000,5). The colours correspond to those in

Figure 2. The dots represent the simulated data and the lines

correspond to the mean of the species for 1000 parameters

sampled from the posterior distribution computed using ABC

SMC.

(TIFF)

Figure S3 Mutual information between the parameter and each

species (3 mRNA and 3 protein measurements) for experiment 5 in

the repressilator model.

(TIFF)

Figure S4 The posterior distribution given the data represented

in Figure S2. Each subfigure (A to E) corresponds to an experiment

(1 to 5). In each subfigure, the diagonal represents the marginal

posterior distribution for each parameter and the off-diagonal

elements show the correlations between pairs of parameters.

(TIFF)

Figure S5 Simulated trajectories of the mRNA and protein

concentrations (dots). The parameter used for simulation is

(P0,h,n,k1)~(1:4,5:7,0:02,0:09): The lines represent the 5% and

95% percentiles of the species abundances for 1000 parameters

sampled from the posterior distribution computed using ABC

SMC.

(TIFF)

Figure S6 (A) Simulated trajectories of the mRNA and protein

concentration (dots) for the parameter

(P0,h,n,k1)~(1:25,7:54,5:36|10{2,4:02|10{3): The lines rep-

resent the 5% and 95% percentiles of the species abundances for

1000 parameters sampled from the posterior distribution comput-

ed using ABC SMC. (B) Estimates of the differences between the

entropies of the prior and posteriors.

(TIFF)

Figure S7 Ordinary differential equations which describe the

dynamics of the 11 species of the AKT model. The model contains

12 parameters denoted pi, 1ƒiƒ12. The concentration of the

following species (in this order) are denoted by yi, 0ƒiƒ10: EGF,

EGFR, pEGFR, pEGFR-AKT, AKT, pAKT, S6, pAKT-S6, pS6,

pro-EGFR and EGF-EGFR.

(TIFF)

Figure S8 The time course of phosphorylated EGF receptor

(pEGFR), phosphorylated Akt (pAKT) and phosphorylated S6

(pS6) in response to an impulse input of EGF over 60 seconds with

an intensity of 0:1 ng/ml (dots). Data are Western blots

measurements, described in [45]. The lines represent the 5%
and 95% percentiles of the evolution of the species for 1000
parameters sampled from the posterior distribution computed

using ABC SMC.

(TIFF)

Figure S9 The time course of phosphorylated EGF receptor

(pEGFR), phosphorylated Akt (pAKT) and phosphorylated S6

(pS6) in response to a step input of EGF over 60 minutes with an

intensity of 3:0 ng/ml (dots). Data are Western blots measure-

ments, which have been generated and published by [45]. The

lines represent the 5% and 95% percentiles of the evolution of the

species for 1000 parameters sampled from the posterior distribu-

tion computed using ABC SMC.

(TIFF)

Figure S10 (A) A noisy 5-impulses EGF input signal: the 5 pulses

are of intensity 1 ng/ml and length 60 seconds spaced by

400 seconds with an additive background noise which is the

absolute value of a gaussian white noise of variance t2~1. (B) The

mutual information between the time course of the 3 species of

interest under the noisy input signal represented in (A) and the

time course of the species under each of the following 12 possible

experiments: an impulse stimulus of length 60 seconds with 5
possible intensity (0:3, 1, 3, 10 and 30 ng/ml), a step stimulus of

length 60 minutes with 4 possible intensity (0:1, 0:3, 1 and 3 ng/

ml) and a ramp stimulus of length 60 minutes with 3 possible final

intensity (0:03, 0:3 and 3 ng/ml).

(TIFF)

Figure S11 The predicted time course of the proteins pEGFR,

pAKT and pS6 under the noisy 5-impulses EGF input signal with

a noise of high intensity represented Figure S10 A. In the left

panel, the prediction is based on the initial dataset whereas in the

right panel in addition to the initial data it is also based on the

outcome of the step stimulus with intensity 3 ng/ml, which is the

experiment with the highest mutual information. The scale of the

y-axis is different for each figure.

(TIFF)
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without likelihoods. Proc Natl Acad Sci U S A 100: 15324–15328.

36. Sisson SA, Fan Y, Tanaka MM (2007) Sequential monte carlo without
likelihoods. Proc Natl Acad Sci U S A 106: 16889.

37. Shannon CE (1948) A mathematical theory of communication. Bell System
Technical Journal 27: 379–423, 623–656.

38. Chaloner K, Verdinelli I (1995) Bayesian experimental design: A review. Statist

Sci 10: 273–304.
39. Clyde MA (2001) Experimental design: A bayesian perspective. In: Smelser,

editor. International Encyclopedia of the Social and Behavioral Sciences. New

York: Elsevier Science.
40. Elowitz M, Leibler S, et al. (2000) A synthetic oscillatory network of

transcriptional regulators. Nature 403: 335–338.
41. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf M (2009) Approximate

bayesian computation scheme for parameter inference and model selection in

dynamical systems. Journal of the Royal Society Interface 6: 187–202.
42. Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, et al. (2002) Oscillatory

expression of the bhlh factor hes1 regulated by a negative feedback loop.
Science’s STKE 298: 840.

43. Silk D, Kirk P, Barnes C, Toni T, Rose A, et al. (2011) Designing attractive
models via automated identification of chaotic and oscillatory dynamical

regimes. Nature Communications 2: 489.

44. Bazil JN, Buzzard GT, Rundell AE (2012) A global parallel model based design
of experiments method to minimize model output uncertainty. Bull Math Biol

74: 688–716.
45. Fujita K, Toyoshima Y, Uda S, Ozaki Y, Kubota H, et al. (2010) Decoupling of

receptor and downstream signals in the akt pathway by its low-pass filter

characteristics. Science’s STKE 3: ra56.
46. Toyoshima Y, Kakuda H, Fujita K, Uda S, Kuroda S (2012) Sensitivity control

through attenuation of signal transfer efficiency by negative regulation of cellular
signalling. Nature Communications 3: 743.

47. Hengl S, Kreutz C, Timmer J, Maiwald T (2007) Data-based identifiability
analysis of non-linear dynamical models. Bioinformatics 23: 2612–2618.

48. Apgar JF, Toettcher JE, Endy D, White FM, Tidor B (2008) Stimulus design for

model selection and validation in cell signaling. PLoS Comp Biol 4: e30.
49. Barnes C, Silk D, Sheng X, Stumpf M (2011) Bayesian design of synthetic

biological systems. Proc Natl Acad Sci U S A 108: 15190–15195.
50. Bazil J, Buzzard G, Rundell A (2012) A global parallel model based design of

experiments method to minimize model output uncertainty. Bulletin of

mathematical biology 74: 1–29.
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