
Primary congenital glaucoma (PCG, OMIM 231300) is 
a rare form of glaucoma, inherited as an autosomal recessive 
trait [1]. PCG is associated with developmental anomalies 
of the anterior chamber as well as the trabecular meshwork 
and is characterized by elevated intraocular pressure (IOP), 
increased corneal diameter, and optic disc damage [2]. PCG 
is the most common form of glaucoma in infants. The disease 
manifests at birth or in the first year of life and usually leads 
to permanent vision impairment. The incidence however 
varies among different populations: 1 in 1,250 in Slovakian 
gypsies, 1 in 2,500 in Saudi Arabians, 1 in 3,300 in southern 

Indians [3], and from 1:10,000 to 1:20,000 in Western popula-
tions [4].

Three chromosomal locations have been mapped for 
PCG: GLC3A at 2p21 [5], GLC3B at 1p36.2 [6], and GLC3C 
at 14q24.3 [7]. Mutations in only two genes, CYP1B1 (ID: 
1545, OMIM: 601771) at GLC3A and LTBP2 (ID: 4053, 
OMIM: 602091) at GLC3C, have been associated with PCG 
[7]. Although contribution of cytochrome P4501B1 (CYP1B1) 
varies in different populations, worldwide CYP1B1 accounts 
for 50% of PCG cases [8].CYP1B1 consists of two coding 
exons and encodes the cytochrome P450 superfamily, 
subfamily B, polypeptide 1, a 543 amino acids long protein. 
It is expressed in the trabecular meshwork and in the posterior 
segment of the eye [9].

More than 150 PCG-associated mutations in CYP1B1 
have been described [10,11]. The prevalence of CYP1B1 
mutations varies significantly across different populations 
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and geographic locations [12]. Notably, CYP1B1 mutations 
show incomplete penetrance and variable expressivity among 
populations of different ethnic origin [13,14].

The spectrum of CYP1B1 mutations in Pakistani patients 
with PCG is not well understood. Previously, only three 
familial cases with CYP1B1 mutations had been reported 
[15]. This study, therefore, was aimed to screen 20 familial 
cases of PCG for CYP1B1, to identify and determine common 
mutations, and to understand its penetrance and prevalence 
in the area.

METHODS

Patient enrollment and clinical investigations: Twenty 
families affected with PCG were enrolled from Liaquat 
University Tertiary Care Hospital after obtaining written 
informed consent. The study followed the tenets of the Decla-
ration of Helsinki and was approved by the Ethical Review 
Committee of Liaquat University of Medical and Health 
Sciences, Jamshoro. Detailed medical history of all partici-
pating families was recorded, and pedigrees were drawn to 
conform the inheritance pattern (Figure 1, Figure 2, Figure 
3). Ethnicity-matched controls with no history of ocular 
disorders were enrolled in the study. All available affected 
individuals underwent detailed clinical investigations. IOP 
was assessed with Schiotz indentation tonometry. Angles of 
anterior chamber were examined with Goldmann gonioscope, 
and the field of vision was attempted by Humphrey perimetry 
wherever possible. The fundus was examined by using slit-
lamp biomicroscopy with a +78 diopter lens.

Linkage analysis and genotyping: Peripheral blood was 
collected in EDTA filled tubes and genomic DNA was 
extracted from leukocytes as described previously [16]. 
Four fluorescently labeled microsatellite markers, D2S1346, 
D2S177, D2S2163, and D2S2331, closely linked to the 
GLC3A locus, were genotyped for linkage analysis. PCR 
was performed for each marker in a 10 μl reaction mixture 
containing 50 ng DNA, 1 mM dNTPs, 0.4 U Taq poly-
merase, and 2 mM MgCl2. Amplification was performed on 
the GeneAmp PCR 2720 (Applied Biosystems, Foster City, 
CA) and analyzed on an ABI Prism 3130 Genetic Analyzer. 
Alleles were determined with Genotyper version 4 software 
(Applied Biosystems). Logarithm of the odds (LOD) scores 
were calculated by using the Easy Linkage 5.02 v graphical 
user interface. An autosomal recessive mode of inheritance 
with 100% penetrance and a disease allele frequency of 0.001 
were used.

Mutation screening: Five overlapping pairs of sequencing 
primers for CYP1B1 were designed from the f lanking 
sequence of each exon by using the Primer3 web tool. 

Amplification reaction was performed by using 50 ng DNA, 
1 mM dNTPs, 1.5 pM primer, 0.3 U Taq polymerase, and 
1.5 mM MgCl2 in the GeneAmp PCR 2720 (Applied Biosys-
tems). PCR thermal conditions were optimized by denatur-
ation at 95 °C for 5 min followed by 35 cycles, each 20 s at 
95 °C, 45 s at 58 °C, and 10 s at 72 °C, and final extension 
72 °C for 10 min. The amplified product was resolved on 
2% agarose gel and purified with ethanol precipitation. The 
sequencing reaction was performed by using the Big Dye 
Terminator v3.1 (Applied Biosystems) as described previously 
[17]. Sequencing was performed on the ABI 3130 Genetic 
Analyzer, and the electropherograms were analyzed by using 
Chromas v 1.45.

Bioinformatics analysis: PolyPhen2 was used to predict 
pathogenic role of the novel substitution mutation [18]. The 
effect of the in-frame deletion on protein was predicted by 
using PROVIEN software [19] whereas CYP1B1 sequences 
of seven species were aligned with the help of the Clustal 
W tool to find the conservation status of the substituted and 
deleted amino acids. The biochemical properties of the wild-
type and mutant amino acids and possible functional changes 
were studied by using the HOPE web tool [20].

RESULTS

Twenty consanguineous families affected with congenital 
glaucoma who had more than one patient were enrolled from 
a tertiary care eye hospital in Hyderabad. Pedigree analysis 
suggested the autosomal recessive mode of inheritance. 
Linkage analysis showed homozygosity with CYP1B1-associ-
ated short tandem repeat (STR) markers in ten families (50%, 
10/20). On direct sequencing of two coding exons of CYP1B1, 
six distinct homozygous mutations, segregating with disease 
phenotype, were found in all linked families. Among the 
six variants, three missense mutations, p. R390H, p.E229K, 
and p.A115P, and an insertion mutation, c.868_869insC, 
had previously been reported; while one missense variant, 
p.G36D, and a 12 bp in-frame deletion mutation, p.Gly67-
Ala70del, were novel. The clinical features of all patients who 
have CYP1B1 mutations are summarized in Table 1.

p.R390H, the predominant mutation, was found in 50% 
(5/10) of the families with CYP1B1-linked PCG, totaling 18 
patients (Figure 1). All patients with the p.R390H mutation 
showed bilateral congenital glaucoma with variable severity 
and clinical features (Table 1). The maximum bilateral 
elevated IOP, 40 mmHg, was recorded in the patients of fami-
lies LUGL02 and LUGL19. All patients had enlarged cornea 
with maximum diameter up to 15 mm except a few physical 
eyes. Congenital bilateral corneal opacity was observed in the 
patients of families LUGL02 and LUGL15. Three patients in 
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family LUGL02, V:3, V:5, and V:6, who underwent early left 
trabeculectomy, showed corneal opacity in the right eye only. 
The cornea was clear in the patients of families LUGL03, 
LUGL17, and LUGL19. Two patients in families LUGL15 
and LUGL17 showed restored visual acuity after undergoing 
bilateral trabeculectomy.

p.A115P was found in the homozygous state in three 
patients of family LUGL06. The patients were affected with 
congenital glaucoma with maximum IOP of 40 mmHg. The 
age of the patients ranged from 2.5 to 30 years. One patient, 
IV:11, had no perception of light, while patient IV:10 had 
reduced visual acuity up to counting of fingers. The patients 
underwent left and right eye trabeculectomy, respectively 
(Table 1). Five clinically normal individuals, III:1, IV:3, IV:4, 

IV:12, and IV:13, in two generations of family LUGL06 were 
also homozygous for p.A115P (Figure 2 and Table 2). Bioin-
formatics tools predicted this substitution was pathogenic and 
was not observed in 120 control chromosomes.

Homozygous p.E229K segregated with disease pheno-
type in three patients of family LUGL07 (Figure 2). Two 
patients, IV:3 and IV:4, age 16 and 19 years currently, respec-
tively, exhibited no perception of light in both eyes, while the 
third patient, IV:5, at the age of 20 years had reduced visual 
acuity to the perception of light and underwent bilateral trab-
eculectomy. The maximum IOP recorded was 41.5 mmHg, 
and all patients had severe corneal opacity (Table 1).

Affected members of family LUGL13 were homozygous 
for an insertion c.868_869insC. The mutation segregated with 

Figure 1. Pedigrees mutated with 
p.R390H mutation. Male indi-
viduals are denoted by squares 
and females by circles. The filled 
squares and circles denote the 
affected individuals. The double 
line between individuals represents 
consanguineous marriage.
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disease phenotype in all patients (Figure 2). The maximum 
IOP, 42 mmHg, was recorded in the left eye of patient V:5. 
Normal corneal diameter was observed bilaterally in patients 
V:3 and V:4 while patient V:4 had megalocornea with the 
diameter measuring 16 mm in the left eye. The presence 
of corneal opacity was not consistent in all patients; two 
patients, V:3 and V:5, had bilateral corneal opacity, whereas 
V:2 and V:4 had corneal opacity only in the right and left eye, 
respectively. Patients V:3 and V:4, however, exhibited visual 
acuity up to 1/60 and 6/12 (Table 1).

Two novel alleles were identified in families LUGL09 
and LUGL08 (Figure 3). The affected members of LUGL09 
were diagnosed with bilateral congenital glaucoma, with 
maximum IOP, 40 mmHg, recorded in patient IV:01. The 
patient di not undergo surgical intervention, and she had a 
C/D ratio of 0.4 in the left eye (Table 1). Visual acuity was 
recorded to fixation and follow in the left eye. Patient IV:3 
underwent bilateral trabeculectomy and had normal intra-
ocular pressure. CYP1B1 sequencing in both patients revealed 
a homozygous deletion of 12 bp, GGGCCAGGCGGC, 
c.198–209del 12, resulting in deletion of four amino acids, 
p.G67-A70del; glycine at 67, glutamine at 68, and alanine at 
69 and 70 from the CYP1B1 protein (Figure 3 and Figure 
4). Both parents and one normal sibling in the family were 
heterozygous.

The family LUGL08 has four affected members diag-
nosed with bilateral congenital glaucoma. The maximum IOP 
recorded was 35 mmHg in patient IV:01. The current ages of 
the patients ranged from 3 to 35 years (Table 1). The affected 
individuals revealed bilateral corneal opacity except patient 
IV:6. Visual acuity in patients IV:1 and IV:2 was from fixation 
and follow to no perception of light; patients IV:5 and IV:6, 
however, had no perception of light (Table 1). On sequencing 
a novel missense mutation, substituting glycine at the 107th 
nucleotide to aspartic acid, resulting in the replacement of 
glycine 36 with aspartic acid was identified (Figure 3). All 
patients were homozygous while six normal parents and three 
siblings were heterozygous. Both variants were predicted to 
be pathogenic by bioinformatics tools and were not found in 
the 120 ethnically matched control chromosomes.

Six previously reported SNPs, rs2617266, rs10012, 
rs1056827, rs1056836, rs1056837, and rs1800440, were 
identified in this cohort. These SNPs were used to generate 
haplotypes for the CYP1B1 mutations, and three different 
haplotypes were obtained in these patients. Five families 
harboring the p.R390H mutation and a novel mutation 
p.G36D shared the same haplotype, C-C-G-C-C-G. Two 
families harboring p.A115P and c.868_869insC mutations 
had the same haplotype, C-C-G-G-T-A; the remaining two 
families with p.E229K and novel deletion p.Gly67-Ala70del 
shared the same haplotype, T-G-T-C-C-A (Table 3).

Figure 2. Pedigrees with three 
reported mutations. Male indi-
viduals are denoted by squares 
and females by circles. The filled 
squares and circles denote the 
affected individuals. The double 
line between individuals represents 
consanguineous marriage.
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DISCUSSION

Primary congenital glaucoma is a rare form of glaucoma 
leading to irreversible blindness and follows a recessive 
mode of inheritance [21]. CYP1B1 is major contributing gene 
for PCG, and its prevalence ranges from 70% to 100% in 
consanguineous and inbred populations [22]. In this study, 
we screened 20 consanguineous Pakistani families affected 
with congenital glaucoma and found CYP1B1 mutations 
segregating with disease phenotype in 50% (10/20) of the 
families, which is comparable with the prevalence of CYP1B1 
mutations (44%) in the Indian population and is higher than 
Chinese (17.2%) [23] but lower than Iranians (70%) [24].

The p.R390H mutation was detected first in a patient 
of Pakistani origin [8]. Since then, this mutation has been 
identified as the second most common mutation in Indian 

and Iranian patients affected with congenital glaucoma, 
accounting for 16% and 19.2%, respectively [24,25]. This 
study revealed p.R390H was the most common mutation 
in the population accounting for 50% (5/10) of the CYP1B1 
alleles and 25% of (5/20) of the families with PCG. This 
is the highest frequency of p.R390H reported thus far. All 
patients who harbor the p.R390H mutation were homozy-
gous and showed variable interfamilial and intrafamilial 
disease severity, clinical features, and surgical success rates 
(Table1). Patient V:7 in family LUGL02 age 2.5 years showed 
uncontrollable IOP and severe corneal opacity despite under-
going bilateral trabeculectomy, while his sibling age 6 years 
exhibited clear cornea, controlled IOP, and a lower C/D ratio 
after bilateral trabeculectomy (Table 1). Surgical interven-
tion was successful in patients LUGL15:VI:3 and LUGL17:V:4 
but failed to control the IOP in patients in family LUGL19. 

Figure 3. Pedigrees with novel 
mutations showing electrophero-
grams with representative mutated, 
heterozygous carrier, and corre-
sponding normal sequences. Male 
individuals are denoted by squares 
and females by circles. The filled 
squares and circles denote the 
affected individuals. The double 
line between individuals represents 
consanguineous marriage.
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p.R390H has been reported to show variable phenotypes in 
different populations. Homozygous p.R390H has been found 
to segregate with juvenile open angle glaucoma (JOAG) in 
Taiwanese patients [21]. These variable clinical manifesta-
tions of the mutation among ethnically similar and different 
patients may be attributed to unknown genetic and environ-
mental factors.

Homozygous p.A115P segregated with the PCG 
phenotype in three affected individuals of family LUGL06. 
Previously, it has been reported in a patient of Indian origin 
with non-familial PCG [26]. This mutation is near the 

heme-binding region of the CYP1B1 protein and may cause 
conformational changes and disturb hydrogen bonding inter-
actions of the protein [27]. Bioinformatics tools predicted this 
substitution was probably damaging with deleterious effects 
on protein function. In this study, five clinically normal 
individuals in family LUGL06 were also found to be homo-
zygous for p.A115P (Figure 2 and Table 2). This could be due 
to either non-penetrance or variable expression of CYP1B1 
mutations, which has been described in glaucoma patients 
in Saudi Arabia and Iran [13,14]. Previously, there has been 
no report of non-penetrance and variable expressivity for 
p.A115P. The ages of the five unaffected individuals with 

Table 2. CliniCal CharaCTerisTiCs of normal individuals of luGl06 homozyGous for P.a115P.

Family 
ID (Muta-

tion) Patient 
No

Disease 
status

Current 
age

Corneal 
diameter

Corneal 
edema

Corneal 
opacity

Habbs’ 
Striae

IOP 
(mmHg)

Visual 
acuity C/D ratio

OS/OD (mm) OS/OD OS/OD OS/OD OS/OD OS/OD

LUGL06 (p.A115P)
III:1 Normal 25 11/10 −/− −/− −/− 12/14 6/6 0.2/0.3
IV:3 Normal 32 11/10.5 −/− −/− −/− 13/12 6/6 0.2/0.2
IV:4 Normal 20 12/11 −/− −/− −/− 14/13 6/6 0.3/0.2
IV:12 Normal 29 12/12 −/− −/− −/− 14/14 6/6 0.3/0.2
IV13 Normal 40 11/11.5 −/− −/− −/− 12/12 6/6 0.3/0.3

Figure 4. Multiple sequence align-
ment of CYP1B1 proteins from 
various species. Boxed amino acids 
are conserved in all species and 
cause primary congenital glaucoma 
(PCG) when substituted or deleted.

Table 3. haPloTyPes assoCiaTed wiTh CyP1b1 muTaTions in PakisTani PCG PaTienTs.

Family Mutation rs2617266 rs10012 rs1056827 rs1056836 rs1056837 rs1800440
LUGL02 p.R390H C C G C C G
LUGL03 p.R390H C C G C C G
LUGL15 p.R390H C C G C C G
LUGL17 p.R390H C C G C C G
LUGL19 p.R390H C C G C C G
LUGL06 p.A115P C C G G T A
LUGL07 p.E229K T G T C C A
LUGL08 p.G67-A70del T G T C C A
LUGL09 p.G36D C C G C C G
LUGL13 c.868_869insC C C G G T A

http://www.molvis.org/molvis/v20/991
http://www.ncbi.nlm.nih.gov/snp/?term=rs2617266
http://www.ncbi.nlm.nih.gov/snp/?term=rs10012
http://www.ncbi.nlm.nih.gov/snp/?term=rs1056827
http://www.ncbi.nlm.nih.gov/snp/?term=rs1056836
http://www.ncbi.nlm.nih.gov/snp/?term=rs1056837
http://www.ncbi.nlm.nih.gov/snp/?term=rs1800440
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homozygous p.A115P ranged from 20 to 40 years; thus, vari-
able expression of p.A115P with late disease onset may not 
be excluded. These individuals may require ophthalmological 
follow-up to detect early disease symptoms. Non-penetrance 
or variable expressivity of p.A115P in five unaffected indi-
viduals suggests the presence of a modifier locus that may be 
responsible for suppressing the disease phenotype.

In earlier studies, homozygous p.E229K has been 
reported segregating with PCG in various populations 
including Pakistani population [15]. This study found three 
patients were homozygous for p.E229K in family LUGL07 
with severe phenotype. All patients had uncontrollable IOP 
and bilateral corneal opacity with no perception of light. 
Surgical intervention was not successful in these patients. 
Heterozygous p.E229K has also been reported to segregate 
in patients with PCG and late onset primary open angle glau-
coma [14,28,29]. In this study, all the carriers of p.E229K 
were phenotypically normal. This severe phenotype of 
p.E229K homozygous mutants and clinically normal carriers 
is in agreement with previously reported findings from Paki-
stan [15].

No frameshift mutation in CYP1B1, segregating with 
PCG has been reported from Pakistan before this study. 
The present study revealed an insertion of cytosine at 
c.868_869insC, causing frameshift and truncation of the 
protein (p.R290fs*37) in four affected members of family 
LUGL13. This was one of the first mutations reported in 
CYP1B1 in two American families [8]. The detailed pheno-
type of this mutation has not been described thus far. The 
patients who were homozygous for c.868_869ins C showed 
less severe phenotype than the individuals affected with other 
mutations reported in this study. Patient V:3 had controlled 
IOP and visual acuity of 1/60 in both eyes after bilateral 
trabeculectomy. Patient V:4 did not undergo any surgical 
intervention and had bilaterally normal IOP and 6/12 visual 
acuity in the right eye (Table 1).

A novel missense mutation, c.107 G to A, substituting 
glycine at the 36th position with aspartic acid, segregated 
with disease in family LUGL08. The structure of the first 49 
residues from the NH2 terminal end of the CYP1B1 protein 
has not been determined [25]. Glycine is conserved in the 
CYP1B1 protein among different species (Figure 4). The 
wild-type residue is located in the predicted trans-membrane 
domain and differs in size and charge from the mutant 
residue. This substitution may affect the hydrophobic inter-
actions, conformation, and functions of the protein [20]. The 
PolyPhen web tool predicted this substitution was probably 
damaging with a score of −1. All patients in family LUGL08 

have bilateral corneal opacity and uncontrollable IOP after 
surgical interventions.

The second novel allele was a deletion of 12 bp, GGGC-
CAGGCGGC, c.198–209del12, found in family LUGL09. 
This mutation resulted in the deletion of four amino acids, 
p.G67-A70del (Figure 3). Glycine at 67 and alanine at 69 
are conserved among CYP1B1 proteins of different species 
(Figure 4). The PROVIEN web tool was used to predict the 
possible effect of this deletion. The mutation, with score 
below −2.5, is pathogenic. This in-frame deletion scored −15.8 
and was predicted to be deleterious [19]. Previously, a hetero-
zygous frameshift mutation, which deleted eight nucleotides, 
c.199–206delGGCCAGGC, was reported in German patients 
with PCG [30]. Patient LUGL09:IV:3, homozygous for this 
deletion, showed controlled IOP and maintained visual acuity 
after bilateral trabeculectomy.

Six SNPs, rs2617266, rs10012, rs1056827, rs1056836, 
rs1056837, and rs1800440, were extensively used to construct 
haplotypes of the CYP1B1 mutations in ethnically different 
populations [31,32]. The most common haplotype is C-C-G-
G-T-A, which is associated with 50% of CYP1B1 mutations 
whereas T-G-T-C-C-A and C-C-G-C-C-G are associated 
with 9.7% and 7% of CYP1B1 mutations, respectively [15]. 
In this study, the most common haplotype was C-C-G-C-C-
G, which was found in six families who harbored p.R390H 
and p.G36D mutations (Table 3). p.R390H has been reported 
in the same haplotype background in Indian patients with 
PCG; although it has been associated with three haplotypes 
in Iranian patients, including C-C-G-C-C-G [24,32,33]. This 
indicates that Pakistani and Indian patients with PCG have 
a common founder for p.R390H; whereas p.R390H may 
have multiple origins in Iranian patients with PCG. Previ-
ously, C-C-G-C-C-G haplotype has been associated with a 
frameshift mutation in American and Brazilian patients [34]. 
p.A115P and c.868_869insC were associated with C-C-G-G-
T-A, a haplotype frequently found in other populations. Novel 
deletions p.G67-A70del and p.E229K were associated with 
T-G-T-C-C-A. p.E229K has been associated with the same 
haplotype in ethnically different populations [15]

The results of the study reflect that CYP1B1 mutations 
are the predominant cause of primary congenital glaucoma 
in Pakistani patients. Identification of p.R390H as a frequent 
mutation on distinct haplotype may help to adopt economic 
genetic testing services for patients with PCG, and the 
genotype-phenotype correlation will help and assist in better 
prognosis for the disease. Non-penetrance shown by p.A115P 
requires further study to identify factors that may be respon-
sible for suppressing the disease phenotype. Identification 
of the novel variants indicates the genetic heterogeneity of 

http://www.molvis.org/molvis/v20/991
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our population and may lead to better understanding of the 
disease mechanism.
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