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Atomistic simulation of 
carbohydrate-protein complex 
formation: Hevein-32 domain
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Interactions between proteins and their small molecule ligands are of great importance for the process 
of drug design. Here we report an unbiased molecular dynamics simulation of systems containing 
hevein domain (HEV32) with N-acetylglucosamine mono-, di- or trisaccharide. Carbohydrate molecules 
were placed outside the binding site. Three of six simulations (6 × 2 μs) led to binding of a carbohydrate 
ligand into the binding mode in agreement with the experimentally determined structure. Unbinding 
was observed in one simulation (monosaccharide). There were no remarkable intermediates of binding 
for mono and disaccharide. Trisaccharide binding was initiated by formation of carbohydrate-aromatic 
CH/π interactions. Our results indicate that binding of ligands followed the model of conformational 
selection because the conformation of the protein ready for ligand binding was observed before the 
binding. This study extends the concept of docking by dynamics on carbohydrate-protein interactions.

Carbohydrate-protein interactions play an important role in many biological processes including immune 
response, inflammation, pathogen recognition, cell-cell interactions, cancer metastasis and many others1. 
Understanding the nature of these interactions is necessary for the design of new molecules for therapeutic inter-
vention of these processes. However, carbohydrate-protein interactions are unique in many aspects, which makes 
them challenging to study by methods of molecular modeling and computational chemistry2.

First, carbohydrate-protein interactions are relatively weak compared to general drug-target interactions. 
Nature as well as scientists use the effect of multivalency to compensate this fact3. For example, multiple car-
bohydrate and protein molecules located on surfaces of cells interact much stronger than individual mole-
cules. These interactions can also be influenced more efficiently by multivalent carbohydrate molecules, such as 
carbohydrate-modified dendrimers, nanoparticles, surfaces and glyco-clusters.

Second, carbohydrates are somewhat polar molecules. Polar interactions are in general more complicated 
to model than non-polar because they are more directional and because they are driven by a subtle interplay 
between solvation and desolvation.

Third, carbohydrates are quasi-symmetric with multiple OH groups in similar positions. As a result, several 
binding poses may have similar energy.

The most complete picture of the process of binding of a ligand on a protein is obtained by following it in real 
time. This is, at least in principle, possible by molecular dynamics simulation. Unfortunately, only a small fraction 
of protein-ligand complexes are formed in nanosecond to microsecond time scales, which are routinely acces-
sible today4. Most protein-ligand complexes are formed in longer time scales and therefore cannot be studied 
by routine molecular simulations. Apart from its time scale limitations, the concept of docking by dynamics (or 
dynamic docking) has a great potential to accelerate the drug discovery process4.

Simulation of ligand binding can help us understand whether it is a one-step or rather a sequential process4,5. 
For a sequential process it is possible to determine all intermediate states. It is also possible to check how the 
binding of the ligand influences the structure of the protein (and vice versa) and what is the mechanism behind 
it (induced fit or conformational selection). Finally, atomistic simulation of protein-ligand binding can provide 
information about binding kinetics. All this information makes it possible to design ligands not only in terms of 
binding thermodynamics but also binding kinetics. Complementary, it is possible to explain mutations in a pro-
tein that affect binding, not only in terms of thermodynamics, but also in terms of kinetics.
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As far as our knowledge goes, non-accelerated simulations of spontaneous formation of a carbohydrate-protein 
complex are very rare nowadays. An example of formation of a carbohydrate(-like molecule)-protein complex is 
the simulation of binding of inhibitors (Zanamivir, Oseltamivir) onto influenza neuraminidase6. However, these 
simulations were not pure unbiased simulations, because they were accelerated by multiscale approach combin-
ing molecular dynamics and Brownian dynamics simulation.

Here we present atomistic simulations of a carbohydrate-binding mini-protein (hevein domain HEV327) in 
the presence of different oligosaccharides with examples of spontaneous formations of intermolecular complexes. 
The results were analysed to address general questions of protein-ligand interactions, such as the pathway of the 
process or mutual influence of binding molecules.

Hevein is a protein from latex tree (Hevea brasiliensis) involved in latex coagulation8. The molecule with 187 
amino acids contains a carbohydrate-binding domain (also referred to as carbohydrate-binding module 18). It 
binds N-acetylglucosamine oligosaccharides on a latex glycoprotein present in latex particles8. It is also important 
latex allergen8.

This protein has been intensively studied as a model carbohydrate-binding protein. It was found that a 
32-amino acid part is essential for carbohydrate binding7. This truncated protein is known as hevein-32 (HEV32). 
For its small size it ideal object for NMR7,9 peptide synthesis with unnatural amino acids9 and molecular simula-
tions9–11. It binds N-acetylglucosamine trisaccharide ((GlcNAc)3) with a dissociation constant equal to approx-
imately 10−4 (100 μM)7. Here we demonstrate that it is also an ideal model for molecular simulations of the 
formation of carbohydrate-protein complexes.

Results
In the protein there are three subsites that bind individual monosaccharide moieties (Fig. 1). The first binding 
site (further depicted in red color) accommodates the non-reducing terminus. It is formed by residue Trp23 (via 
stacking CH/π interactions) together with two hydrogen-bonding residues (Tyr30 binding to 3-OH of the sac-
charide by its hydroxyl group and Ser19 binding to the carbonyl group of the acetyl moiety, also by its hydroxyl 
group). Tyr30 may also bind the methyl group of the acetyl moiety by CH/π interactions. The residue Trp21 forms 
the second binding site (further depicted in green color) (via stacking CH/π interactions) together with Glu1, 
which interacts with NH bond of acetyl and simultaneously with 3-OH group. This binding site is accommodated 
by the central residue of the trisaccharide. The last site (further depicted in blue color) is not defined by any clear 
noncovalent interaction except for a partial stacking with Trp21.

Fully atomistic unbiased simulations of systems containing the hevein domain HEV32, monosaccharide 
(β-d-GlcNAcp-OH, (GlcNAc)1), disaccharide (β-d-GlcNAcp-(1→4)-β-d-GlcNAcp-OH, (GlcNAc)2) or trisac-
charide (β-d-GlcNAcp-(1→4)-β-d-GlcNAcp-(1→4)-β-d-GlcNAcp-OH, (GlcNAc)3) and 2271–2287 water mole-
cules were carried out. A saccharide was placed manually to space outside the binding site using UCSF Chimera12. 
Each production simulation (2 μs) was done in duplicates differing in the mutual carbohydrate and protein ori-
entation at the beginning of the simulation. Trajectories (without water) of all simulations are available online via 
Materials Cloud (https://doi.org/10.24435/materialscloud:2019.0042/v2).

The results of the simulations were monitored by RMSD profiles. Briefly, protein atoms of trajectory snap-
shots were fitted onto NMR structure7, and positions of monosaccharide moieties were compared with individual 
monosaccharide moieties in the NMR structure. Details of RMSD calculations can be found in Methods. These 
profiles are depicted in Fig. 2 for simulations of the complex with (GlcNAc)1. The profile clearly shows short 
periods during which RMSD exceeds 4 nm. These periods represent the entirely unbound state. Periods of high 
RMSD are separated by similarly long periods during which RMSD drops to 1–2 nm and is relatively stable. These 
periods represent nonspecific binding. Specific binding was observed at the time 720 ns in the first replica of the 
simulation (Fig. 2A). The molecule of (GlcNAc)1 docked into the “red” binding site. RMSD values were lowest 
for the “red” binding site (red trace), higher for the “green” and highest for the “blue” binding site. This complex 
dissociated at the time approximately 1290 ns and docked again at the time approximately 1360 ns. Visual inspec-
tion of binding of (GlcNAc)1 revealed that the process is rather one-step with no distinct intermediates. The first 
binding is initiated by an interaction of the methyl group of the acetyl moiety of (GlcNAc)1 with Tyr30, followed 

Figure 1.  Binding sites in HEV32. Complex of HEV32 with (GlcNAc)3 (the first model of PDB ID 1T0W)7 with 
highlighted binding sites.
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by a rotation of the ligand into the correct binding mode. The second binding was initiated by the formation of 
CH/π interactions between the monosaccharide and Trp23.

The results for the second replica of the simulation (Fig. 2B) were similar to the results of the first one, except 
that no specific binding was observed.

RMSD profiles for simulations of the complex with (GlcNAc)2 are depicted in Fig. 3. In the first replica of 
the simulation (Fig. 3A,B) there were two short periods of nonspecific binding separated by a short period of 
complete unbinding. Visual inspection of the nonspecific binding period revealed that (GlcNAc)2 bound to the 
indole moieties of tryptophans via CH/π interactions, but via the opposite face of monosaccharide moieties. In 
this nonspecific binding mode the nonreducing terminus interacts by CH bonds on atoms C1, C3 and C5 and 
the reducing terminus interacts by CH bonds on atoms C2, C4 and C6. In the specific binding mode it is opposite 
(the nonreducing terminus interacts by CH bonds on atoms C2, C4 and C6 and the reducing terminus interacts 
by CH bonds on atoms C1, C3 and C5).

At the end of the second nonspecific binding period (at time 175 ns) the molecule of (GlcNAc)2 bound specif-
ically. Visual inspection of the trajectory revealed that the binding takes place by the relatively fast rotation of the 
ligand. The nonreducing residue docked into the “red” binding site (red trace in Fig. 3B). The reducing residue 
docked into the “green” binding site (green trace in Fig. 3A). The complex was stable for the rest of the simulation.

Specific binding was not observed in the second replica of the simulation (Fig. 3C,D). There was a long period 
(approximately 500 ns) of nonspecific binding characterized by binding of the ligand onto the opposite side of the pro-
tein (Fig. 4A). The molecule of (GlcNAc)2 forms numerous hydrogen bonds mostly with backbone atoms. The residue 
Tyr30 distracted from its original position. The similar transition was observed in previous simulations the HEV3211.

In the first replica of the simulation with (GlcNAc)3 (Fig. 5A–C) we observed relatively fast (at the time 25 ns) 
nonspecific binding at the opposite side of the protein (Fig. 4B). This nonspecific binding mode dissociated at approx-
imately 1500 ns. It was characterized by multiple hydrogen bonds between the ligand and the backbone of the protein, 
similarly to the binding mode observed in the second replica of the simulation of the complex with (GlcNAc)2.

In the second replica of the simulation with (GlcNAc)3 (Fig. 5D–F) we observed a nonspecific binding after 
approximately 70 ns. The ligand was bound via nonspecific hydrogen bonds and CH/π interactions with Tyr30 
and Trp21. This assembly dissociated at the time about 290 ns and at the time 444 ns the ligand bound specifically. 
This complex was stable for the rest of the simulation. It was characterized by binding of the reducing terminus 
of (GlcNAc)3 in the “red” subsite. The central monosaccharide moiety was interacting with backbone atoms of 
the protein and with Gln2. There were only a few contacts between the protein and the non-reducing terminus.

The binding process in the second replica was initiated by CH/π interactions of the central monosaccharide 
moiety with Trp23. The orientation of the central moiety was not suitable for specific binding because CH/π inter-
actions were formed by atoms C1, C3 and C5, whereas interaction via C2, C4 and C6 is required for binding into 

Figure 2.  Simulation of (GlcNAc)1 binding. RMSD profile of the monosaccharide moiety in the first (A) and 
the second (B) replica of the simulation. The first replica resulted in a specific binding depicted schematically. 
The second replica did not led to a specific binding.

Figure 3.  Simulation of (GlcNAc)2 binding. RMSD profile of the monosaccharide moieties in the first (A,B) 
and the second (C,D) replica of the simulation calculated for the reducing (A,C) and the nonreducing (B,D) 
monosaccharide moiety. The first replica resulted in a specific binding depicted schematically. The second 
replica did not led to a specific binding.
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the “red” subsite. After this initial binding, the ligand slid on the surface of the indole ring of Trp23 and the reduc-
ing terminus docked into the “red” subsite. Since the reducing monosaccharide moiety is oriented in an opposite 
way relative to the central moiety, the reducing moiety formed CH/π interactions via its C2, C4 and C6 atoms.

Correct bound states are summarized in Fig. 6. This figure depicts the state at 1000 ns of simulations of 
(GlcNAc)1 (the first replica), (GlcNAc)2 (the second replica) and (GlcNAc)3 (the second replica). As expected, 
binding of a monosaccharide residue into the “red” subsite was observed in all three cases and is likely to be 
essential for binding.

The question arises whether the structure of the protein is influenced by binding of a ligand and what is the 
mechanism of such influence. This was investigated by calculation of RMSD profiles for key binding residues 
(Ser19, Trp21, Trp23 and Tyr30) with the initial structure as a reference. Figure 7 shows RMSD profiles of simula-
tions in which binding was observed. It clearly shows that the binding of the ligand stabilizes the binding site (low 
RMSD values around 0.2 nm). Interestingly, in all cases RMSD drops to approximately 0.2 nm before binding, i.e. 
it first adopts the structure suitable for binding and then the binding takes place.

Discussion
The result of the simulation of protein-ligand binding can be influenced by the initial position of both binding 
partners. Placement of both molecules close to each other and in an orientation favorable for binding may posi-
tively influence the chance of observation of complex formation. This may bias kinetics in favor of binding. To test 
whether the initial position of both binding partners may influence binding kinetics we inspected RMSD profiles. 
They clearly show that in the period between the start of the simulation and ligand binding the value of RMSD 
changes rapidly. This clearly indicates that the protein and ligand explore a wide range of mutual orientations and 

Figure 4.  Nonspecific binding. Snapshot of the simulation of the complex with (GlcNAc)2, the second replica at 
500 ns (A) and the complex with (GlcNAc)3, the first replica at 1000 ns (B).

Figure 5.  Simulation of (GlcNAc)3 binding. RMSD profile of the monosaccharide moieties in the first 
(A–C) and the second (D–F) replica of the simulation calculated for the reducing (A,D), internal (B,E) and 
nonreducing (C,F) monosaccharide moiety. The first replica resulted to a non-specific binding. The second 
replica led to a specific binding depicted schematically.
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the binding process is independent (aside from the deterministic nature of molecular simulations) on the initial 
ligand position. This is also clearly visible from visual inspection of trajectories.

Interestingly, the bound state of (GlcNAc)3 is characterized by the presence of the reducing terminus in the 
“red” subsite. This is likely to be a local minimum of binding because of few protein-ligand contacts. The binding 
pose with the reducing terminus in the “green” or “blue” subsite is likely to be the global minimum. This illustrates 
the limitation of two microsecond dynamics simulation in the determination of the bound state of an oligomeric 
ligand. Longer simulation or simulations in a higher number of replicas would be necessary to address this problem.

From the volume of the simulation box it is possible to calculate concentrations of protein and saccharidic 
ligand as approximately 24 mmol/l, which corresponds to concentration of protein about 80 mg/ml and of car-
bohydrate ((GlcNAc)3) approximately 30 mg/ml. This is significantly higher than the concentrations used in the 
experiment. However, protein and/or ligand solubility are not issues in biomolecular simulations due to a peri-
odic boundary condition algorithm, which minimizes protein-protein or ligand-ligand interactions. According 
to the experimental value of dissociation constant of (GlcNAc)3 concentrations during the simulation correspond 
to 94% saturation of the complex.

As far as we are aware, dissociation constants for (GlcNAc)1 and (GlcNAc)2 are not available in the literature. 
We have observed one unbinding in the simulation of the complex with (GlcNAc)1, so we can roughly estimate 
the dissociation constant. (GlcNAc)1 stayed in the bound state for approximately 60% of the time (30% taking 
both replicas into an account). This (60 or 30% saturation) corresponds to Kd = 0.006 (6 mM) or 0.04 (40 mM), 
respectively. However, it must be kept in mind that this estimate was made based on two binding and one unbind-
ing event and more binding and unbinding events would be required to make an accurate estimate.

Visual inspection of binding of all ligands did not reveal any common mechanism of binding. Binding of 
(GlcNAc)1 and (GlcNAc)2 was fast with barely remarkable intermediates. Binding of (GlcNAc)3 was characterized 
by the formation of CH/π interactions with a “wrong” monosaccharide moiety, followed by sliding of (GlcNAc)3 

Figure 6.  Structures of bound states with schematic views. (A) Time 1000 ns of the first replica of the 
simulation with (GlcNAc)1; (B) time 1000 ns of the second replica of the simulation with (GlcNAc)2; (C) time 
1000 of the second replica of the simulation with (GlcNAc)3.

Figure 7.  Evolution of RMSD of key binding residues (Ser19, Trp21, Trp23 and Tyr30) in the first replica of 
the simulation of the complex with (GlcNAc)1 (A), the first replica of the complex with (GlcNAc)2 (B) and the 
second replica of the complex with (GlcNAc)3 (C). Bound states are highlighted by blue color.
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allowing binding of the “correct” monosaccharide moiety. This indicates that CH/π interactions13,14 play an essen-
tial role not only in stabilizing carbohydrate-protein assemblies, but also in the binding process and initial car-
bohydrate recognition.

Tyr30 is an interesting amino acid residue of HEV32. This residue acts as an acceptor of CH/π interactions 
with the acetyl moiety of GlcNAc. It also forms a classical H-bond via its OH group. It was involved in the initial 
recognition of (GlcNAc)1 and (GlcNAc)2. In the second replica of the simulation of the residue Tyr30 distracted 
from its original position. This was followed by a rearrangement of the C-terminal part of HEV32. A similar 
transition has been observed in a previous simulation of HEV3211. It is not clear whether this transition plays any 
biological role or is the result of artificial truncation of hevein into smaller HEV32.

The fastest binding of the ligand was observed for (GlcNAc)2, followed by (GlcNAc)3 and (GlcNAc)1 (the first 
binding). We can speculate that there are two contradicting effects. Binding of larger ligands such as (GlcNAc)3 
is slowed down by their larger size, which makes the search of the binding site slow due to many opportunities 
for nonspecific binding. On the other hand, this binding is accelerated by a high affinity due to high number of 
intermolecular interactions. The situation is the opposite for small ligands such as (GlcNAc)1.

Figure 7 clearly shows that upon binding of a saccharide ligand, the structure of the binding site is stabi-
lized. The question is whether this happens via the model of induced fit or conformational selection. The former 
model assumes that binding of the ligand actively causes a conformational change in the protein. The later model 
assumes that the protein exists in solution as a pool of different conformations and the ligand picks those in the 
conformation suitable for binding. The value of RMSD in simulations with binding events always reached the 
value of approximately 0.2 nm shortly before the ligand binding event. This supports the model of conformational 
selection. We can therefore speculate that the binding takes place via the conformational selection model.

In our experience, many successful unbiased simulations of the formation of a protein-ligand complex 
reported in literature represented simulations of the binding of charged ligands4. It is possible that the initial 
phase of binding characterized by random search of the entrance to the binding site by the ligand is more acces-
sible when the ligand and the protein binding sites carry opposite charges. This can be explained by a long reach 
of electrostatic interactions. More simulations of protein-ligand binding would be necessary to verify this trend. 
Interestingly, ligands simulated in this study were neutral.

The question is whether it is possible to use an atomistic simulation as a tool to locate a carbohydrate-binding 
site. Some of the simulations in this study resulted in long and stable, but nonspecific binding poses. These non-
specific binding poses would be difficult to distinguish from the specific binding site in the situation when the 
specific binding site is not known. Especially, RMSD profiles from the first replica of the simulation of the com-
plex with (GlcNAc)3 are difficult to distinguish in terms of stability from a specific binding. However, there are 
two characteristics that may indicate nonspecific binding. First, saccharides interacted almost only with backbone 
atoms (N–H and C=O groups) of the protein in nonspecific binding modes. There were no such interactions in 
the specific binding mode of HEV32. Second, CH/π interactions are characteristic for carbohydrate-protein inter-
actions, but they were absent in nonspecific binding modes observed in this study. Presence of CH/π interactions 
can be used to support the identification of a specific binding mode. More studies would be necessary to verify 
these signatures of specific carbohydrate-protein complexes.

In conclusion, atomistic simulations with the design presented in this study have a great potential to elucidate 
the mechanism of carbohydrate-protein interactions. Development of fast computers and enhanced sampling 
methods is likely to extend the size of proteins from HEV32 mini-protein to larger biomolecules.

Methods
All simulations were carried out using GROMACS 5.1.315 with GPU acceleration. The NMR structure of a 
truncated hevein domain (hevein-32, PDB ID: 1T0W7, model 1) was used as the starting structure. Protein was 
simulated using Amber99SB-ILDN force field16. Carbohydrates ((β-d-GlcNAc)n-OH, n = 1, 2, 3, referred to as 
(GlcNAc)1, (GlcNAc)2 and (GlcNAc)3, respectively) were modeled using Glycam 06j force field17. The program 
acpype.py18 was used to convert Glycam topology to Gromacs formats. Water was modeled using the TIP3P 
model. Time step was set to 2 fs and all bonds were constrained by the LINCS algorithm19. Electrostatics was 
modeled using the particle-mesh Ewald (PME) method with cut-off set to 1 nm20. The temperature was kept 
constant (300 K) by Parrinello-Bussi thermostat21. Each system was optimized by energy minimization. Next, 
each system was equilibrated by 300 ps simulation in the NPT ensemble (constant number of particles, pressure 
and temperature). All non-hydrogen atoms of the protein and a ligand were restrained by a harmonic restraint 
(k = 1000 kJ mol−1 nm−2) to their original positions during this simulation. Finally, 2 μs production simulation 
in the NVT ensemble (constant number of particles, volume and temperature) was performed for each system.

Analysis of trajectories was done by monitoring a root-mean-square deviation (RMSD) from the reference 
NMR structure (after energy minimization). NMR structure (PDB ID: 1T0W7, model 1) contains a (GlcNAc)3 
bound in the binding site. Seven atoms of each monosaccharide (C1 to C6 together with O5) were extracted from 
the NMR structure and used as a reference together with the protein structure. RMSD was calculated by fitting 
the trajectory onto non-hydrogen atoms of the protein, followed by the calculation of RMSD on the seven selected 
atoms of a respective monosaccharide moiety.
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