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Abstract Background: Fever
suppression may be beneficial for
patients with traumatic brain injury
(TBI) and stroke, but for patients with
meningitis or encephalitis [central
nervous system (CNS) infection], the
febrile response may be advanta-
geous. Objective: To evaluate the
relationship between peak tempera-
ture in the first 24 h of intensive care
unit (ICU) admission and all-cause
hospital mortality for acute neuro-
logical diseases. Design, setting and
participants: Retrospective cohort
design from 2005 to 2013, including
934,159 admissions to 148 ICUs in
Australia and New Zealand (ANZ)
and 908,775 admissions to 236 ICUs
in the UK. Results: There were
53,942 (5.8 %) patients in ANZ and
56,696 (6.2 %) patients in the UK
with a diagnosis of TBI, stroke or
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CNS infection. For both the ANZ
(P = 0.02) and UK (P\ 0.0001)
cohorts there was a significant inter-
action between early peak
temperature and CNS infection, indi-
cating that the nature of the
relationship between in-hospital
mortality and peak temperature dif-
fered between TBI/stroke and CNS
infection. For patients with CNS
infection, elevated peak temperature

was not associated with an increased
risk of death, relative to the risk at
37–37.4 �C (normothermia). For
patients with stroke and TBI, peak
temperature below 37 �C and above
39 �C was associated with an
increased risk of death, compared to
normothermia. Conclusions: The
relationship between peak tempera-
ture in the first 24 h after ICU
admission and in-hospital mortality

differs for TBI/stroke compared to
CNS infection. For CNS infection,
increased temperature is not associ-
ated with increased risk of death.

Keywords Temperature �Mortality �
Stroke � Traumatic brain injury �
Meningitis � Encephalitis

Introduction

Acute illnesses affecting the central nervous system (CNS),
such as stroke [including ischaemic stroke, intracerebral
haemorrhage and subarachnoid haemorrhage (SAH)],
traumatic brain injury (TBI) and CNS infection (meningitis
and encephalitis), are globally major causes of disability
and death [1]. Fever, defined as a temperature of 37.5 �C or
above [2, 3] in this context, is common in the early phase of
these acute illnesses [2–7], as is the use of pharmacological
and physical interventions for the purpose of fever sup-
pression [4, 8, 9]. However there remains clinical
uncertainty about the biological purpose of fever [10, 11]
and the therapeutic efficacy of the interventions [7, 12–14]
used for fever suppression in these patient populations.

For patients with non-infective CNS conditions, such as
stroke and TBI, animal models suggest that fever may
further exacerbate neuronal damage [15–18] following the
initial vascular or traumatic insult. Additionally, observa-
tional clinical studies suggest an association between raised
temperature after both TBI [4, 6] and stroke [2, 3, 5, 19–21]
and increased morbidity and mortality [22].

In general, among patients with an inflammatory
response as a consequence of an infection, the develop-
ment of a fever may be part of a phylogenetic, protective
host response [10, 11, 23] to an invading infective agent.
Several observational studies suggest that for patients
with systemic infections, an elevated temperature is
associated with decreased mortality [24–26]. Addition-
ally, antipyretic use is associated with harm for patients
with systemic infection [25]. Finally, certain microbial
strains that cause CNS infection (Neisseria meningitides
[27] and Streptococcus pneumonia [28]) are inhibited
from replication at temperatures within the febrile path-
ophysiological range. Therefore it is biologically
plausible that the observational relationship between fever
and morbidity and mortality may differ for patients with
CNS infection, compared to those with TBI/stroke.

We undertook a retrospective analysis of two inde-
pendent international intensive care databases in order to
test the hypothesis that early fever would have an inde-
pendent association with worse outcome for TBI and

stroke, but not for CNS infection. Specifically, we
hypothesized that elevated peak temperature during the
first 24 h after intensive care admission would be asso-
ciated with increased mortality in patients admitted with
an admission diagnosis of TBI or stroke, but not in
patients with a diagnosis of CNS infection.

Methods

Study design

This retrospective cohort study evaluated the association
between peak temperature recorded in the first 24 h of
intensive care unit (ICU) admission and all-cause in-
hospital mortality among critically ill patients with TBI,
stroke and CNS infections.

Participants and setting

All patients admitted to an adult ICU at one of 148 centres
in Australia and New Zealand (ANZ) or one of 236
centres in the UK between 2005 and 2013 were eligible
for inclusion in this study if the admission diagnosis to the
ICU was attributable to an acute neurological disease. We
defined an acute neurological disease as TBI, stroke
(ischaemic stroke, subarachnoid haemorrhage, intracere-
bral haemorrhage) or CNS infection (meningitis or
encephalitis) according to the coding systems of the
Australia and New Zealand Intensive Care Society Adult
Patient Database (ANZICS–APD), using the Australia
and New Zealand Risk of Death Model (ANZROD) [29],
and the UK Intensive Care National Audit & Research
Centre Case Mix Programme Database (ICNARC–
CMPD), using the ICNARC Coding Method (ICM) [30].

We excluded patients who had cardiopulmonary
resuscitation in the previous 24 h because of the con-
founding effect of therapeutic hypothermia; patients with
missing data for temperature, admission diagnosis, vital
status at hospital discharge and patients with insufficient
information on the Glasgow Coma Score (GCS). Where
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patients were admitted to ICU more than once during an
acute hospital admission, only the patient’s first admis-
sion was included in the analysis.

Databases

ANZ data were extracted from the ANZICS–APD and
UK data were extracted from the ICNARC–CMPD. The
ANZICS–APD is an established binational, representative
[31] voluntary database, which has been well described
and contains data for more than one million ICU admis-
sions [32]. Data are collected under the Quality Assurance
Legislation of the Commonwealth of Australia (Part VC
Health Insurance Act 1973, Commonwealth of Australia).
In New Zealand, use of anonymous quality data for
research is classified as ‘low risk audit activity’ and is
exempt from requirements for formal ethics approval.
Access to the data was granted by the ANZICS Centre for
Outcome and Resource Evaluation (CORE) Management
Committee. Ethics approval was obtained from the Alfred
Hospital Human Research Ethics Committee (HREC
reference number 183/11) in keeping with ANZICS
CORE publication policies for use of the APD. The
ICNARC–CMPD is a trinational, representative database
with coverage of adult general critical care units and
specialist neurocritical care units in England (92 %),
Wales (100 %) and Northern Ireland (100 %). The ICN-
ARC–CMPD contains over one million adult critical care
admissions [33]. The ICNARC–CMPD has support for
the collection and use of patient identifiable data without
consent under Section 251 of the NHS Act 2006
(approval number PIAG 2–10(f)/2005).

Variables

The following variables were extracted from the dat-
abases: age, sex, GCS, physiological measures including
temperature in the first 24 h and vital status at hospital
discharge. Additionally, illness severity was determined
using the APACHE II risk prediction model for both
databases [34], the ANZROD [29] model for the ANZ
data and the ICNARC model for the UK data [30]. Nei-
ther database contained information on how temperature
was measured or information regarding pharmacological
agents that may be used to modify temperature or the use
of physical cooling.

Outcomes

The primary outcome was in-hospital mortality (all-cause
death before hospital discharge). For patients in the ANZ
database, vital status was determined at the time of dis-
charge from the acute hospital housing the ICU to which

the patient was admitted. For patients in the UK database,
vital status was determined at the time the patient was
ultimately discharged from any acute hospital (including
transfers between hospitals).

Statistical methods

We considered peak temperature as a categorical variable,
divided into 0.5 �C increments. We calculated odds ratios
(95 % CI) for the risk of hospital mortality associated
with peak temperature in the first 24 h after ICU admis-
sion for all patients (univariate model). Except for the
group with peak temperatures below 36.0 �C, which is
reported as a single category, we report odds ratios rela-
tive to a normal temperature defined as a peak
temperature of 37.0–37.4 �C based on data from obser-
vational clinical studies [2, 3]. We then performed a
multivariate analysis for hospital mortality using tem-
perature as a categorical variable (as defined above), GCS
and illness severity (APACHE III model for the ANZ
cohort and the ICNARC model for the UK cohort). Both
illness severity models used the predicted log odds of
death, excluding the GCS and temperature weightings.

We chose to combine TBI [4, 6] and stroke [2, 3, 5,
19–21] because of the consistent finding that elevated
temperature [22] is associated with adverse morbidity and
mortality in previous observational studies. To confirm
that this approach was reasonable, we separated the TBI/
stroke group into three groups [TBI, haemorrhagic stroke
(subarachnoid haemorrhage, intracerebral haemorrhage)
and acute ischaemic stroke (AIS)] and evaluated the
relationship between peak temperature in the first 24 h
and all-cause hospital mortality using univariate and
multivariate analyses (as described above).

To establish if the relationship between temperature
and hospital mortality differed between the TBI/stroke
group and CNS infection, we fitted an interaction between
temperature and the two groups. A two-sided P value less
than 0.05 was considered to be statistically significant.
We first tested our hypotheses using the ANZ database.
After this analysis was completed, we applied the same
analysis to the UK database to validate the preliminary
findings.

Role of the funding source

This study received no direct funding from peer-reviewed
institutional granting agencies. Indirect (in-kind) support
was received from the Australian and New Zealand
Intensive Care Research Centre, Melbourne, Australia;
the George Institute for Global Health, Sydney, Australia;
The Medical Research Institute of New Zealand, Wel-
lington, New Zealand; and the Intensive Care National
Audit & Research Centre, London, UK. Apart from the
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affiliated authors, these centres had no involvement in the
study design; in the collection, analysis and interpretation
of data; in the writing of the report and in the decision to
submit the paper for publication. The corresponding
author had full access to all the data in the study and had
final responsibility for the decision to submit for
publication.

Results

Over the study period from 2005 to 2013, 934,159
intensive care admissions were included in the ANZICS–
APD and 908,775 in the ICNARC–CMPD (for flow dia-
gram see ESM Fig. 1). Of these, 53,942 (5.8 %) in ANZ
and 56,696 (6.2 %) in the UK met the inclusion criteria
for an admission diagnosis of TBI/stroke or a CNS
infection. After excluding readmissions and admissions
following cardiac arrest, 51,314 in ANZ and 53,781 in the

UK were eligible for the analysis, of which 10,172
(19.2 %) of ANZ patients and 2,347 (4.4 %) of UK
patients were excluded from the analysis owing to miss-
ing data. For the ANZ data, there were no substantial
differences between included patients and patients that
were excluded because of missing data (ESM Table 2).
For the UK data, patients that were excluded because of
missing data had higher intubation and hospital mortality
rates (76 vs. 70 % and 45 vs. 33 % respectively) than
patients that were included in the analysis.

Admissions included in the ANZ database were drawn
from 148 hospitals (27 % rural, 22 % metropolitan, 22 %
tertiary and 29 % private). Admissions included in the UK
database were pooled from 236 adult critical care units. Of
the 236 critical care units, 29 % were in university hospi-
tals, 17 %were university-affiliated and 54 %were in non-
university (district general) hospitals. Nine of the UK
critical care units were dedicated specialist neurocritical
care units and 15were combined neuro/general critical care
units in a regional neurosurgical centre.

Table 1 Baseline demographics, illness severity scores, acute physiology and hospital outcome

ANZ UK

TBI/stroke
(n = 38,679)

CNS infection
(n = 2,463)

TBI/stroke
(n = 45,038)

CNS infection
(n = 6,396)

Age (years) 55 (37–70) 49 (32–64) 54 (40–65) 50 (34–64)
Gender/male, % (n) 64 % (14,500) 56 % (802) 61 % (27,257) 55 % (3,486)
APACHE II score 15 (10–22)e 16 (11–22)e 15.2 (7.3)e 15.7 (7.1)e

APACHE III score 46 (31–67) 49 (32–69) N/A N/A
ICNARC physiology score N/A N/A 16.3 (8.0) 17.5 (7.8)
APACHE II risk of deatha 0.19 (0.08–0.39) 0.13 (0.06–0.26) 0.32 (0.16–0.58) 0.15 (0.08–0.26)
APACHE III risk of death 0.13 (0.04–0.38) 0.13 (0.05–0.33) N/A N/A
ICNARC risk of deatha N/A N/A 0.27 (0.11–0.54) 0.13 (0.06–0.29)
Peak temp, �Cb 37.4 (0.8) 37.9 (1.0) 37.5 (0.9) 37.8 (1.0)
Sedated for entire of first 24 h N/A N/A 34 % (15,482) 38 % (2,449)
GCS (if not sedated for entire first 24 h)c

Verbal 3 (1–5) 3 (1–5) 2 (1–5) 2 (1–5)
Motor 5 (3–6) 5 (4–6) 5 (1–6) 5 (4–6)
Eye 3 (1–4) 3 (2–4) 3 (1–4) 3 (2–4)
Total 9.9 (4.6)e 10.3 (4.1)e 9.2 (4.7)e 10.1 (4.3)e

Intubated, % (n) 61 % (14,388) 56 % (804) 70 % (28,436) 67 % (3,844)
pHd 7.37 (7.31–7.43) 7.39 (7.32–7.44) 7.41 (7.37–7.45) 7.41 (7.36–7.45)
PaO2, mmHgd 120 (88–192) 109 (83–169) 84 (72–101) 83 (71–98)
FiO2

d 0.50 (0.30–0.60) 0.45 (0.30–0.60) 0.30 (0.28–0.40) 0.30 (0.28–0.40)
PaCO2, mmHgd 39 (35–44) 38 (34–43) 37 (33–41) 37 (32–42)
Highest HR, beats per minute 95 (80–110) 100 (90–117) 95 (83–112) 105 (90–120)
Lowest MAP/mmHg 71 (64–80) 70 (63–78) 72 (63–81) 67 (60–76)
(Acutec) hospital mortality, % (n) 22 % (8,510)e 12 % (296)e 35 % (15,763)e 19 % (1,215)e

(Acutec) hospital length of stay, median days (IQR)
All patients 12 (5–24) 12 (7–24) 14 (4–38) 17 (9–38)
Survivors 15 (7–28) 13 (7, 24) 24 (10–52) 18 (10–40)
Non-survivors 4 (2–9) 10 (4, 24) 4 (1–10) 11 (4–28)

Values are mean (SD), % (n) or median (quartiles)
a UK: Based on 2011 UK recalibration
b Central or non-central temperature
c UK only
d ANZ: if the FiO2 is below 0.5, then the lowest arterial PaO2 is
used; if the FiO2 is above 0.5, then the PaO2 associated with the

highest alveolar–arterial (A–a) gradient is recorded [A–
a = 713 9 FiO2 - (PaO2–PaCO2)]. UK: lowest arterial PaO2 is
used
e P\ 0.0001 for comparison between ANZ and UK groups, and
comparison within ANZ and UK groups
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Table 2 In-hospital mortality and odds ratio (unadjusted and adjusted) for hospital mortality, relative to normothermia (37–37.4 �C), for
ANZ patients

Peak temp
(�C)

In-hospital mortality
deaths, N (%)

Unadjusted odds ratio for
in-hospital mortality (95 % CI)a

Adjusted odds ratio for in-hospital
mortality (95 % CI)b

TBI/stroke (n = 38,679)
\36.0 505/1,139 (44.3) 3.63 (3.20, 4.13) 2.36 (1.98, 2.82)
36.0–36.4 572/2,215 (25.8) 1.59 (1.43, 1.77) 1.62 (1.40, 1.87)
36.5–36.9 1,117/6,273 (17.8) 0.99 (0.91, 1.07) 1.14 (1.03, 1.27)
37.0–37.4 1,871/10,407 (18.0) 1.00 1.00
37.5–37.9 9,074/1,797 (19.8) 1.13 (1.05, 1.21) 0.91 (0.83, 1.00)
38.0–38.4 1,339/5,846 (22.9) 1.36 (1.25, 1.47) 0.93 (0.84, 1.02)
38.5–38.9 698/2,477 (28.2) 1.79 (1.62, 1.98) 1.10 (0.97, 1.25)
39.0–39.4 339/806 (42.1) 3.31 (2.85, 3.84) 1.62 (1.34, 1.96)
39.5–39.9 142/262 (54.2) 5.40 (4.21, 6.92) 1.94 (1.40, 2.67)
40.0? 131/180 (72.0) 12.20 (8.75, 17.00) 2.97 (1.95, 4.52)
CNS infection (n = 2,463)
\36.0 7/42 (16.7) 1.86 (0.78, 4.43) 2.15 (0.82, 5.62)
36.0–36.4 14/100 (14.0) 1.51 (0.79, 2.88) 1.89 (0.88, 4.04)
36.5–36.9 31/253 (12.3) 1.30 (0.79, 2.12) 1.78 (1.03, 3.08)
37.0–37.4 43/442 (9.7) 1.00 1.00
37.5–37.9 41/438 (9.4) 0.96 (0.61, 1.50) 1.15 (0.70, 1.91)
38.0–38.4 52/444 (11.7) 1.23 (0.80, 1.89) 1.25 (0.78, 2.02)
38.5–38.9 50/321 (15.6) 1.71 (1.11, 2.65) 1.36 (0.83, 2.22)
39.0–39.4 32/247 (13.0) 1.38 (0.85, 2.25) 1.20 (0.70, 2.07)
39.5–39.9 17/115 (14.8) 1.61 (0.88, 2.94) 1.30 (0.67, 2.55)
40.0? 8/61 (13.1) 1.40 (0.62, 3.14) 1.08 (0.43, 2.72)

Tests for interaction between TBI/stroke and CNS infection:
a P\ 0.0001
b P = 0.02

Table 3 In-hospital mortality and odds ratio (unadjusted and adjusted) for hospital mortality, relative to normothermia (37–37.4 �C), for
UK patients

Peak temp (�C) In-hospital mortality
deaths, N (%)

Unadjusted odds ratio for
in-hospital mortality
(95 % CI)a

Adjusted odds ratio
for in-hospital mortality
(95 % CI)b

TBI/stroke (n = 45,038)
\36.0 931/1,266 (73.5) 7.07 (5.61, 8.91) 4.35 (3.51, 5.40)
36.0–36.4 1,312/2,741 (47.9) 2.34 (1.97, 2.77) 2.15 (1.88, 2.46)
36.5–36.9 2,414/7,244 (33.3) 1.27 (1.14, 1.42) 1.45 (1.31, 1.61)
37.0–37.4 3,244/11,497 (28.2) 1.00 1.00
37.5–37.9 3,084/10,249 (30.1) 1.10 (0.98, 1.22) 0.98 (0.90, 1.07)
38.0–38.4 2,263/6,820 (33.2) 1.26 (1.08, 1.47) 0.97 (0.88, 1.08)
38.5–38.9 1,225/3,162 (38.7) 1.61 (1.33, 1.95) 1.11 (0.95, 1.30)
39.0–39.4 669/1,287 (52.0) 2.75 (2.21, 3.43) 1.59 (1.35, 1.88)
39.5–39.9 304/474 (64.1) 4.55 (3.34, 6.21) 2.46 (1.90, 3.19)
40.0? 262/298 (87.9) 18.52 (13.35, 25.67) 6.67 (4.74, 9.39)
CNS infection (n = 6,396)
\36.0 30/75 (40.0) 2.79 (1.70, 4.57) 2.81 (1.48, 5.33)
36.0–36.4 83/321 (25.9) 1.46 (1.08, 1.98) 1.36 (0.94, 1.97)
36.5–36.9 189/871 (21.7) 1.16 (0.95, 1.42) 1.22 (0.94, 1.58)
37.0–37.4 246/1,277 (19.3) 1.00 1.00
37.5–37.9 202/1,223 (16.5) 0.83 (0.68, 1.02) 0.74 (0.59, 0.94)
38.0–38.4 148/1,016 (14.6) 0.71 (0.57, 0.89) 0.62 (0.48, 0.81)
38.5–38.9 116/735 (15.8) 0.79 (0.61, 1.01) 0.63 (0.46, 0.87)
39.0–39.4 88/501 (17.6) 0.89 (0.69, 1.16) 0.71 (0.52, 0.97)
39.5–39.9 49/225 (21.8) 1.17 (0.84, 1.62) 0.95 (0.64, 1.39)
40.0? 43/152 (28.3) 1.65 (1.12, 2.45) 1.00 (0.65, 1.56)

Tests for interaction between TBI/stroke and CNS infection:
a P\ 0.0001
b P\ 0.0001
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Table 1 demonstrates the baseline characteristics,
physiology and outcomes for patients with acute neuro-
logical diseases in the ANZ and UK cohorts. The UK
cohort had a higher hospital mortality than the ANZ
cohort (TBI/stroke 35 vs. 22 % and CNS infection 19 vs.
12 % respectively; P\ 0.0001).

Associations between peak temperature recorded in
the first 24 h of ICU admission and hospital mortality,
relative to the risk at a normal temperature between 37
and 37.4 �C, are shown in Tables 2 and 3 and Figs. 1 and
2. The pattern of risk of death was similar for TBI,
ischaemic stroke and haemorrhagic stroke. For both the
ANZ (P = 0.02) and UK (P\ 0.0001) cohorts there was
a significant interaction between early peak temperature
and CNS infection, indicating that the nature of the
relationship between in-hospital mortality and peak tem-
perature differed between TBI/stroke and CNS infection.

For the CNS infection group, in the ANZ cohort
(n = 2,463), there was no significant increase in the
adjusted risk of death across the range of peak tempera-
tures, compared to normothermia. However, in the UK
cohort (n = 6,396), there was a reduction in the risk of
death between 37.5 and 39.4 �C [adjusted OR between

0.62 (0.48, 0.81) and 0.74 (0.59, 0.94) within this range of
temperature], compared to normothermia. Additionally,
there was no increase in the risk of death for temperature
above 39.5 �C, compared to normothermia.

For the TBI/stroke group, in both the ANZ
(n = 38,679) and UK cohorts (n = 45,038), there was no
increase in the adjusted risk of death between 37 and
39 �C, in comparison to normothermia, but the risk of
death increased below 37 �C and above 39 �C.

Discussion

Statement of principal findings

Using two large, independent, multi-centric, geographi-
cally distinct and representative databases, employing
different risk prediction models to adjust for illness
severity and different methods to classify patients into
TBI/stroke and CNS infection, we report three key
findings. Firstly, the relationship between peak temper-
ature in the first 24 h after ICU admission and in-
hospital mortality differs for patients with TBI/stroke

Fig. 1 ANZ and UK data showing adjusted odds ratios for in-
hospital mortality versus peak temperature in the first 24 h after
ICU admission: traumatic brain jury and stroke versus central

nervous system infection (test for interaction between TBI/stroke
and CNS infection for ANZ and UK cohorts was P = 0.02 and
P\ 0.0001 respectively)
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compared to those with a CNS infection. Secondly, in
comparison to patients with CNS infection that are
normothermic, the presence of an elevated temperature
is not associated with an increased risk of death. Thirdly,
in comparison to patients with TBI/stroke that are nor-
mothermic, there was no change in the risk of death for
patients with an early peak temperature of between 37
and 39 �C, but there was an increase in the risk of death
above 39 �C and below 37 �C.

Relationship to previous work and study significance

The finding that the pattern of risk is different for TBI/
stroke compared to CNS infection challenges the tradi-
tional assumption that avoiding hyperthermia is desirable
for all neurological diseases. This finding is consistent
with animal data that fever in the context of infection may
be a component of an adaptive, beneficial response [10,
11, 35, 36]; this finding is also compatible with previous

Fig. 2 ANZ and UK data showing adjusted odds ratios for in-hospital mortality versus peak temperature in the first 24 h after ICU
admission: traumatic brain injury, acute ischaemic stroke and subarachnoid haemorrhage/intracerebral haemorrhage
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cohort studies [24–26] of critically ill patients with sys-
temic infection. Our study contradicts the findings of a
smaller, previously published observational study of
meningitis [37]. That elevated peak temperature is not
associated with an increased risk of death in patients with
CNS infection is biologically plausible, given the sensi-
tivity of certain microbial species (N. meningitides [27]
and S. pneumonia [28]) to the higher peak temperatures
we observed.

The finding for patients with TBI/stroke, that the risk of
death does not increase until temperature exceeds 39 �C, is
consistent with animal models of TBI/stroke that compare
induced hyperthermia (C39 �C) to induced normothermia
(37 �C [38–40] or 38 �C [16]), but contrasts with smaller
clinical cohort studies that report an association between
temperature below 39 �C [19, 22] and adverse outcomes
(37.5 �C [2, 41], 37.9 �C [20], 38 �C [42] and 38.5 �C
[43]). At present there are no agreed definitions of nor-
mothermia and no randomised clinical studies [13, 44, 45]
confirming that the maintenance of normothermia
improves patient-centred outcomes. Our study may help
generate hypotheses by assisting with the formulation of a
definition of normothermia for patients with TBI/stroke
that could be tested in clinical trials.

The finding that hypothermia is associated with an
increased risk of death for the stroke and TBI group is
complex to interpret. It may be compatible with the
uncertain signal from the many clinical trials evaluating
induced hypothermia [46] for TBI and clinical trials of
other patient groups that suggest benefit with avoiding
iatrogenic hypothermia [47–49]; alternatively, it is also
possible that spontaneous hypothermia may be a marker
of more severe injury or that rewarming a patient that
presents with spontaneous hypothermia is associated with
increased mortality [50].

The difference in hospital mortality between the ANZ
and UK cohorts may be explained by the increased illness
severity (lower GCS and higher mechanical ventilation
rate during the first 24 h of ICU admission) of the UK
cohort. The difference in illness severity and the smaller
number of patients with CNS infection in the ANZ cohort
compared to the UK cohort may also partially explain the
difference in the risk of death between 37.5 and 39.4 �C;
differences in unmeasured confounders (such as genetic
patient differences or microbial resistance patterns) may
offer alternative explanations.

Strengths and limitations of the study

Our study has several strengths. It used two large, inde-
pendent, multinational databases that included 92,576
patients with an admission diagnosis attributable to an
acute neurological disease. It used one database to test the
hypothesis and the second database to validate the results,
increasing the external validity of the findings. The data

were independently collected by multiple trained data
collectors for the purpose of audit and are unlikely to be
subject to bias in relation to the recording of body tem-
perature in the different groups of patients studied. The
outcome (hospital mortality) is objective and easily ver-
ifiable, thus unlikely to be affected by ascertainment error
or bias. Collection of validated markers for severity of
illness allowed the adjusted odds ratio for the risk of
mortality to be calculated by multivariate analysis.
Finally, the differential association of fever with outcome
in the two groups is statistically strong.

There are a several limitations that mainly relate to the
specific information available in the two databases.
Firstly, it was not possible to control for antipyretic use or
physical cooling in the multivariate analysis, but these
interventions are variably used in clinical practice [4, 8]
(40–60 % of patients may be administered pharmaco-
logical agents and 21–25 % [4, 8, 51] receive physical
cooling) and have not been shown to improve outcome
[13, 44]. Secondly, we were unable to control for the
potential confounding role of shivering and the manage-
ment of shivering between the two groups [for example,
in contrast to the management of CNS infection, TBI
management is often protocolised, with stepwise use of
sedation and other strategies to control brain oedema that
may also reduce the incidence and severity of shivering;
such an approach may lead to ‘‘controlled’’ hypothermia
with the relative absence of shivering and tachycardia in
patients with TBI, and ‘‘uncontrolled’’ hypothermia
occurring with more frequent shivering and tachycardia in
patients with CNS infection. The latter may be associated
with adverse events related to (for example) myocardial
stress]. Thirdly, the use of a single peak temperature does
not allow us to gain an understanding of the relationship
between other temperature parameters (such as the pro-
portion of time above a specified threshold or temperature
variability) and outcome for the two study groups.
Additionally, we studied the first 24 h after intensive care
admission and cannot comment on the relationship
between temperature and outcome during other time
periods. It is plausible that fever control could have dif-
ferent effects in the early and later stages of infective
illnesses (for example by effects on host response and
cerebral swelling respectively). Future studies could
address these issues. Fourthly, age-related or illness
severity-related differences in the inflammatory/infective
response may confound the interpretation of the differ-
ence between CNS infection and the trauma/stroke group.
However we adjusted for age and illness severity in the
multivariate model. Fifthly, adjustments for illness
severity were based on data collected concurrently with
the peak temperature data (it would be preferable to have
determined the illness severity prior to the collection of
the temperature data). Sixthly, the accepted endpoint for
stroke and TBI clinical trials is a composite measure of
death and disability measured at 6 months and not
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hospital outcome. Lastly, some patients were excluded
because of missing data; however, these data may be
missing at random.

Conclusion

The association between early fever and hospital mor-
tality for critically ill patients with acute neurological
diseases is different for patients with CNS infection
compared to patients with TBI and stroke. For the group
with CNS infection, fever was not associated with an
increased risk of death, compared to normothermia, but
for patients with stroke and TBI, temperature below
37 �C and above 39 �C was associated with an increased
risk of death. These data may be useful for hypothesis

generation for clinical trials evaluating the efficacy of
normothermia for acute neurological diseases.
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