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Abstract: Quantitatively and accurately monitoring the damage to composites is critical for esti-
mating the remaining life of structures and determining whether maintenance is essential. This
paper proposed an active sensing method for damage localization and quantification in composite
plates. The probabilistic imaging algorithm and the statistical method were introduced to reduce
the impact of composite anisotropy on the accuracy of damage detection. The matching pursuit
decomposition (MPD) algorithm was utilized to extract the precise TOF for damage detection. The
damage localization was realized by comprehensively evaluating the damage probability evaluation
results of all sensing paths in the monitoring area. Meanwhile, the scattering source was recognized
on the elliptical trajectory obtained through the TOF of each sensing path to estimate the damage
size. Damage size was characterized by the Gaussian kernel probability density distribution of
scattering sources. The algorithm was validated by through-thickness hole damages of various
locations and sizes in composite plates. The experimental results demonstrated that the localization
and quantification absolute error are within 11 mm and 2.2 mm, respectively, with a sensor spacing
of 100 mm. The algorithm proposed in this paper can accurately locate and quantify damage in
composite plate-like structures.

Keywords: Lamb wave; matching pursuit decomposition algorithm; damage quantification; probabilistic
imaging algorithm

1. Introduction

Composite materials have attracted interest in the fields of aviation and aerospace due
to their excellent specific strength and stiffness properties. Consequently, they progressively
evolved into the primary structural material for the current generation of aircraft [1,2].
However, low-velocity impact or long-term loading can cause delamination, debonding,
matrix cracking, and other structural damage faults [3]. Moreover, damage to composites
is prone to increase, and will reduce structural bearing capacity and strength. If no damage
is discovered and addressed appropriately in the initiation state, it can facilitate severe
damage or even structural failure [4]. Hence, it is crucial to continuously monitor the
damage status of composite structures to enhance structural safety [5].

Lamb waves are regarded as an effective and promising structural health monitoring
(SHM) approach since they can travel over a long distance with low attenuation and
high susceptibility to interference on the propagation path [6]. Recently, various imaging
algorithms have been proposed for damage detection, including a time reversal-based
imaging algorithm [7], a tomography imaging technique [8], a reconstruction algorithm
for the probabilistic inspection of damage [9], and a delay-and-sum damage-imaging
method [10]. Previously, Lamb wave-based SHM demonstrated generally promising results
in composite structures for damage identification and localization. However, there is still a
great demand for a reliable algorithm for damage quantification of such structures. The
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process is a challenge because composite structures are anisotropic, and the complex wave
interactions complicate the Lamb wave propagation mechanism [11,12]. Hence, it is urgent
to develop a method for damage quantification that is applicable to composite structures,
thereby guaranteeing their safety [13].

Accordingly, several researchers employed the correlation between damage index
and related damage size for quantification [14–16]. Pillarisetti and Talreja [17] proposed
a set of stress wave factors as quantification descriptors taken from the power spectral
density distribution of Lamb wave signals. Additionally, the stress wave factors were
connected with the crack density in composite laminates. Torkamani et al. [18] introduced
a time–domain damage index called “normalized correlation moment” to detect and access
the delamination. Finite element and experimental data validated its excellent performance
in the assessment of delamination in composites. He et al. [19] demonstrated a method
for crack-size estimation focused on normalized amplitude and phase, which has been
confirmed with data from coupon specimens and lap-joint components. Jin et al. [20]
monitored the propagation of defect zones in curved composite structures by energy and
signal difference coefficient. However, to gain higher accuracy, the methods reviewed above
necessitate collecting a particular amount of data in various structure states. Moreover,
the mathematical relationship between damage index and damage severity was only
applicable to the structure for which the data were collected. The built model cannot
be used directly when the structure is changed, which leads to poor portability. Thus, a
universal quantification method that does not require the collection of significant volumes
of data ahead of time is required for damage monitoring.

In addition to utilizing a specified damage index to quantify damage, scattering
sources have been found as Lamb wave signals reflect from the damage boundary [21,22].
Moreover, the damage images for structures were reconstructed by scattering sources. The
scattering sources were determined by the temporal information time of flight (TOF) of
Lamb waves. The extraction of TOF from Lamb wave signals was frequently studied in
both time domain and time–frequency domain perspectives [23,24]. Gorgin et al. [25] and
Lu et al. [21] presented an approach in which the scattered waves occur from the boundary
of damage sites for each sensing path, and a convex hull of scattering sources give the
approximate shape and size of the damage. Hu et al. [26] established a theory for estimating
the size of through-thickness circular holes by analyzing the reflection intensity of Lamb
waves. However, the above research mainly focuses on the quantification of aluminum
plates. Considering the scattering source as the damage boundary is more applicable
to isotropic materials. In the propagation of Lamb waves, the anisotropy of composites
causes different velocities in all directions. Therefore, it is difficult to precisely compute
the propagation distance of Lamb waves from their propagation time. The scattering
sources spread around the damage center rather than precisely situating at the border of
the damage when utilizing the approximate propagation velocity.

Concerning the problems above, further study is required to accurately identify the
level of damage in composite materials so that damage can be quantified with greater
accuracy and universality. This paper proposed a TOF-based method for damage local-
ization and quantification on composite plates. The uncertainty of damage monitoring
caused by the composite material properties and the wave interaction when Lamb waves
propagate in the structure are considered. A detection method for damage localization
and quantification from the probabilistic perspective was introduced. An active sensor
network with pitch–catch configurations was established to generate and capture Lamb
wave signals. The matching pursuit decomposition (MPD) algorithm [27,28] was employed
to extract TOF as a signal processing tool. The through-thickness holes in composite plate
were located utilizing the probabilistic imaging algorithm. Meanwhile, the elliptical tra-
jectory was obtained by calculating the TOF of each sensing path, with the point in the
anticipated trajectory closest to the damage center being regarded as a scattering source.
Finally, a statistical approach was utilized to process the probability density distribution
of scattering sources. Damage size was characterized by the kernel probability density
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distribution of scattering sources. Experiments were performed on composite plates with
multiple damage cases to validate the proposed technique.

The layout of this paper is as follows: Section 2 gives a detailed description of damage
location identification and size quantification methodologies. Experimental specimen and
signal acquisition device are introduced in Section 3. Section 4 illustrates the experimental
results and gives the discussions. Finally, Section 5 summarizes the conclusions.

2. Damage Detection Method

This paper proposes a damage detection method to locate and quantify the damage to
a composite plate. The location of the damage is recognized by the TOF-based probability
imaging algorithm. The accuracy of damage localization directly affects the quantitative
analysis of the damage. On the basis of localization, the position of the corresponding
scattering source is detected through each sensing path. The damage is quantified by
analyzing the probability density distribution of scattering sources. The flowchart of the
experimental process of this paper is shown in Figure 1.
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2.1. Damage Localization Algorithm
2.1.1. Probabilistic Imaging Algorithm by TOF

Lamb waves propagate after being activated in the structure, and can be detected
by sensors arranged in various locations [29]. The damage location can be determined
by the ellipse-positioning method once the TOF of Lamb waves in the undamaged and
damaged structures of each sensing path have been acquired [30,31]. The monitoring
network composed of four sensors is implemented as shown in Figure 2. The piezoelectric



Sensors 2022, 22, 4810 4 of 16

transducer (PZT) serves as both the actuator and the sensor. “P1” is the actuator, which
excites a five-cycle sinusoidal signal modulated by the Hanning window, and “P2”, “P3”,
and “P4” are the sensors used to collect Lamb wave signals excited by the actuator. Figure 3
shows the detected Lamb wave signals. The detected Lamb wave signals are utilized as
a baseline signal through a direct path DA−S between the specified sensing path without
structural damage. Hence, the arrival time of the first-wave packet is analyzed as the time
required for Lamb waves passing through path DA−S, denoted as TOFB. Similarly, Lamb
waves transmit from the actuator to the damage DA−d and scatter from the damage to
the sensor Dd−S when the structure is damaged. The difference between the baseline and
current signals is utilized to obtain the scattered waves. During this process, the arrival
time of scattered waves is recorded as TOFS.
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As shown in Figure 2, an elliptical trajectory with the actuator and the sensor as focal
points can be obtained by satisfying the solution defined as:

DA−d + Dd−S
DA−S

=

√
( xA − xd )2 + ( yA−yd )2 +

√
( xS − xd )2 + ( yS − yd )2√

( xA − xS )2 + ( yA − yS )2
=

TOFSvgS

TOFBvgB
= β, (1)

where vgB, vgS are the group velocities, xA , yA are the coordinates of the actuator, xS,
yS are the coordinates of the sensor, and xd, yd are the coordinates of the damage center.
Only one ellipse is insufficient to pinpoint the site of the damage, and damage location
can be accomplished by getting more than two ellipses from the sensor network utilizing
different sensing paths. Since the ratio of TOFB and TOFS is fixed, the ratio β can be used
to calculate the path length of scattered waves.
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Because of the anisotropy of composites, it is difficult to correctly compute the propaga-
tion velocity in all directions. This work made an approximation to increase the algorithmic
feasibility and efficacy. When propagating on both direct path and scattering path, it
is considered that the Lamb waves have the same average velocity. However, such an
approximation results in an incorrect distribution of outcomes outside the actual damage
boundary. Accordingly, the probability imaging algorithm is proposed based on the ellipse
positioning method as Figure 4 shows. In addition, a Gaussian distribution is employed
to enhance the trajectory coverage area and decrease the localization error. Furthermore,
the probability imaging algorithm grids the monitoring area of the sensor network into
uniform pixel points [32]. The damage probability of each pixel point in the elliptical influ-
ence area of each sensing path is superimposed [31]. Overall, the damage to the structure
can be intuitively portrayed by computing the damage probability of each pixel point on
the structure.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 17 
 

 

where vgB, vgS are the group velocities, xA , yA  are the coordinates of the actuator, xS, 
yS are the coordinates of the sensor, and xd, yd are the coordinates of the damage center. 
Only one ellipse is insufficient to pinpoint the site of the damage, and damage location 
can be accomplished by getting more than two ellipses from the sensor network utilizing 
different sensing paths. Since the ratio of TOFB and TOFS is fixed, the ratio β can be 
used to calculate the path length of scattered waves. 

Because of the anisotropy of composites, it is difficult to correctly compute the 
propagation velocity in all directions. This work made an approximation to increase the 
algorithmic feasibility and efficacy. When propagating on both direct path and scattering 
path, it is considered that the Lamb waves have the same average velocity. However, 
such an approximation results in an incorrect distribution of outcomes outside the actual 
damage boundary. Accordingly, the probability imaging algorithm is proposed based on 
the ellipse positioning method as Figure 4 shows. In addition, a Gaussian distribution is 
employed to enhance the trajectory coverage area and decrease the localization error. 
Furthermore, the probability imaging algorithm grids the monitoring area of the sensor 
network into uniform pixel points [32]. The damage probability of each pixel point in the 
elliptical influence area of each sensing path is superimposed [31]. Overall, the damage to 
the structure can be intuitively portrayed by computing the damage probability of each 
pixel point on the structure. 

 
Figure 4. Probability imaging algorithm. 

Lamb wave signals are collected by specified sensing path before and after damage, 
and the ratio β in Equation (1) is determined after signal processing. The damage proba-
bility is estimated by computing the relative distance between each pixel in the moni-
toring area of each sensing path. In addition, the size of each pixel is 0.1 mm × 0.1 mm in 
this paper. The relative distance of each pixel (x, y) is calculated as follows: 

Rj(x, y) = ( xA − x )2 + ( yA-y )2 + ( xS − x )2 + ( yS − y)2

( xA − xS )
2 + ( yA − yS )2

, (2) 

where Rj(x, y) is the relative distance of the pixel point (x, y) using the jth sensing path. 
The damage probability of the pixel point f (x, y) is determined by the normal distribution 
function which is written as follows [31]: 

fj(x, y) = 1
σ√2π

e-
(Rj(x, y)-µ)2

2σ2 , (3) 

Rj(x, y) = DA, j-d  Dd-S, j

DA, j-S, j
= TOFS

TOFB
= 𝛽j, (4) 

DA, j-S, j is the distance between the actuator and the sensor of the jth path, DA, j-d and 
Dd-S, j are the distances of the pixel (x, y) from the actuator to the sensor of the jth path, 
respectively. 

Figure 4. Probability imaging algorithm.

Lamb wave signals are collected by specified sensing path before and after damage,
and the ratio β in Equation (1) is determined after signal processing. The damage probability
is estimated by computing the relative distance between each pixel in the monitoring area
of each sensing path. In addition, the size of each pixel is 0.1 mm × 0.1 mm in this paper.
The relative distance of each pixel (x, y) is calculated as follows:

Rj(x, y) =

√
( xA − x )2 + ( yA−y )2 +

√
( xS − x )2 + ( yS − y)2√

( xA − xS )2 + ( yA − yS )2
, (2)

where Rj(x, y) is the relative distance of the pixel point (x, y) using the jth sensing path.
The damage probability of the pixel point f (x, y) is determined by the normal distribution
function which is written as follows [31]:

fj(x, y) =
1

σ
√

2π
e−

(Rj(x, y)−µ)2

2σ2 , (3)

Rj(x, y) =
DA, j−d + Dd−S, j

DA, j−S, j
=

TOFS
TOFB

= β j, (4)

DA, j−S, j is the distance between the actuator and the sensor of the jth path, DA, j−d
and Dd−S, j are the distances of the pixel (x, y) from the actuator to the sensor of the jth
path, respectively.

As shown in Figure 5b, the coordinates of the pixel points (x, y) have the highest
damage probability when the pixel fulfills Equation (4). The damage probability results in
the monitoring region are calculated by a specific path as illustrated in Figure 5a, where
“+” represents the actual damage center and the white circles represent the sensors. The
damage probability value of each pixel point (x, y) in the monitoring area varies with relative
distance Rj(x, y). As the difference between Rj(x, y) and β increases, the probability of
damage decreases.



Sensors 2022, 22, 4810 6 of 16

Sensors 2022, 22, x FOR PEER REVIEW 6 of 17 
 

 

As shown in Figure 5b, the coordinates of the pixel points (x, y) have the highest 
damage probability when the pixel fulfills Equation (4). The damage probability results 
in the monitoring region are calculated by a specific path as illustrated in Figure 5a, 
where “+” represents the actual damage center and the white circles represent the sen-
sors. The damage probability value of each pixel point (x, y) in the monitoring area varies 
with relative distance Rj(x, y). As the difference between Rj(x, y) and β increases, the 
probability of damage decreases. 

 
(a) (b) 

Figure 5. Damage probability distribution of specific paths. (a) Damage probability distribution; (b) 
The normal distribution. 

P (x, y) =∑  fj(x, y)N
j=1 , (5) 

Finding the pixel (x, y) with the highest damage probability value allows for damage lo-
calization. Moreover, if the monitoring region has N sensing paths in the monitoring ar-
ea, the probability of damage at location (x, y) is written as Equation (5). 

2.1.2. TOF Extraction Method 
The MPD algorithm is an effective signal processing tool to decompose the over-

lapped wave packets of a signal so that each wave mode can be identified. It is an itera-
tive algorithm, which provides an accurate solution of signal decomposition based on the 
linear combination of unit basis functions composed of redundant dictionaries. In this 
paper, the MPD algorithm was utilized to reconstruct the Lamb wave signals and the 
direct wave packet of Lamb waves was extracted and its TOF was obtained. The MPD 
algorithm exploits the linear combination of unit basis functions or atomic functions in 
the dictionary D to express a signal accurately. This process is obtained by continuous 
iterative optimization by the following expressions: 

D = [d1, d2 …… di], (6) 

S = ∑ αkdkk , (7) 

where di is the ith atom in D, S is the reconstructed signal linearly expressed by atoms in 
D. The MPD algorithm must choose the optimal collection of atoms representing the in-
vestigated signal from the overcomplete dictionary. Moreover, the ability of atoms to 
convey a signal is influenced by the qualities of basis vectors, which must match the 
original signal [33]. As a result, the MPD algorithm iterates through the most relevant set 
of atoms in a given dictionary to create a sparse representation of the signal. The MPD 
algorithm is broken down into the following phases. 

Figure 5. Damage probability distribution of specific paths. (a) Damage probability distribution;
(b) The normal distribution.

P(x,y) = ∑N
j=1 f j(x, y), (5)

Finding the pixel (x, y) with the highest damage probability value allows for damage
localization. Moreover, if the monitoring region has N sensing paths in the monitoring area,
the probability of damage at location (x, y) is written as Equation (5).

2.1.2. TOF Extraction Method

The MPD algorithm is an effective signal processing tool to decompose the overlapped
wave packets of a signal so that each wave mode can be identified. It is an iterative
algorithm, which provides an accurate solution of signal decomposition based on the
linear combination of unit basis functions composed of redundant dictionaries. In this
paper, the MPD algorithm was utilized to reconstruct the Lamb wave signals and the
direct wave packet of Lamb waves was extracted and its TOF was obtained. The MPD
algorithm exploits the linear combination of unit basis functions or atomic functions in the
dictionary D to express a signal accurately. This process is obtained by continuous iterative
optimization by the following expressions:

D = [d1, d2 . . . . . . di], (6)

S = ∑k αkdk, (7)

where di is the ith atom in D, S is the reconstructed signal linearly expressed by atoms
in D. The MPD algorithm must choose the optimal collection of atoms representing the
investigated signal from the overcomplete dictionary. Moreover, the ability of atoms to
convey a signal is influenced by the qualities of basis vectors, which must match the original
signal [33]. As a result, the MPD algorithm iterates through the most relevant set of atoms
in a given dictionary to create a sparse representation of the signal. The MPD algorithm is
broken down into the following phases.

(1) Construct a dictionary D

A dictionary is the normalizing basic module that defines the expression signal space.
Dictionaries are comprehensive and redundant in most MPD algorithm applications. In
this paper, the Hanning atomic set was selected [33], and the atomic expression is written
as follows:

ω(t) =
1
2

[
1− cos

(
2π f c(t− τ)

N

)]
, (8)

g(t) =
1
2

[
1− cos

(
2π fc(t− τ)

N

)]
[sin(2π f c(t− τ))], (9)
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where ω(t) is the Hanning window function, N is the number of signal cycles, g(t) is the Han-
ning atom, fc is the center frequency of the analyzed signal, and τ is the translation factor.

(2) Select the best atom α from dictionary D

Initializing the signal residual R0 = s (s is the input signal) and applying Equation (10)
to obtain signal residual R1, the selected atom α1 must meet Equation (11).

R1 = s− < s,α1 > α1, (10)

α1 = argdi∈Dmax|< s, di >|. (11)

Continue to decompose the residual R1, Equation (12) is employed to extract the
signal residual Rm of each iteration. Meanwhile, creating a sparse approximation using
the inner product of each atom in D and iterating until the accuracy is attained or the
number of iterations is reached. It is critical to check that the chosen atom αm matches
the signal to the maximum extent feasible each time the analytical signal is estimated, as
Equation (13) shows.

Rm = Rm−1 − <Rm−1, αm>αm, (12)

αm = argdi∈Dmax|<Rm, di>|. (13)

Then, after k iterations, the reconstructed signal is expressed as follows:

sre = ∑k
m=1 < Rm−1, αm > αm. (14)

The serial number of each wave component in the Lamb wave signals can be acquired
after this signal decomposition method to characterize the TOF. The translation factor is
utilized to construct the atoms during the atom set construction. Moreover, the translation
factor grows sequentially, meaning that the atoms are translated in the index order. Record-
ing the maximum projection length to get the most appropriate atom index. Hence, the
atomic index can be applied to represent the TOF, which is introduced as follows:

TOF =
I
S

, (15)

where I is the calculated atomic index and S represents the sampling rate of the device.

2.2. Kernel Density Probability Distribution Assessment of Damage Size

The damage elliptical trajectory of each sensing path can be derived utilizing the ellipse
positioning method. At the same time, the localization algorithm introduced in Section 2
can obtain the damage center. The position of the scattering source is determined by the
shortest distance from the damage center on the trajectory of probable damage positions
given by each sensing path as Figure 6 shows. Furthermore, a scatter plot of estimated
scattering sources can be obtained by utilizing all monitoring paths in the sensor network.
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However, the Lamb wave signals generated by the sensor network are frequently
combined with a specific interference signal in the actual application process because
of noise interference or changes in external environmental conditions. Moreover, the
assumption that the average propagation velocity is a constant on both direct path and
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scattering path disabled scattering sources from being detected on the damage boundary.
The scattering sources are densely dispersed around the damage center rather than evenly
distributed on the damage boundary. Thus, statistical methods are utilized to determine the
veracity of the data because there are a relative majority of preset sensors and sensing paths.

Kernel density estimation is a nonparametric method for estimating probability den-
sity function, which is applied in probability theory to estimate unknown density func-
tions [34,35]. For instance, x1, x2 ... xn are n samples of the independent distribution F,
the probability density distribution function of F is described as f, and the kernel density
estimation equation is written as follows:

fh(x) =
1
n ∑n

i=1 Kh(x− xi)=
1

nh ∑n
i=1 K(

x− xi
h

), (16)

Kh(x)=
1
h

K(
x
h
), (17)

where K is the kernel function, which is a weight function. The kernel function controls the
number of data utilized when estimating the value of fh(x) at point x. Kh(x) is the scaling
kernel function and h is the standard deviation. In this paper, the Gaussian kernel function
is selected to smooth the probability density distribution findings. The Gaussian kernel
function is then given by the expression:

K(x ; h) ∝ exp
(
− x 2

2h2

)
. (18)

In the process of density estimation, a Gaussian kernel distribution is constructed
for each sample. The kernel density estimation result is obtained by aggregating the
final curves for the kernel function of each sample. Furthermore, the scattering sources
distribution on the specimen required to be represented in two dimensions. The joint
density distribution in the x and y axes was obtained to characterize the damage magnitude.
Moreover, the size of the damage is calculated utilizing the probability density distribution
of scattering sources, as Figure 7 shows. The damage can be described by showing the
probability density distribution of the scattering sources on x and y axes. The probability
density distribution of scattering sources in each axis direction is a one-dimensional curve,
as shown in Figure 7. The two-dimensional distribution map of scattering sources can
be created by combining the probability density distribution in x and y axis directions.
By selecting a threshold, the probability distribution map can be digitized, and the pixels
with a probability density larger than the threshold are considered as the genuine damage
distribution, from which the numerical value of the damage size can be calculated. Typically,
the threshold is chosen based on experimental data or experience.
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3. Experiment

This research investigated a localization and quantification method for detecting
through-thickness hole damage. Firstly, the damage was located utilizing the TOF-based
probabilistic imaging algorithm. Simultaneously, the scattering source was recognized on
the elliptical trajectory obtained through the TOF of each sensing path. Finally, damage
size was characterized by the Gaussian kernel probability density distribution of scattering
sources. In this regard, a CFRP composite plate was chosen as a specimen to validate the
proposed method. The algorithm was validated by through-thickness hole damages in
composites plate of various locations and sizes.

3.1. Specimen

The composite material plate-like specimen was 450 mm × 450 mm × 3 mm, as
Figure 8a shows. The plate was constructed of six layers of carbon fiber woven cloth
utilizing T700 12K with a quasi-isotropic layup of [0◦/90◦]3. Through-thickness holes with
diameters of 4 mm, 8 mm, 12 mm were manufactured at the coordinates (127 mm, 185 mm)
and (320 mm, 245 mm), taking the lower-left corner as the coordinate origin. The sensor
network composed of 16 PZT was packaged in the SMART Layer [36] and mounted on
the structure. The SMART Layer was made up of an embedded distributed piezoelectric
sensor network that serves as both sensors and actuators for active and passive sensing
in real-time. Meanwhile, four piezoelectric sensors were positioned in a square on the
composite plate, and the composite material could be subdivided into nine distinct sections.
The designed sensor network is depicted in Figure 8b, and there were 78 sensing paths in
the monitoring area.
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The integrity plate-like specimen was utilized to collect the Lamb wave signals on
each sensing path as the baseline signal. Through-thickness holes in different locations
with different diameters were drilled into the specimen artificially. The diameter of the hole
was enlarged gradually from 4 mm to 12 mm in 4 mm increments at one position, and the
sensor network was employed to collect signal after each manufacturing damage. Moreover,
damage scattered signals could be calculated by computing the difference between the
damage signal and baseline signal which could be applied to the subsequent damage
localization and quantification.
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3.2. Experimental Setup

Lamb waves were generated and recorded utilizing a multi-channel data acquisition
system built by the authors’ group, as shown in Figure 9. The multi-channel data acquisition
system with a size of 223 mm × 201 mm × 49 mm and a host system with a size of
300 mm × 226 mm × 50 mm. In addition, the host was assembled with the waveform
generator, voltage and charge amplifier, and the software. Integrated SHM software based
on the Matlab software platform was developed to realize signal acquisition. The main
technical indicators of the equipment are shown in Table 1.
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Table 1. Monitoring equipment technical indicators.

Technical Parameter Value

Excitation Frequency Range 10–1000 kHz
Conversion Rates 48 MHz

Output Voltage Range Min: ±10 V; Max: ±60 V
Memory 32,000 Samples

Sampling Rates 6, 12, 24, 48 MHz/s
Resolution 12-bit

ADC Range ±1 V
Gain Adjustment Range 10–40 dB, step: 1 dB

The five-cycle tone burst signals modulated by the Hanning window were generated
as an excitation signal at a central frequency of 60 kHz and recorded signals at a sampling
rate of 12 MHz.

4. Results and Discussions
4.1. Damage Location Identification

The TOF of baseline signals and scattered signals detected on each sensing path was
obtained by the MPD algorithm introduced in Section 2. The atomic index represented
the TOF of Lamb waves through such a signal processing of extracting the direct wave to
obtain the ratio β. Concurrently, the elliptical probability imaging algorithm based on TOF
was employed to determine the location of damages with different diameters located at the
coordinates (127 mm, 185 mm) and (320 mm, 245 mm).

The results of the damage localization are given in Figure 10. The damage was
enlarged gradually in steps of 4 mm in diameter at one position. Figure 10a,c,e are the
results of the damage localization method with the center position (127 mm, 185 mm), and
Figure 10b,d,f are the results of the damage localization method with the center position
(320 mm, 245 mm). The “+” is the actual damage center position, and the “*” is the
predicted damage center. From Figure 10, it is manifested that the probabilistic imaging
localization results obtained by extracting the TOF using the MPD method are close to the
actual damage center.
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Figure 10. Damage localization results at different locations and sizes. (a) damage center (127, 185)
and d = 4 mm; (b) damage center (320, 245) and d = 4 mm; (c) damage center (127, 185) and d = 8 mm;
(d) damage center (320, 245) and d = 8 mm; (e) damage center (127, 185) and d = 12 mm; (f) damage
center (320, 245) and d = 12 mm.
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The damage center prediction findings and errors of the proposed method are detailed
in Table 2. Accordingly, the experimental results revealed that the difference between the
predicted and real damage locations was minimal with a relative error of 1.64%. Damage
localization results indicated that the localization algorithm utilized in this study was capa-
ble of correctly determining the damage position. The probabilistic imaging localization
results obtained by extraction of the TOF using the MPD method are more accurate than
those obtained by extraction of the TOF using the Hilbert transform [37]. Meanwhile, the
predicted location obtained by the two methods mentioned above was very close to the
actual damage location. The results indicate that the TOF-based probabilistic imaging
localization algorithm demonstrated in this paper is robust and accurate.

Table 2. Damage center prediction results and errors.

Actual
Damage

Location (mm)

Damage
Diameter

(mm)

Results of
Using Hilbert
to Extract TOF

(mm)

Distance between
Predicted and

Actual Location
(mm)

Relative
Error (%)

Results of
Using MPD to

Extract TOF
(mm)

Distance between
Predicted and

Actual Location
(mm)

Relative
Error (%)

(320, 245) 4 (342.9, 245.4) 22.9 5.08 (309.2, 242.7) 11.0 2.44
(320, 245) 8 (334.9, 241.5) 15.3 3.40 (313.2, 241.6) 7.6 1.69
(320, 245) 12 (336.6, 243.7) 16.6 3.69 (317.9, 252.5) 7.8 1.73
(127, 185) 4 (134.8, 179.5) 9.5 2.11 (134.4, 185.1) 7.4 1.64
(127, 185) 8 (135.1, 179.9) 9.6 2.13 (130.3, 191.9) 7.6 1.69
(127, 185) 12 (133.8, 176.2) 11.4 2.53 (116.1, 187.0) 11.0 2.44

4.2. Damage Quantification

The TOF received from each sensing path can be applied to build an elliptical trajectory
with the actuator and the sensor as the focal points. The point on the elliptical trajectory
closest to the anticipated damage center was considered as the scattering source. A scatter
distribution map of scattering sources was obtained by calculating the scattering sources on
all sensing paths. Moreover, in the preconfigured sensor network, four piezoelectric sensors
were positioned in a square to create a monitoring sub-area. The sub-intervals investigated
can be chosen based on previously acquired damage localization results. Figure 11 depicts
the scattering sources distribution produced by the sensor network under a specific damage
state. Apparently, the scattering sources were majorly dispersed around the estimated
damage center.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 17 
 

 

Table 2. Damage center prediction results and errors. 

Actual  
Damage  

Location (mm) 

Damage 
Diameter 

(mm) 

Results of  
Using Hilbert  
to Extract TOF 

(mm) 

Distance 
between 
Predicted 

and Actual 
Location 

(mm) 

Relative  
Error (%) 

Results of  
Using MPD to 

Extract TOF 
(mm) 

Distance 
between 
Predicted 

and Actual 
Location 

(mm) 

Relative  
Error (%) 

(320, 245) 4 (342.9, 245.4) 22.9 5.08 (309.2, 242.7) 11.0 2.44 
(320, 245) 8 (334.9, 241.5) 15.3 3.40 (313.2, 241.6) 7.6 1.69 
(320, 245) 12 (336.6, 243.7) 16.6 3.69 (317.9, 252.5) 7.8 1.73 
(127, 185) 4 (134.8, 179.5) 9.5 2.11 (134.4, 185.1) 7.4 1.64 
(127, 185) 8 (135.1, 179.9) 9.6 2.13 (130.3, 191.9) 7.6 1.69 
(127, 185) 12 (133.8, 176.2) 11.4 2.53 (116.1, 187.0) 11.0 2.44 

4.2. Damage Quantification 
The TOF received from each sensing path can be applied to build an elliptical tra-

jectory with the actuator and the sensor as the focal points. The point on the elliptical 
trajectory closest to the anticipated damage center was considered as the scattering 
source. A scatter distribution map of scattering sources was obtained by calculating the 
scattering sources on all sensing paths. Moreover, in the preconfigured sensor network, 
four piezoelectric sensors were positioned in a square to create a monitoring sub-area. 
The sub-intervals investigated can be chosen based on previously acquired damage lo-
calization results. Figure 11 depicts the scattering sources distribution produced by the 
sensor network under a specific damage state. Apparently, the scattering sources were 
majorly dispersed around the estimated damage center. 

After the scattering sources were acquired, preliminarily processing the obtained 
scattering sources distribution utilizing the sub-interval. This process filtered out the 
scattering sources outside the sub-interval. The overlapping of scattering sources in Fig-
ure 11 reduced the number of scatter points. Therefore, the probability distribution was 
required to graphically portray the scattering sources distribution. 

 
Figure 11. Distribution of scattering sources on the elliptical trajectory. 

The Gaussian kernel probability density distribution (PDD) function described the 
scattering sources distribution. Figure 12 shows the quantification results of damage with 
different sizes, which were enlarged gradually in steps of 4 mm in diameter at one posi-

Figure 11. Distribution of scattering sources on the elliptical trajectory.

After the scattering sources were acquired, preliminarily processing the obtained
scattering sources distribution utilizing the sub-interval. This process filtered out the scat-
tering sources outside the sub-interval. The overlapping of scattering sources in Figure 11
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reduced the number of scatter points. Therefore, the probability distribution was required
to graphically portray the scattering sources distribution.

The Gaussian kernel probability density distribution (PDD) function described the
scattering sources distribution. Figure 12 shows the quantification results of damage with
different sizes, which were enlarged gradually in steps of 4 mm in diameter at one position.
Figure 12a,c,e shows the quantification results of damage with the center position (127 mm,
185 mm) and Figure 12b,d,f shows the quantification results of damage with the center
position (320 mm, 245 mm). Meanwhile, the normalized Gaussian kernel probability
density distribution results were presented in Figure 12, and the black circle represents the
actual damage size in the predicted damage center.
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As Figure 12 displays, the probabilistic imaging region appears to enlarge as the
damage expands. The final quantification result of the damage was obtained by calculating
the area with a normalized probability density greater than 0.8. Table 3 shows the damage
size forecast results and errors. The estimation error of damage area was within 28 mm2.
According to the estimated damage area, the corresponding diameter was determined,
since the damage is round. Four of the six test points had a diameter estimation error
of less than 1 mm, and only one had the error greater than 2 mm, which was 2.2 mm,
indicating that the damage quantification method is extremely precise. The probability
density distribution findings match the size of the actual damage. Simultaneously, damage
expansion is described by the proposed damage quantification approach.

Table 3. Damage quantification prediction results and errors.

Actual
Damage

Location (mm)

Damage Diameter
(mm)

Actual Damage
Size (mm2)

Predicted Damage
Size (mm2)

Corresponding
Predicted Damage

Diameter(mm)

Absolute Error
(mm2)

(320, 245) 4 12.56 30.04 6.18 17.48
(320, 245) 8 50.24 47.14 7.75 3.10
(320, 245) 12 113.04 95.69 11.04 17.35
(127, 185) 4 12.56 14.26 4.26 1.70
(127, 185) 8 50.24 45.57 7.61 4.67
(127, 185) 12 113.04 85.53 10.43 27.51

5. Conclusions

In this paper, an active Lamb wave-based damage detection algorithm utilizing MPD
and the statistical method were proposed to locate and quantify damage. The algorithm was
validated by through-thickness holes in composites plates of various locations and sizes.
Based on the analytical and experimental investigations, the conclusions are highlighted
as follows:

The results of damage localization indicated that the predicted and actual damage
location were remarkably similar. Simultaneously, experiments have verified that the
damage expansion was described appropriately by the proposed damage quantification
approach. For the composite plate with a sensor spacing of 100 mm, the damage localization
and quantification errors are within 11 mm and 2.2 mm, respectively. The damage detection
method proposed in this paper has the potential to pinpoint the damage localization and
quantification target.

Overall, the major limitation of this study is that the parameter was selected based
on experimental data and experience in the process of numeralization of quantitative
images, which means that different material architectures require different settings. Further
research will focus on integrating the structural physical properties to parameters for
adaptive parameter selection.

The proposed damage monitoring method is validated in composite plate-like struc-
tures. The research idea can be extended to other plate-like structures to achieve damage
localization and quantification monitoring. However, for more complex structures, the
continuous reflection and the interaction between Lamb waves make the interpretation
of the Lamb wave propagation mechanism a challenge. Thus, it needs to be improved to
achieve the goal of damage monitoring in complex structures.
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