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Cell type markers are powerful tools in the study of the nervous system that help reveal properties of cell

types and acquire additional information from large scale expression experiments. Despite their usefulness

in the field, known marker genes for brain cell types are few in number. We present NeuroExpresso, a

database of brain cell type-specific gene expression profiles, and demonstrate the use of marker genes for

acquiring cell type-specific information from whole tissue expression. The database will prove itself as a

useful resource for researchers aiming to reveal novel properties of the cell types and aid both laboratory
kand computational scientists to unravel the cell type-specific components of brain disorders. /

ignificance Statement

Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled a
cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from across
the mammalian brain using rigorously curated published data from pooled cell type microarray and single-cell
RNA-sequencing (RNA-seq) studies. We used these data to identify cell type-specific marker genes, discovering
a substantial number of novel markers, many of which we validated using computational and experimental
approaches. We further demonstrate that summarized expression of marker gene sets (MGSs) in bulk tissue data
can be used to estimate the relative cell type abundance across samples. To facilitate use of this expanding

resource, we provide a user-friendly web interface at www.neuroexpresso.org.
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Introduction

Brain cells can be classified based on features such as
their primary type (e.g., neurons vs glia), location (e.g.,
cortex, hippocampus, cerebellum), electrophysiological
properties (e.g., fast spiking vs regular spiking), morphology
(e.g., pyramidal cells, granule cells), or the neurotransmitter/
neuromodulator they release (e.g., dopaminergic cells, se-
rotonergic cells, GABAergic cells). Marker genes, genes
that are expressed in a specific subset of cells, are often
used in combination with other cellular features to define
different types of cells (Margolis et al., 2006; Hu et al.,
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2014) and facilitate their characterization by tagging the
cells of interest for further studies (Tomomura et al., 2001;
Lobo et al., 2006; Handley et al., 2015). Marker genes
have also found use in the analysis of whole tissue “bulk”
gene expression profiling data, which can be challeng-
ing to interpret due to the difficulty to determine the
source of the observed expressional change. For ex-
ample, a decrease in a transcript level can indicate a
regulatory event affecting the expression level of the
gene, a decrease in the number of cells expressing the
gene, or both. To address this issue, computational meth-
ods have been proposed to estimate cell type-specific
proportion changes based on expression patterns of
known marker genes (Xu et al., 2013; Chikina et al., 2015;
Newman et al., 2015; Westra et al., 2015). Finally, marker
genes are obvious candidates for having cell type-specific
functional roles.

An ideal cell type marker has a strongly enriched ex-
pression in a single cell type in the brain. However, this
criterion can rarely be met, and for many purposes, cell
type markers can be defined within the context of a
certain brain region; namely, a useful marker may be
specific for the cell type in one region but not necessarily
in another region or brain wide. For example, the calcium
binding protein parvalbumin (PV) is a useful marker of
both fast spiking interneurons in the cortex and Purkinje
cells in the cerebellum (Celio and Heizmann, 1981; Kawa-
guchi et al., 1987). Whether the markers are defined brain-
wide or in a region-specific context, the confidence in
their specificity is established by testing their expression
in as many different cell types as possible. This is impor-
tant because a marker identified by comparing just two
cell types might turn out to be expressed in a third,
untested cell type, reducing its utility.

During the last decade, targeted purification of cell
types of interest followed by gene expression profiling has
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Figure 1. Mouse brain cell type-specific expression database compiled from publicly available datasets. A, Workflow of the study. Cell
type-specific expression profiles are collected from publicly available datasets and personal communications. Acquired samples are
grouped based on cell type and brain region. Marker genes are selected per brain region for all cell types. Marker genes are
biologically and computationally validated and used in estimation of cell type proportions. B, Brain region hierarchy used in the study.
Samples included in a brain region based on the region they were extracted from. For instance, dopaminergic cells isolated from the
midbrain were included when selecting marker genes in the context of brainstem and whole brain, and microglia extracted from whole

brain isolates were added to all brain regions.

been applied to many cell types in the brain. Such studies,
targeted towards well-characterized cell types, have
greatly promoted our understanding of the functional and
molecular diversity of these cells (Chung et al., 2005;
Cahoy et al., 2008; Doyle et al., 2008). However, individual
studies of this kind are limited in their ability to discover
specific markers as they often analyze only a small subset
of cell types (Sugino et al., 2006; Okaty et al., 2009;
Shrestha et al., 2015) or have limited resolution as they
group subtypes of cells together (Cahoy et al., 2008).
Recently, advances in technology have enabled the use of
single-cell transcriptomics as a powerful tool to dissect
neuronal diversity and derive novel molecular classifica-
tions of cells (Poulin et al., 2016). However, with single-
cell analysis the classification of cells to different types is
generally done post hoc, based on the clustering similarity
in their gene expression patterns. These molecularly defined
cell types are often uncharacterized otherwise (e.g., electro-
physiologically, morphologically), challenging their identifi-
cation outside of the original study and understanding their
role in normal and pathological brain function. A notable
exception is the single-cell RNA-sequencing (RNA-seq)
study of Tasic et al. (2016) analyzing single labelled cells
from transgenic mouse lines to facilitate matching of the
molecularly defined cell types they discover to previously
identified cell types. We hypothesized that by aggregating
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cell type-specific studies that analyze expression profiles
of cell types previously defined in literature, a more com-
prehensive dataset more suitable for marker genes could
be derived.

Here, we report the analysis of an aggregated cross-
laboratory dataset of cell type-specific expression profil-
ing experiments from mouse brain, composed both of
pooled cell microarray data and single-cell RNA-seq data.
We used these data to identify sets of brain cell marker
genes more comprehensive than any previously reported,
and validated the markers genes in external mouse and
human single-cell datasets. We further show that the
identified markers are applicable for the analysis of human
brain and demonstrate the usage of marker genes in the
analysis of bulk tissue data via the summarization of their
expression into marker gene profiles (MGPs), which can
be cautiously interpreted as correlates of cell type pro-
portion. Finally, we made both the cell type expression
profiles and marker sets available to the research com-
munity at www.neuroexpresso.org.

Materials and Methods

Figure 1A depicts the workflow and the major steps of
this study. All the analyses were performed in R version
3.3.2; the R code and data files can be accessed through
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www.neuroexpresso.org (RRID: SRC_015724) or directly
from https://github.com/oganm/neuroexpressoAnalysis.

Pooled cell type-specific microarray datasets

We began with a collection of seven studies of iso-
lated cell types from the brain, compiled by Okaty et al.
(2011). We expanded this by querying PubMed (http://
www.ncbi.nim.nih.gov/pubmed) and Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/; RRID:
SCR_007303; Edgar et al., 2002; Barrett et al., 2013) for
cell type-specific expression datasets from the mouse
brain that used Mouse Expression 430A Array (GPL339)
or Mouse Genome 430 2.0 Array (GPL1261) platforms.
These platforms were our focus as together, they are the
most popular platforms for analysis of mouse samples
and are relatively comprehensive in gene coverage, and
using a reduced range of platforms reduced technical
issues in combining studies. Query terms included names
of specific cell types (e.g., astrocytes, pyramidal cells)
along with blanket terms such as “brain cell expression”
and “purified brain cells.” Only samples derived from
postnatal (>14 d), wild-type, untreated animals were in-
cluded. Data sets obtained from cell cultures or cell lines
were excluded due to the reported expression differences
between cultured cells and primary cells (Cahoy et al.,
2008; Halliwell, 2003; Januszyk et al., 2015). We also
considered RNA-seq data from pooled cells (2016; Zhang
et al., 2014), but because such datasets are not available
for many cell types, including it in the merged resource
was not technically feasible without introducing biases
(although we were able to incorporate a single-cell RNA-
seq dataset, described in the next section). While we plan
to incorporate more pooled cell RNA-seq data in the
future, for this study we limited their use to validation of
marker selection.

As a first step in the quality control of the data, we
manually validated that each sample expressed the gene
that was used as a marker for purification of the corre-
sponding cell type in the original publication (expression
greater than median expression among all gene signals in
the dataset), along with other well-established marker
genes for the relevant cell type (e.g., Pcp2 for Purkinje
cells, Gad1 for GABAergic interneurons). We next ex-
cluded contaminated samples, namely, samples express-
ing established marker genes of nonrelated cell types in
levels comparable to the cell type marker itself (for exam-
ple neuronal samples expressing high levels of glial
marker genes), which lead to the removal of 21 samples.
In total, we have 30 major cell types compiled from 24
studies represented by microarray data (summarized in
Table 1); a complete list of all samples including those
removed is available from the authors).

Single-cell RNA-seq data

The study of cortical single cells by Tasic et al. (2016)
includes a supplementary file (Tasic et al., 2016, their
supplementary Table 7) linking a portion of the molecu-
larly defined cell clusters to known cell types previously
described in the literature. Using this file, we matched the
cell clusters from Tasic et al. (2016) with pooled cortical
cell types represented by microarray data (Table 2). For
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most cell types represented by microarray (e.g., glial cells,
Martinotti cells), the matching was based on the corre-
spondence information provided by Tasic et al. (2016).
However, for some of the cell clusters from Tasic et al.
(2016), the cell types were matched manually, based on
the description of the cell type in the original publication
(e.g., cortical layer, high expression of a specific gene).
For example, GIt25d2™ pyramidal cells from Schmidt et al.
(2012), described by the authors as “layer 5b pyramidal
cells with high Glt25d2 and Fam84b expression,” were
matched with two cell clusters from Tasic et al. (2016),
“L5b Tph2” and “L5b Cdh13,” two of the three clusters
described as layer 5b glutamatergic cells by Tasic et al.
(2018), since both of these clusters represented pyramidal
cells from cortical layer 5b and exhibited high level of the
indicated genes. Cell clusters identified in Tasic et al.
(2016) that did not match to any of the pooled cell types
were integrated into to the combined data if they fulfilled
the following criteria: (1) they represented well-char-
acterized cell types, and (2) we could determine with high
confidence that they did not correspond to more than one
cell type represented by microarray data. Table 2 contains
information regarding the matching between pooled cell
types from microarray data and cell clusters from single-
cell RNA-seq data from Tasic et al. (2016)

In total, the combined database contains expression
profiles for 36 major cell types, 10 of which are repre-
sented by both pooled cell microarray and single-cell
RNA-seq data, and five which are represented by single-
cell RNA-seq only (summarized in Table 2). Due to the
substantial differences between microarray and RNA-seq
technologies, we analyzed these data separately (see next
sections). For visualization only, in neuroexpesso.org we
rescaled the RNA-seq data to allow them to be plotted on
the same axes. Details are provided on the web site.

Grouping and reassignment of cell type samples
When possible, samples were assigned to specific cell
types based on the descriptions provided in their associ-
ated publications. When expression profiles of closely
related cell types were too similar to each other and we
could not find sufficient number of differentiating marker
genes meeting our criteria, they were grouped together
into a single cell type. For example, A10 and A9 dopami-
nergic cells had no distinguishing markers (represented
on the microarray platform and meeting our criteria) and
were grouped as “dopaminergic neurons.” In the case of
pyramidal cells, while we were able to detect marker
genes for pyramidal cell subtypes, they were often few in
number and most of them were not represented on the
human microarray chip (Affymetrix Human Exon 1.0 ST
Array) used in the downstream analysis. As a result, cal-
culation of MGPs in human bulk tissue would not be
feasible for majority of these cell types. To combat this,
we created two gene lists, one created by considering
pyramidal subtypes as separate cell types, and another
where pyramidal subtypes are pooled into a pan-
pyramidal cell type. Due to the scarcity of markers for
pyramidal subtypes, we only consider the pan-pyramidal
cell type in our downstream analysis. However, we still

eNeuro.org


http://www.neuroexpresso.org
https://scicrunch.org/resolver/SRC_015724
https://github.com/oganm/neuroexpressoAnalysis
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/pubmed
http://www.ncbi.nlm.nih.gov/geo
https://scicrunch.org/resolver/SCR_007303

eMeuro

Table 1. Cell types in NeuroExpresso database
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Cell type Sample count Marker gene count
Whole brain

Astrocyte 9/1 94
Oligodendrocyte 25/1# 223k
Microglia 3/1% 1371
Cortex

FS Basket (G42) 13/5% 18
Martinotti (GIN) 3/1% 15
VIPReln (G30) 6/1: 33
Pan-pyramidalss 917 35
Pyramidal cortico-thalamic 3/2x 2
Pyramidal GIt25d2 3/2% 3
Pyramidal S100a10 3/4x 2
Layer 2 3 Pyra 2% 3
Layer 4 Pyra 3 5
Layer 6a Pyra 2% 6
Layer 6b Pyra 2 9
OPs 1 184
Endothelial 2 178
Basal forebrain

Forebrain cholinergic 3 90
Striatum

Forebrain cholinergic 3 45
Medium spiny neurons 39 74
Amygdala

Glutamatergic 3 10
Pyramidal Thy1 Amyg 12 21
Hippocampus

DentateGranule 3 17
GabaSSTReln 3 54
Pyramidal Thy1 Hipp 12 17
Subependymal

Ependymal 2 50
Thalamus

GabaReln 3 53
Hypocretinergic 4 35
Thalamus cholinergic 3 40
Midbrain

Midbrain cholinergic 3 34
Serotonergic 3 18
Substantia nigra

Dopaminergic 30 58
Locus coeruleus

Noradrenergic 9 133
Cerebellum

Basket 16 6
Bergmann 3 52
Cerebellar granule cells 3 11
Golgi 3 26
Purkinje 44 43
Spinal cord

Spinal cord cholinergic 3 124

GEO accession and reference

GSE9566 (Cahoy et al., 2008), GSE35338 (Zamanian et al., 2012), GSE71585 (Tasic et al.,
2016)

GSE48369, (Bellesi et al., 2013), GSE9566 (Cahoy et al., 2008), GSE13379 (Doyle et al.,
2008), GSE30016 (Fomchenko et al., 2011), GSE71585 (Tasic et al., 2016)

GSE29949 (Anandasabapathy et al., 2011), GSE71585 (Tasic et al., 2016)

GSE17806 (Okaty et al., 2009), GSE8720 (Sugino et al., 2014), GSE2882 (Sugino et al.,
2006), GSE71585 (Tasic et al., 2016)

GSE2882 (Sugino et al., 2006), GSE71585 (Tasic et al., 2016)

GSE2882 (Sugino et al., 2006), GSE71585 (Tasic et al., 2016)

See below

GSE2882 (Schmidt et al., 2012), GSE71585 (Tasic et al., 2016)

GSE35758 (Schmidt et al., 2012), GSE71585 (Tasic et al., 2016)

GSE35751 (Schmidt et al., 2012), GSE71585 (Tasic et al., 2016)

GSE71585 (Tasic et al., 2016)

GSE71585 (Tasic et al., 2016)

GSE71585 (Tasic et al., 2016)

GSE71585 (Tasic et al., 2016)

GSE71585 (Tasic et al., 2016)

GSE71585 (Tasic et al., 2016)

GSE13379 (Doyle et al., 2008)
GSE13379 (Doyle et al., 2008)
GSE13379 (Doyle et al., 2008), GSE55096 (Heiman et al., 2014), GSE54656 (Maze et al.,

2014), GSE48813 (Tan et al., 2013a)

GSE2882 (Sugino et al., 2006)
GSE2882 (Sugino et al., 2006)

GSE11147 (Perrone-Bizzozero et al., 2011)
GSE2882 (Sugino et al., 2006)

GSE2882 (Sugino et al., 2006)

GSE18765 (Beckervordersandforth et al., 2010)
GSE2882 (Sugino et al., 2006)

GSE38668 (Dalal et al., 2013)

GSE43164 (Gorlich et al., 2013)

GSE13379 (Doyle et al., 2008)
GSE36068 (Dougherty et al., 2013)

No accession = (Chung et al., 2005), GSE17542 (Phani et al., 2010)

GSE8720 (Sugino et al., 2014), No accession:x (Sugino et al., unpublished
observations)

GSE13379
GSE13379

Doyle et al., 2008), GSE37055 (Paul et al., 2012)

Doyle et al., 2008)

GSE13379 (Doyle et al., 2008)

GSE13379 (Doyle et al., 2008)

GSE13379 (Doyle et al., 2008), GSE57034 (Galloway et al., 2014), GSE37055 (Paul et al.,

accessions##x+ Sugino et al. (unpublished observations)

GSE13379 (Doyle et al., 2008)

Sample count, number of samples that representing the cell type; gene count, number of marker genes detected for cell type; *, the number of clusters from
RNA-seq data; =*, marker genes for these cell types are identified in multiple regions displayed yet only the number of the genes that are found in the region
specified on the table is shown for the sake of conservation of space. Astrocytes, microglia, and oligodendrocyte markers are identified in the context of all
other brain regions (except cerebellum for astrocytes) and dopaminergic markers are also identified for midbrain; =+, pan-pyramidal is a merged cell type

composed of all pyramidal samples; =, data obtained directly from authors.

kept the pyramidal subtypes separate during marker gene
selection (described below) for the nonpyramidal cell
types to help ensure marker specificity.

Since our focus was identifying markers specific to cell
types within a given brain region, samples were grouped

November/December 2017, 4(6) e0212-17.2017

based on the brain region from which they were isolated,
guided by the anatomical hierarchy of brain regions (Fig.
1B). Brain subregions (e.g., locus coeruleus) were added
to the hierarchy if there were multiple cell types repre-
sented in the subregion. An exception to the region as-

eNeuro.org
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Table 2. Matching single-cell RNA sequencing data from tasic to well-defined cell types

Microarray Tasic et al. (2016)
cell type cell cluster
Astrocyte Astro Gja1
Microglia Micro Ctss
Oligodendrocyte Oligo Opalin

FS Basket (G42) Pvalb Gpx3, Pvalb Rspo2, Pvalb Wt1, Pvalb
Obox3, Pvalb Cpne5
Sst Cbin4

Vip Sncg

Martinotti (GIN)
VIPReln (G30)
Pyramidal Glt25d2 L5b Tph2, L5b Cdh13

Pyramidal S100a10 L5a Hsd11b1, L5a Batf3, L5a Tcergll, L5a Pdelc
Pyramidal CrtThalamic L6a Car12, L6a Syt17

— Endo Myl9, Endo Thbc1d4

— OPC Pdgfra

— L4 Ctxn3, L4 Scnnia, L4 Arf5

— L2 Ngb, L2/3 Ptgs2

— L6a Mgp, L6a Sla

— L6b Serpinb11, L6b Rgs12

Matching NeuroExpresso cell
method type name

Direct match Astrocyte

Direct match Microglia

Direct match
Definition: fast spiking pval positive interneurons

Oligodendrocyte
FS Basket (G42)

Direct match

Unique Vip and Sncg expression, high Sncg expression in
microarray cell type

Definition: Glt25d2 positive Fam84b positive

Definition: S100a10 expressing cells from layer 5a

Direct match

New cell type

New cell type

New cell type

New cell type

New cell type

New cell type

Martinotti (GIN)
VIPReln (G30)

Pyramidal GIt25d2
Pyramidal S100a10
Pyramidal CrtThalamic
Endothelial

OPCs

Layer 4 Pyra

Layer 2 3 Pyra

Layer 6a Pyra

Layer 6b Pyra

List of molecular cell types identified by Tasic et al. (2016) and their corresponding cell types in NeuroExpresso. Matching method column defines how the
matching was performed. Direct matches are one to one matching between the definition provided by Tasic et al. (2016) for the molecular cell types and defi-
nition provided by microarray samples. For “definition” matches, description of the cell type in the original source is used to find molecular cell types that fit
the definition. VIPReln, Vip Sncg matching was done based on unique Sncg expression in VIPReln cells in the microarray data. New cell types are well de-

fined cell types that have no counterpart in microarray data.

signment process are glial samples. Since these samples
were only available from either cortex or cerebellum re-
gions or extracted from whole brain, the following assign-
ments were made: Cerebral cortex-derived astrocyte and
oligodendrocyte samples were included in the analysis of
other cerebral regions as well as thalamus, brainstem and
spinal cord. Bergmann glia and cerebellum-derived oligo-
dendrocytes were used in the analysis of cerebellum. The
only microglia samples available were isolated from whole
brain homogenates and were included in the analysis of
all brain regions.

Selection of cell type markers

Marker gene sets (MGSs) were selected for each cell
type in each brain region, based on fold change and
clustering quality (see below). For cell types that are
represented by both microarray and single-cell data (cor-
tical cells), two sets of MGSs were created and later
merged as described below. Since there is no generally
accepted definition of “marker gene”, our goal was to
identify markers that were sufficiently specific and highly
expressed to be useful in computational settings, but also
likely to be of interest for potential laboratory applications.
Thus, our threshold selections were guided in part by the
expression patterns of previously well-established mark-
ers as well as our intended applications.

Marker genes were selected for each brain region
based on the following steps:

1. For RNA-seq data, each of the relevant clusters iden-
tified in Tasic et al. (2016) was considered as a single
sample, where the expression of each gene was
calculated by taking the mean RPKM values of the
individual cells representing the cluster. Table 2
shows which clusters represent which cell types.

2. Expression level of a gene in a cell type was calcu-
lated by taking the mean expression of all replicate
samples originating from the same study and aver-
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aging the resulting values across different studies per
cell type.

3. The quality of clustering was determined by “mean
silhouette coefficient” and “minimal silhouette coeffi-
cient” values (where silhouette coefficient is a mea-
sure of group dissimilarity ranged between -1 and 1
(Rousseeuw, 1987). Mean silhouette coefficient was
calculated by assigning the samples representing the
cell type of interest to one cluster and samples from
the remaining cell types to another, and then calcu-
lating the mean silhouette coefficient of all samples.
The minimal silhouette coefficient is the minimal value
of mean silhouette coefficient when it is calculated for
samples representing the cell type of interest in com-
parison to samples from each of the remaining cell
types separately. The two measures where used to
ensure that the marker gene robustly differentiates
the cell type of interest from other cell types. Silhou-
ette coefficients were calculated with the “silhouette”
function from the “cluster” R package version 1.15.3
(Maechler et al., 2016), using the expression differ-
ence of the gene between samples as the distance
metric.

4. A background expression value was defined as ex-
pression below which the signal cannot be discerned
from noise. Different background values were se-
lected for microarray (6, all values are log, trans-
formed) and RNA-seq (0.1 RPKM) data due to the
differences in their distribution.

Based on these metrics, the following criteria were
used:

1. A threshold expression level was selected to help
ensure that the gene’s transcripts will be detectable
in bulk tissue. Genes with median expression level
below this threshold were excluded from further anal-
yses. For microarrays, this threshold was chosen to
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be 8. Theoretically, if a gene has an expression level
of 8 in a cell type, and the gene is specific to the cell
type, an expression level of 6 would be observed if
1/8'" of a bulk tissue is composed of the cell type. As
many of the cell types in the database are likely to be
as rare as or rarer than 1/8", and 6 is generally close
to background for these data, we picked 8 as a lower
level of marker gene expression. For RNA-seq data,
we selected a threshold of 2.5 RPKM, which in terms
of quantiles corresponds to the microarray level of 8.

2. If the expression level in the cell type of interest is
higher than 10 times the background threshold, there
must be at least a 10-fold difference from the median
expression level of the remaining cell types in the
region. If the expression level in the cell type is less
than 10 times the background, the expression level
must be higher than the expression level of every
other cell type in that region. This criterion was added
because below this expression level, for a 10-fold
expression change to occur, the expression median
of other cell types needs be lower than the back-
ground. Values below the background signal that do
not convey meaningful information but can prevent
potentially useful marker genes from being selected.

3. The mean silhouette coefficient for the gene must be
higher than 0.5 and minimum silhouette coefficient
must the greater than zero for the associated cell
type.

4. The conditions above must be satisfied only by a
single cell type in the region.

To ensure robustness against outlier samples, we used
the following randomization procedure, repeated 500
times: one third (rounded) of all samples were removed.
For microarray data, to prevent large studies from domi-
nating the silhouette coefficient, when studies represent-
ing the same cell types did not have an equal number of
samples, N samples were picked randomly from each of
the studies, where N is the smallest number of samples
coming from a single study. A gene was selected if it
qualified our criteria in more than 95% of all permutations.

Our next step was combining the MGSs created from
the two expression data types. For cell types and genes
represented by both microarray and RNA-seq data, we
first looked at the intersection between the MGSs. For
most of the cell types, the overlap between the two MGSs
was about 50%. We reasoned that this could be partially
due to numerous “near misses” in both data sources.
Namely, since our method for marker gene selection relies
on multiple steps with hard thresholds, it is very likely that
some genes were not selected simply because they were
just below one of the required thresholds. We thus ad-
opted a soft intersection: a gene was considered as a
marker if it fulfilled the marker gene criteria in one data
source (pooled cell microarray or single-cell RNA-seq),
and its expression in the corresponding cell type from the
other data source was higher than in any other cell type in
that region. For example, Ank1 was originally selected as
a marker of FS Basket cells based on microarray data, but
did not fulfil our selection criteria based on RNA-seq data.
However, the expression level of Ank7 in the RNA-seq
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data is higher in FS Basket cells than in any other cell type
from this data source, and thus, based on the soft inter-
section criterion, Ank1 is considered as a marker of FS
Basket cells in our final MGS. For genes and cell types
that were only represent by one data source, the selection
was based on this data source only.

It can be noted that some previously described markers
[such as Prox1 for dentate granule dentate gyrus granule
cells] are absent from our marker gene lists. In some
cases, this is due to the absence the genes from the
microarray platforms used, while in other cases the genes
failed to meet our stringent selection criteria. Final marker
gene lists, along with the data used to generate them, can
be found at http://hdl.handle.net/11272/10527, also avail-
able from http://paviab.msl.ubc.ca/supplement-to-mancarci-
et-al-neuroexpresso/.

Human homologues of mouse genes were defined by
NCBI HomoloGene (ftp://ftp.ncbi.nih.gov/pub/Homolo-
Gene/build68/homologene.data).

Microglia-enriched genes

Microglia expression profiles differ significantly be-
tween activated and inactivated states and to our knowl-
edge, the samples in our database represent only the
inactive state (Holtman et al., 2015). In order to acquire
marker genes with stable expression levels regardless of
microglia activation state, we removed the genes differ-
entially expressed in activated microglia based on Holt-
man et al. (2015). This step resulted in removal of 408 out
of the original 720 microglial genes in cortex (microarray
and RNA-seq lists combined) and 253 of the 493 genes in
the context of other brain regions (without genes from
single-cell data). Microglial marker genes which were dif-
ferentially expressed in activated microglia are referred to
as Microglia_activation and Microglia_deactivation (up- or
downregulated, respectively) in the marker gene lists pro-
vided.

§100a10" pyramidal cell-enriched genes

The paper (Schmidt et al., 2012) describing the cortical
S100a10* pyramidal cells emphasizes the existence of
non-neuronal cells expressing S700a70". Schmidt et al.
(2012), therefore, limited their analysis to 7853 genes
specifically expressed in neurons and advised third-party
users of the data to do so as well. Since a contamination
caveat was only concerning microarray samples from
Schmidt et al. (2012; the only source of S700a70™" pyra-
midal cells in microarray data), we removed marker genes
selected for S7100a70" pyramidal cells based on the mi-
croarray data if they were not among the 7853 genes
indicated in Schmidt et al. (2012). We also removed
S100a10 itself since based on the author’s description it
was not specific to this cell type. In total, 36 of the 47
S100a710 pyramidal genes originally selected based on
microarray data were removed in this step. Of note, none
of the removed genes were selected as a marker of
S100a10 cell based on RNA-seq data.

Dentate gyrus granule cell-enriched genes
We used data from (Cembrowski et al., 2016; Hippo-
seq, RRID: SCR_015730) for validation and refinement of
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dentate dyrus granule cell markers (as noted above these
data are not currently included in NeuroExpresso for tech-
nical reasons). FPKM values were downloaded (GEO
accession GSE74985) and log, transformed. Based on
these values, dentate gyrus granule cell marker genes
were removed if their expression in Hipposeq data (mean
of dorsal and ventral granule cells) was lower than other
cell types represented in this dataset. In total, 15 of the 39
originally selected genes that were removed in this step.

In situ hybridization (ISH)

Male C57BL/6J (RRID: IMSR_JAX:0000664) mice aged
13-15 weeks at time of killing were used (n = 5). Mice
were euthanized by cervical dislocation and then the brain
was quickly removed, frozen on dry ice, and stored at
—80°C until sectioned via cryostat. Brain sections con-
taining the sensorimotor cortex were cut along the rostral-
caudal axis using a block advance of 14 um, immediately
mounted on glass slides and dried at room temperature
(RT) for 10 min, and then stored at -80°C until processed
using multilabel fluorescent ISH procedures.

Fluorescent ISH probes were designed by Advanced
Cell Diagnostics to detect mRNA encoding Cox6a2,
Slc32a1, and Pvalb. Two sections per animal were pro-
cessed using the RNAscope 2.5 Assay as previously de-
scribed (Wang et al., 2012). Briefly, tissue sections were
incubated in a protease treatment for 30 min at RT and
then the probes were hybridized to their target mRNAs for
2 hours at 40°C. The sections were exposed to a series of
incubations at 40°C that amplifies the target probes, and
then counterstained with NeuroTrace blue-fluorescent
Nissl stain (1:50; Molecular Probes) for 20 min at RT.
Cox6a2, Pvalb, and Sic32a1 were detected with Alexa
Fluor 488, Atto 550, and Atto 647, respectively.

Data were collected on an Olympus IX83 inverted mi-
croscope equipped with a Hamamatsu Orca-Flash4.0 V2
digital CMOS camera using a 60x 1.40 NA SC oil immer-
sion objective. The equipment was controlled by cellSens
(Olympus). 3D image stacks (2D images successively
captured at intervals separated by 0.25 um in the
z-dimension) that are 1434 X 1434 pixels (155.35 X
155.35 um) were acquired over the entire thickness of the
tissue section. The stacks were collected using optimal
exposure settings (i.e., those that yielded the greatest
dynamic range with no saturated pixels), with differences
in exposures normalized before analyses.

Laminar boundaries of the sensorimotor cortex were de-
termined by cytoarchitectonic criteria using NeuroTrace la-
beling. Fifteen image stacks across the gray matter area
spanning from layer 2 to 6 were systematic randomly sam-
pled using a sampling grid of 220 X 220 um?, which yielded
a total of 30 image stacks per animal. Every NeuroTrace
labeled neuron within a 700 X 700 pixels counting frame
was included for analyses; the counting frame was placed in
the center of each image to ensure that the entire Neu-
roTrace labeled neuron was in the field of view. The percent-
age (*xstandard deviation) of NeuroTrace labeled cells
containing Cox6a2 mRNA (Cox6a2+) and that did not con-
tain Slc32a1 mRNA (Slc32a1-), that contained Sic32a1 but
not Pvalb mRNA (Slc32a1+/Pvalb-), and that contained both

November/December 2017, 4(6) e0212-17.2017

Methods/New Tools 8 of 20
Sic32a1 and Pvalb mRNAs (Slc32a1+/Pvalb+) were manu-
ally assessed.

Allen Brain Atlas (ABA) ISH data

We downloaded ISH images using the ABA API (http://
help.brain-map.org/display/mousebrain/API). Assessment
of expression patterns was done by visual inspection. If a
probe used in an ISH experiment did not show expression in
the region, an alternative probe targeting the same gene was
sought. If none of the probes showed expression in the
region, the gene was considered to be not expressed.

Validation of marker genes using external

single-cell data

Mouse cortex single-cell RNA sequencing (RNA-seq) data
were acquired from Zeisel et al. (2015; available from http://
linnarssonlab.org/cortex/, GEO accession: GSE60361,1691
cells). Human single-cell RNA sequencing data were ac-
quired from Darmanis et al. (2015; GEO accession:
GSE67835, 466 cells). For both datasets, pre-processed
expression data were encoded in a binary matrix with 1
representing any nonzero value. For all MGSs, Spear-
man’s p was used to quantify internal correlation. A null
distribution was estimated by calculating the internal cor-
relation of 1000 randomly-selected prevalence-matched
gene groups. Gene prevalence was defined as the total
number of cells with a non-zero expression value for the
gene. Prevalence matching was done by choosing a ran-
dom gene with a prevalence of £2.5% of the prevalence
of the marker gene; p values were calculated by compar-
ing the internal correlation of MGS to the internal correla-
tions of random gene groups using Wilcoxon rank-sum
test.

Preprocessing of microarray data

For comparison of MGPs in white matter and frontal
cortex, we acquired expression data from pathologically
healthy brain samples from Trabzuni et al. (2013; GEO
accession: GSE60862). For estimation of dopaminergic
MGPs in Parkinson’s disease (PD) patients and controls,
we acquired substantia nigra expression data from Lesnick
et al. (2007; GSE7621), Moran et al.(2006; GSE8397), and
Zhang et al.(2005; GSE20295) studies. Expression data for
the Stanley Medical Research Institute (SMRI), which in-
cluded postmortem prefrontal cortex samples from bipolar
disorder, major depression and schizophrenia patients along
with healthy donors, were acquired through https://www.
stanleygenomics.org/, study identifier 2.

All microarray data used in the study were pre-pro-
cessed and normalized with the “rma” function of the
“oligo” (RRID: SCR_015729; Affymetrix gene arrays) or
“affy” (RRID: SCR_012835; Affymetrix 3’IVT arrays; Car-
valho and Irizarry, 2010) R packages. Probeset to gene
annotations were obtained from Gemma (Zoubarev et al.,
2012; https://gemma.msl.ubc.ca/). Probesets with maxi-
mal expression level lower than the median among all
probeset signals were removed. Of the remaining probe-
sets, whenever several probesets were mapped to the
same gene, the one with the highest variance among the
samples was selected for further analysis.
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Outliers and mislabelled samples were removed when
applicable, if they were identified as an outlier in provided
metadata, if expression of sex-specific genes did not
match the sex provided in metadata (Toker et al., 2016), or
if they clustered with data from another tissue type in the
same dataset based on genes found to be most differen-
tially expressed between the tissue types. This resulted in
the removal of 18/194 samples from Trabzuni et al. (2013),
3/44 samples from expression data from SMRI, and 3/93
samples from the Zhang et al. (2005) dataset.

Samples from pooled cell types that make up the Neu-
roExpresso database were processed by an in-house
modified version of the rma function that enabled collec-
tive processing of data from Mouse Expression 430A
Array (GPL339) and Mouse Genome 430 2.0 Array
(GPL1261) which share 22690 of their probesets. As part
of the rma function, the samples are quantile normalized
at the probe level. However, possibly due to differences in
the purification steps used by different studies (Okaty
et al., 2011), we still observed biases in signal distribution
among samples originating from different studies. Thus,
to increase the comparability across studies, we per-
formed a second quantile normalization of the samples at
a probeset level before selection of probes with the high-
est variance. After all processing, the final dataset in-
cluded 11,564 genes.

Estimation of MGPs

For each cell type, relevant to the brain region analyzed,
we used the first principal component of the correspond-
ing MGS expression as a surrogate for cell type propor-
tions. This method of MGP estimation is similar to the
methodology of multiple previous works that aim to esti-
mate relative abundance of cell types in a whole tissue
sample (Xu et al., 2013; Chikina et al., 2015; Westra et al.,
2015). Principal component analysis was performed using
the “prcomp” function from the “stats” R package, using
the “scale = TRUE” option. It is plausible that some
marker genes will be transcriptionally differentially regu-
lated under some conditions (e.g., disease state), reduc-
ing the correspondence between their expression level
with the relative cell proportion. A gene that is thus reg-
ulated is expected to have reduced correlation to the
other marker genes with expression levels primarily dic-
tated by cell type proportions, which will reduce their
loading in the first principal component. To reduce the
impact of regulated genes on the estimation process, we
removed marker genes from a given analysis if their load-
ings had the opposite sign to the majority of markers
when calculated based on all samples in the dataset and
recalculate loadings and components using the remaining
genes. This was repeated until all remaining genes had
loadings with the same signs. Since the sign of the load-
ings of the rotation matrix (as produced by prcomp func-
tion) is arbitrary, to ease interpretation between the scores
and the direction of summarized change in the expression
of the relevant genes, we multiplied the scores by —1
whenever the sign of the loadings was negative. For
visualization purposes, the scores were normalized to the
range 0-1. Two-sided Wilcoxon rank-sum test (“wilcox-
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est” function from the stats package in R, default op-
tions) was used to compare between the different
experimental conditions.

For estimations of cell type MGPs in samples from
frontal cortex and white matter from the Trabzuni study
(Trabzuni et al., 2013), results were subjected to multiple
testing correction by the Benjamini and Hochberg method
(Benjamini and Hochberg, 1995). For the PD datasets
from Moran et al. (2006) and Lesnick et al. (2007), we
estimated MGPs for dopaminergic neuron markers in
control and PD subjects. Moran et al., data included
samples from two subregions of substantia nigra. Since
some of the subjects were sampled in only one of the
subregions while others in both, the two subregions were
analyzed separately.

For the SMRI collection of psychiatric patients we es-
timated oligodendrocytes MGPs based on expression
data available through the SMRI website (as indicated
above) and compared our results to experimental cell
counts from the same cohort of subjects previously re-
ported by Uranova et al. (2004). Figure 7B representing
the oligodendrocyte cell counts in each disease group
was adapted from Uranova et al. (2004). The data pre-
sented in the figure were extracted from Uranova et al.
(2004), their Fig. 1A, using WebPlotDigitizer (http://arohat-
gi.info/WebPlotDigitizer/app/).

Code accessibility

All code is available as Extended Data. They are also
maintained in the GitHub repositories listed below.

Marker gene selection and MGP estimation was per-
formed with custom R functions provided within “marker-
GeneProfile” R package available on GitHub (https://
github.com/oganm/markerGeneProfile).

Human homologues of mouse genes were identified
using “homologene” R package available on GitHub
(https://github.com/oganm/homologene). The code will
be available as Extended Data 1.

Code for data processing and analysis can be found at
“neuroExpressoAnalysis” repository available on GitHub
(https://github.com/oganm/neuroExpressoAnalysis). The
code will be available as Extended Data 2.

Source code of the neuroexpresso.org we app can be
found at “NeuroExpresso” repository available on GitHub
(https://github.com/oganm/neuroexpresso) The code will
be available as Extended Data 3.

Results

Compilation of a brain cell type expression database

A key input to our search for marker genes is expres-
sion data from purified pooled brain cell types and single
cells. Expanding on work from Okaty et al. (2011), we
assembled and curated a database of cell type-specific
expression profiles from published data (see Materials
and Methods; Fig. 1A). The database represents 36 major
cell types from 12 brain regions (Fig. 1B) from a total of
263 samples and 30 single cell clusters. Neocortex cortex
is represented by both microarray and RNA-seq data,
with five of the 15 cortical cell types represented exclu-
sively by RNA-seq data. We used rigorous quality control
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Figure 2. The NeuroExpresso.org web application. The application allows easy visualization of gene expression across cell types in
brain regions. Depicted is the expression of cell types from neocortex region. Alternatively, cell types can be grouped based on their
primary neurotransmitter or the purification type. The application can be reached at www.neuroexpresso.org.

steps to identify contaminated samples and outliers (see
Materials and Methods). In the microarray dataset, all cell
types except for ependymal cells are represented by at
least three replicates and in the entire database, 14/36 cell
types are represented by multiple independent studies
(Table 1). The database is in constant growth as more cell
type data becomes available. To facilitate access to the
data and allow basic analysis we provide a simple search
and visualization interface on the web, www.neuroexpres-
so.org (Fig. 2). The app provides means of visualizing
gene expression in different brain regions based on the
cell type, study or methodology, as well as differential
expression analysis between groups of selected samples.

Identification of cell type-enriched MGSs

We used the NeuroExpresso data to identify MGSs for
each of the 36 cell types. An individual MGS is composed
of genes highly enriched in a cell type in the context of a
brain region (Fig. 3A). Marker genes were selected based
on (1) fold of change relative to other cell types in the brain
region and (2) a lack of overlap of expression levels in
other cell types (see Materials and Methods for details).
This approach captured previously known marker genes
[e.g., Th for dopaminergic cells (Pickel et al., 1976),
Tmem119 for microglia (Bennett et al., 2016); of note,
Tmem119 was classified as downregulated in activated
microglia in our analysis, corroborating previous reports
of Erny et al. (2015) and Satoh et al. (2016)]. We also
identified numerous new candidate markers such as
Cox6a2 for fast spiking PV* interneurons. Some marker
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genes previously reported by individual studies whose
data were included in our database, were not selected by
our analysis. For example, Fam114a1 (9130005N14Rik),
identified as a marker of fast spiking basket cells by
Sugino et al. (2006), is highly expressed in oligodendro-
cytes and oligodendrocyte precursor (OPI cells) (Fig. 3B).
These cell types were not considered in the Sugino et al.
(2006) study, and thus the lack of specificity of Fam114a1
could not be observed by the authors. In total, we iden-
tified 2671 marker genes (3-186 markers per cell type;
Table 1). The next sections focus on verification and
validation of our proposed markers, using multiple meth-
odologies.

Verification of markers by ISH

Two cell types in our database (Purkinje cells of the
cerebellum and hippocampal dentate gyrus granule cells)
are organized in well-defined anatomical structures that
can be readily identified in tissue sections. We exploited
this fact to use ISH data from the ABA (http://mouse-
.brain-map.org; Sunkin et al., 2013) to verify colocalization
of known and novel markers for these two cell types.
There was a high degree of colocalization of the markers
to the corresponding brain structures, and by implication,
cell types (Fig. 4A,B). For dentate gyrus granule cell mark-
ers, all 16 genes were represented in ABA. Of these, 14
specifically colocalized with known markers (i.e., had the
predicted expression pattern confirming our marker se-
lection), one marker exhibited nonspecific expression and
one marker showed no signal. For Purkinje cell markers,
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Figure 3. Marker genes are selected for mouse brain cell types and used to estimate cell type profiles. A, Expression of top marker
genes selected for cell cortical cell types in cell types represented by RNA-seq (left) and microarray (right) data in NeuroExpresso.
Expression levels were normalized per gene to be between 0 and 1 for each dataset. B, Expression of Fam174a1 in neocortex in
microarray (top) and RNA-seq (bottom) datasets. Fam114a1 is a proposed fast spiking basket cell marker. It was not selected as a
marker in this study due to its high expression in oligodendrocytes and S700a70 expressing pyramidal cells that were both absent

from the original study.

41/43 genes were represented in ABA. Of these, 37 spe-
cifically colocalized with known markers, one marker ex-
hibited nonspecific expression and three markers showed
no signal in the relevant brain structure (Fig. 4B). Figure 4A
shows representative examples for the two cell types
(details of our ABA analysis, including images for all the
genes examined and validation status of the genes, are
provided in Extended Data.

The four markers for which no signal was detected (one
marker of dentate gyrus granule cells and three markers
of Purkinje cells) underwent additional scrutiny. For one of
the markers of Purkinje cells (Eps8/2), the staining of
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cerebellar sections was inconsistent, with some sections
showing no staining, some sections showing nonspecific
staining and several sections showing the predicted lo-
calization. The three remaining genes had no signal in
ABA ISH data brain wide. We considered such absence or
inconsistency of ISH signal inconclusive. Further analysis
of these cases (one dentate gyrus granule cell marker,
three Purkinje) suggests that the ABA data is the outlier.
As part of our marker selection procedure, Pter, the den-
tate gyrus granule cell marker in question, was found to
have high expression in granule cells within Hipposeq, a
dataset that was not used for primary selection of markers
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Figure 4. Validation of candidate markers using the ABA. A, ISH images from the ABA. Rightmost panels show the location of the
image in the brain according to the Allen Brain mouse reference atlas. Panels on the left show the ISH image and normalized
expression level of known and novel dentate gyrus granule cell (upper panels) and Purkinje cell (lower panels) markers. B, Validation
status of marker genes detected for Purkinje and dentate gyrus granule cells. Figures used for validation and validation statuses of
individual marker genes can be found in Extended Data (Extended Data Fig. 4-1,2,3,4).

(see Materials and Methods). In addition, Hipposeq indi-
cates specificity of Pter to dentate gyrus granule cells
relative to the other neuron types in Hipposeq. For the
Purkinje markers, specific expression for one gene (Sycp7) was
supported by the work of Rong et al. (2004), who used
degeneration of Purkinje cells to identify potential markers
of these cells (20/43 Purkinje markers identified in our
study were also among the list of potential markers re-
ported by Rong et al., 2004). We could not find data to
further establish expression for the two remaining markers
of Purkinje cells (Eps8/2 and Smpx). However, we stress
that the transcriptomic data for Purkinje cells in our data-
base are from five independent studies using different
methodologies for cell purification, all of which support
the specific expression of Eps8/2 and Smpx in Purkinje
cells. Overall, through a combination of examination of

/Cox6a2/

ABA and other data sources, we were able to find confir-
matory evidence of cell type specificity for 53/57 genes,
with two false positives, and inconclusive findings for two
genes.

We independently verified Cox6a2 as a marker of cor-
tical fast spiking PV™ interneurons using triple label ISH of
mouse cortical sections for Cox6a2, Pvalb and Sic32a1 (a
pan-GABAergic neuronal marker) transcripts. As ex-
pected, we found that approximately 25% of all identified
neurons were GABAergic (i.e., Slc32a1 positive), while
46% of all GABAergic neurons were also Pvalb positive.
80% of all Cox6a2+ neurons were both Pvalb and
Slc32a1 positive whereas Cox6a2 expression outside
GABAergic cells was very low (1.65% of Cox6a2 positive
cells), suggesting high specificity of Cox6a2 to PV™
GABAergic cells (Fig. 5).

ICox6a2/

Figure 5. Single-plane image of mouse sensorimotor cortex labeled for Pvalb, Slc32a1, and Cox6a2 mRNAs and counterstained with

NeuroTrace. Arrows indicate Cox6a2+ neurons. Scale bar: 10 um.
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Table 3. Coexpression of cortical MGSs in single-cell RNA-seq data

Zeisel et al. (2015; Darmanis et al. (2015;

mouse) human)
Cell types p value Gene count p value Gene count
Endothelial p < 0.001 180 p < 0.001 157
Astrocyte p < 0.001 282 p < 0.001 239
Microglia p < 0.001 248 p < 0.001 201
Oligodendrocyte p < 0.001 156 p < 0.001 201
OPCs 0.831 193 0.999 203
FS Basket (G42) p < 0.001 26 p < 0.001 26
Martinotti (GIN) p < 0.001 21 p < 0.001 20
VIPReln (G30) p < 0.001 43 p < 0.001 36
Pyramidal p < 0.001 34 p < 0.001 27

Statistics were calculated by Wilcoxon rank-sum test.

Verification of MGSs in single-cell RNA-seq data

As a further validation of our marker gene signatures,
we analyzed their properties in recently published single-
cell RNA-seq datasets derived from mouse cortex (Zeisel
et al., 2015) and human cortex (Darmanis et al., 2015). We
could not directly compare our MGSs to markers of cell
type clusters identified in the studies producing these
datasets since their correspondence to the cell types in
NeuroExpresso was not clear. However, since both data-
sets represent a large number of individual cells, they are
likely to include individual cells corresponding to the cor-
tical cell types in our database. Thus, if our MGSs are cell
type specific, and the corresponding cells are present in
the single-cell datasets, MGS should have a higher than
random chance of being codetected in the same cells,
relative to nonmarker genes. A weakness of this approach
is that a failure to observe a correlation might be due to
absence of the cell type in the dataset rather than a true
shortcoming of the markers. Overall, all MGSs for all cell
types with the exception of OPCs were successfully val-
idated (p < 0.001, Wilcoxon rank-sum test) in both single-
cell datasets (Table 3).

NeuroExpresso as a tool for understanding the
biological diversity and similarity of brain cells

One of the applications of NeuroExpresso is as an
exploratory tool for exposing functional and biological
properties of cell types. In this section, we highlight three
examples we encountered: We observed high expression
of genes involved in GABA synthesis and release (Gad1,
Gad2, and Sic32a1) in forebrain cholinergic neurons, sug-
gesting the capability of these cells to release GABA in
addition to their cognate neurotransmitter acetylcholine
(Fig. B6A). Indeed, corelease of GABA and acetylcholine
from forebrain cholinergic cells was recently demon-
strated by Saunders et al. (2015). Similarly, the expression
of the glutamate transporter Sic17a6, observed in tha-
lamic (habenular) cholinergic cells suggests corelease of
glutamate and acetylcholine from these cells, recently
supported experimentally (Ren et al., 2011; Fig. 6A). Sur-
prisingly, we observed consistently high expression of
Ddc (DOPA decarboxylase), responsible for the second
step in the monoamine synthesis pathway in oligodendro-
cyte cells (Fig. 6B). This result is suggestive of a previously
unknown ability of oligodendrocytes to produce mono-
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amine neurotransmitters upon exposure to appropriate
precursor, as previously reported for several populations
of cells in the brain (Ugrumov, 2013; Ren et al., 2016).
Alternatively, this finding might indicate a previously un-
known function of Ddc. Lastly, we found overlap between
the markers of spinal cord and brainstem cholinergic
cells, and midbrain noradrenergic cells, suggesting previ-
ously unknown functional similarity between cholinergic
and noradrenergic cell types. The common markers in-
cluded Chodl, Calca, Cda, and Hspb8, which were re-
cently confirmed to be expressed in brainstem cholinergic
cells (Enjin et al., 2010), and Phox2b, a known marker of
noradrenergic cells (Pattyn et al., 1997).

MGPs can be used to infer changes in cellular
proportions in the brain

Marker genes are by definition cell type specific, and
thus changes in their expression observed in bulk tissue
data can represent either changes in the number of cells
or cell type-specific transcriptional changes (or a combi-
nation). Marker genes of four major classes of brain cell
types (namely neurons, astrocytes, oligodendrocytes, and
microglia) were previously used to gain cell type-specific
information from brain bulk tissue data (Sibille et al., 2008;
Kuhn et al., 2011; Tan et al., 2013b; Hagenauer et al.,
2016; Skene and Grant, 2016; Ramaker et al., 2017), and
infer changes in cellular abundance. Following the prac-
tice of others, we applied similar approach to our marker
genes, summarizing their expression profiles as the first
principal component of their expression (see Materials
and Methods; Xu et al., 2013; Chikina et al., 2015; Westra
et al., 2015). We refer to these summaries as MGPs.

In order to validate the use of MGPs as surrogates for
relative cell type proportions, we used bulk tissue expres-
sion data from conditions with known changes in cellular
proportions. Firstly, we calculated MGPs for human white
matter and frontal cortex using data collected by (Trab-
zuni et al., 2013). Comparing the MGPs in white versus
grey matter, we observed the expected increase in oligo-
dendrocyte MGP, as well as increase in oligodendrocyte
progenitor cell, endothelial cell, astrocyte and microglia
MGPs, corroborating previously reported higher number
of these cell types in white versus grey matter (Ogura
et al., 1994; Gudi et al., 2009; Williams et al., 2013). We
also observed decrease in MGPs of all neurons, corrob-
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Figure 6. NeuroExpresso reveals novel gene expression patterns. A, Expression of cholinergic, GABAergic, and glutamatergic
markers in cholinergic cells from forebrain and thalamus. Forebrain cholinergic neurons express GABAergic markers while thalamus
(hubenular) cholinergic neurons express glutamatergic markers. B, left, Expression of Ddc in oligodendrocyte samples from Cahoy
et al. (2008), Doyle et al. (2008), and Fomchenko et al. (2011) datasets and in comparison to dopaminergic cells and other
(nonoligodendrocyte) cell types from the neocortex in the microarray dataset. In all three datasets, expression of Ddc in oligoden-
drocytes is comparable to expression in dopaminergic cells and is higher than in any of the other cortical cells. Oligodendrocyte
samples show higher than background levels of expression across datasets. Right, Ddc expression in oligodendrocytes, OPCs, and
other cell types from Tasic et al. (2016) single-cell dataset. C, Bimodal gene expression in two dopaminergic cell isolates by different
labs. Genes shown are labeled as marker genes in the context of midbrain if the two cell isolates are labeled as different cell types.

orating the low neuronal cell body density in white versus
grey matter (Fig. 7A; Table 4).

A more specific form of validation was obtained from a
pair of studies done on the same cohort of subjects, with
one study providing expression profiles (study 2 from
SMRI microarray database, see Methods) and another
providing stereological counts of oligodendrocytes (Ura-
nova et al., 2004), for similar brain regions. We calculated
oligodendrocyte MGPs based on the expression data and
compared the results to experimental cell counts from
Uranova et al. (2004). The MGPs were consistent with the
reduction of oligodendrocytes observed by Uranova et al.
(2004), in schizophrenia, bipolar disorder, and depression
patients [Fig. 7B; Table 4; direct comparison between
MGP and experimental cell count at a subject level was
not possible, as Uranova et al. (2004), did not provide
subject identifiers corresponding to each of the cell count
values].

To further assess and demonstrate the ability of MGPs
to correctly represent cell type-specific changes in neu-
rological conditions, we calculated dopaminergic profiles
of substantia nigra samples in three expression datasets
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of PD patients and controls from Moran et al. (2006;
GSE8397), Lesnick et al. (2007; GSE7621), and Zhang
et al. (2005; GSE20295). We tested whether the well-
known loss of dopaminergic cells in PD could be detected
using our MGP approach. MGP analysis correctly identi-
fied reduction in dopaminergic cells in substantia nigra of
PD patients (Fig. 7C; Table 4).

Discussion

Cell type-specific expression database as a resource
for neuroscience

We present NeuroExpresso, a rigorously curated data-
base of brain cell type-specific gene expression data
(www.neuroexpresso.org), and demonstrate its utility in
identifying cell type markers and in the interpretation of
bulk tissue expression profiles. To our knowledge, Neu-
roExpresso is the most comprehensive database of ex-
pression data for identified brain cell types. The database
will be expanded as more data become available.

NeuroExpresso allows simultaneous examination of
gene expression associated with numerous cell types
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Figure 7. MGPs reveal cell type-specific changes in whole tissue data. A, Estimation of cell type profiles for cortical cells in frontal
cortex and white matter. Values are normalized to be between 0 and 1. (+#+xp < 0.001). B, left, Oligodendrocyte MGPs in Stanley C
cohort. Right, Morphology-based oligodendrocyte counts of Stanley C cohort. Figure adapted from Uranova et al. (2004). C,
Estimations of dopaminergic cell MGPs in substantia nigra of controls and PD patients. Values are relative and are normalized to be
between 0 and 1 and are not reflective of absolute proportions (+*p < 0.01, ##xp < 0.001).

across different brain regions. This approach promotes
discovery of cellular properties that might have other-
wise been unnoticed or overlooked when using gene-
by-gene approaches or pathway enrichment analysis.
For example, a simple examination of expression of
genes involved in biosynthesis and secretion of GABA
and glutamate, suggested the corelease of these neu-
rotransmitters from forebrain and habenular cholinergic
cells, respectively.

Studies that aim to identify novel properties of cell types
can benefit from our database as an inexpensive and
convenient way to seek novel patterns of gene expres-
sion. For instance, our database shows significant bimo-
dality of gene expression in dopaminergic cell types from
the midbrain (Fig. 6C). The observed bimodality might
indicate heterogeneity in the dopaminergic cell popula-
tion, which could prove a fruitful avenue for future inves-
tigation. Another interesting finding from NeuroExpresso
is the previously unknown overlap of several markers of
motor cholinergic and noradrenergic cells. While the over-
lapping markers were previously shown to be expressed
in spinal cholinergic cells, to our knowledge their expres-
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sion in noradrenergic (as well as brain stem cholinergic)
cells was previously unknown.

NeuroExpresso can be also used to facilitate interpre-
tation of genomics and transcriptomics studies. Recently
(Pantazatos et al.,, 2017) used an early release of the
databases to interpret expression patterns in the cortex of
suicide victims, suggesting involvement of microglia.
Moreover, this database has further applications beyond
the use of marker genes, such as understanding the
molecular basis of cellular electrophysiological diversity
(Tripathy et al., 2017).

Importantly, NeuroExpresso is a cross-laboratory data-
base. A consistent result observed across several studies
raises the certainty that it represents a true biological
finding rather than merely an artefact or contamination
with other cell types. This is specifically important for
unexpected findings such as the expression of Ddc in
oligodendrocytes (Fig. 6B).

Validation of cell type markers
To assess the quality of the marker genes, a subset of
our cell type markers was validated by ISH (Cox6a2 as a
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Table 4. Summaries of statistical analyses
Figure 7A
Frontal White Group
cortex (n = 91) matter (n = 88) comparison
Mean SD Mean SD W p value
Endothelial 0.265 0.117 0.64 0.112 42 p < 0.001
Astrocyte 0.401 0.135 0.757 0.101 136 p < 0.001
Microglia 0.179 0.092 0.708 0.135 4 p < 0.001
Oligodendrocyte 0.226 0.107 0.815 0.087 2 p < 0.001
Olig. precursors 0.215 0.123 0.817 0.078 0 p < 0.001
FS Basket (G42) 0.865 0.081 0.27 0.115 7744 p < 0.001
VIPReln (G30) 0.792 0.102 0.288 0.142 7718 p < 0.001
Pyramidal 0.877 0.062 0.212 0.112 7744 p < 0.001
Figure 7B, left
Mean SD W (vs control)  p value (vs control)
Schizophrenia (n = 10)  0.598 0.129 75 0.013
Bipolar (n = 11) 0.334 0.242 102 p < 0.001
Depression (n = 9) 0.386 0.13 89 p < 0.001
Control (n = 11) 0.78 0.146 NA NA
Figure 7B, right
Uranova et al. (2004)
Figure 7C
PD Control Group
comparison
Mean SD N Mean SD n w p value
Lesnick 0.26 0.179 16 0.578 0.263 9 119 0.007
Moran lateral 0.174 0.135 9 0.665 0.246 7 60 0.001
Moran medial 0.305 0.191 15 0.799 0.191 8 115 p < 0.001
Zhang 0.201 0.101 10 0.489 0.287 18 148  0.004

All statistics were calculated by Wilcoxon rank-sum test.

marker of fast spiking basket cells, and multiple Purkinje
and Dentate gyrus granule cell markers). Further valida-
tion was performed with computational methods in inde-
pendent single-cell datasets from mouse and human. This
analysis validated all cortical marker gene sets except
OPCs. In their paper, Zeisel et al. (2015) stated that none
of the oligodendrocyte subclusters they identified were
associated with OPCs, which likely explains why we
were not able to validate the OPC MGP in their dataset.
The Darmanis dataset, however, is reported to include
OPCs (18/466 cells; Darmanis et al., 2015), but again our
OPC MGP did not show good validation. In this case, the
reason for negative results could be changes in the ex-
pression of the mouse marker gene orthologs in human,
possibly reflecting functional differences between the hu-
man and mouse cell types (Shay et al., 2013; Zhang et al.,
2016). Further work will be needed to identify a robust
human OPC signature. However, since most MGSs did
validate between mouse and human data, it suggests that
most marker genes preserve their specificity despite
cross-species gene expression differences.

Improving interpretation of bulk tissue expression
profiles

Marker genes can assist with the interpretation of bulk
tissue data in the form of MGPs. A parsimonious interpre-
tation of a change in an MGP is a change in the relative
abundance of the corresponding cell type. Similar sum-
marizations of cell type-specific genes were previously
used to analyse gene expression (Xu et al., 2013; Chikina
et al., 2015; Newman et al., 2015; Westra et al., 2015) and
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methylation data (Jones et al., 2017; Shannon et al.,
2017). Since our approach focuses on the overall trend of
a MGS expression level, it should be relatively insensitive
to expression changes in a subset of these genes. Still, we
prefer to refer the term MGP rather than “cell type pro-
portions,” to emphasize the indirect nature of the ap-
proach.

Our results show that MGPs based on NeuroExpresso
MGSs can reliably recapitulate relative changes in cell
type abundance across different conditions. Direct vali-
dation of cell count estimation based on MGSs in human
brain was not feasible due to the unavailability of cell
counts coupled with expression data. Instead, we com-
pared oligodendrocyte MGPs based on a gene expres-
sion dataset available through the SMRI database to
experimental cell counts taken from a separate study
(Uranova et al., 2004) of the same cohort of subjects and
were able to recapitulate the reported reduction of oligo-
dendrocyte proportions in patients with schizophrenia,
bipolar disorder and depression. Based on analysis of
dopaminergic MGPs we were also able to capture the
well-known reduction in dopaminergic cell types in PD
patients.

Limitations and caveats

While we took great care in the assembly of NeuroEx-
presso, there remain a number of limitations and room for
improvement. First, the NeuroExpresso database was as-
sembled from multiple datasets, based on different
mouse strains and cell type extraction methodologies,
which may lead to undesirable heterogeneity. We at-

eNeuro.org



eMeuro

tempted to reduce interstudy variability by combined pre-
processing of the raw data and normalization. However,
due to insufficient overlap between cell types represented
by different studies, many of the potential confounding
factors such as age, sex, and methodology could not be
explicitly corrected for. Thus, it is likely that some of the
expression values in NeuroExpresso may be affected by
confounding factors. While our confidence in the data is
increased when expression signals are robust across mul-
tiple studies, many of the cell types in NeuroExpresso are
represented by a single study. Hence, we advise that
small differences in expression between cell types as well
as previously unknown expression patterns based on a
single data source should be treated with caution. In our
analyses, we address these issues by enforcing a strin-
gent set of criteria for the marker selection process, re-
ducing the impact of outlier samples, ignoring small
changes in gene expression and validating the results in
external data. However, it must be noted that it was not
possible validate our markers for all cell types and brain
regions.

An additional limitation of our study is that the repre-
sentation for many of the brain cell types is still lacking in
the NeuroExpresso database. Therefore, despite our con-
siderable efforts to ensure cell type specificity of the
marker genes, we cannot rule out the possibility that
some of them are also expressed in one or more of the
nonrepresented cell types. This problem is partially alle-
viated in cortex due to the inclusion of single-cell data. As
more such datasets become available, it will be easier to
create a more comprehensive database.

A related problem to the coverage of cell types in
NeuroExpresso lies in the definition of the term “cell type”.
Most cell types represented in NeuroExpresso are heter-
ogeneous populations. For instance, fast-spiking basket
cells as defined by microarray data match five distinct
clusters identified by Tasic et al. (2016) based on single-
cell RNA sequencing data. By considering them as a
single cell type, we lose the ability to detect unique prop-
erties of the individual clusters. Heterogeneity may also
reduce the confidence we have in our marker genes. If a
selected marker is expressed in a subtype of another cell
type, this will not be noticed in pooled expression data as
the signal will be suppressed by other subtypes that do
not express the gene. We hope to remedy this problem
with increased availability of single-cell data in the future.
Where intercell type variability ends and new cell type
begins is an ongoing discussion in the field. For the
purposes of this study, we tried to ensure that cell types
we define are accepted and studied by a portion of the
community, and that the expression profiles of the cell
types were distinct enough to allow marker gene identifi-
cation. The data we make available to other researchers
may be portioned into finer cell types or grouped together
into more broad cell type groups depending on the aims
of the researchers.

Finally, it must be noted that while we aim to infer
changes in cell type abundance with MGPs, we do not
attempt to estimate the cell type proportions themselves
even though many established deconvolution methods do
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accomplish this using databases of expression profiles
(Grange et al., 2014; Chikina et al., 2015; Newman et al.,
2015). These approaches operate on the assumption that
the absolute expression levels of genes will be conserved
across the cell types in the reference database and cell
types that make up the whole tissue sample. In our work,
we avoid these approaches because our database
(mouse cell types) and the whole tissue samples we an-
alyze (human brain tissue) come from different species
which may cause changes in gene expression, while
marker genes are more likely to be conserved.

In summary, we believe that NeuroExpresso is a valuable
resource for neuroscientists. We identified numerous novel
markers for 36 major cell types and used them to estimate
cell type profiles in bulk tissue data, demonstrating high
correlation between our estimates and experiment-based
cell counts. This approach can be used to reveal cell type-
specific changes in whole tissue samples and to re-evaluate
previous analyses on brain whole tissues that might be
biased by cell type-specific changes. Information about cell
type-specific changes is likely to be very valuable since
conditions like neuron death, inflammation, and astrogliosis
are common hallmarks of in neurological diseases.
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