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Insulated transcriptional elements enable precise
design of genetic circuits
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Rational engineering of biological systems is often complicated by the complex but unwanted

interactions between cellular components at multiple levels. Here we address this issue at the

level of prokaryotic transcription by insulating minimal promoters and operators to prevent

their interaction and enable the biophysical modeling of synthetic transcription without free

parameters. This approach allows genetic circuit design with extraordinary precision and

diversity, and consequently simplifies the design-build-test-learn cycle of circuit engineering

to a mix-and-match workflow. As a demonstration, combinatorial promoters encoding

NOT-gate functions were designed from scratch with mean errors of <1.5-fold and a success

rate of >96% using our insulated transcription elements. Furthermore, four-node transcrip-

tional networks with incoherent feed-forward loops that execute stripe-forming functions

were obtained without any trial-and-error work. This insulation-based engineering strategy

improves the resolution of genetic circuit technology and provides a simple approach for

designing genetic circuits for systems and synthetic biology.
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B iological systems such as living cells are characterized by
highly complex interactions between numerous genetic and
cellular components1. Correspondingly, the engineering

of biological systems—a process used to adapt biological compo-
nents from nature and apply them in novel design combinations—
often suffers from unwanted complexity at various biological levels2.
Therefore, in order to enhance the reliability and predictability of
biological systems engineering, this complexity must be managed or
reduced3. Synthetic biology seeks to address this issue by developing
foundational theories and technologies at the systems level4–6 using
various approaches, such as developing design strategies for syn-
thetic genetic circuits based on principles of mature engineering
disciplines7, 8, reverse engineering of natural genetic circuits to
create their synthetic counterparts9–11, and exploration of design
constraints for dealing with the complex interactions between
genetic circuits and their biochemical, host, and environmental
factors12–14. Developments have also occurred at the biological
parts and modules level and include composable parts that regulate
gene expression with high orthogonality and have minimal inter-
ferences with the host cells15–18, biological insulators that eliminate
or buffer against unexpected interferences at the functional19 and
physical20–23 interfaces of parts/modules, and a corresponding
programming environment that supports automated, high-
throughput composing of parts/modules for non-experts24.

Despite these abovementioned developments that enable com-
posing biological parts to build circuits by managing or reducing
the systems complexity, methods that enable the rational design of

individual basic parts, such as promoters, a crucial need for
understanding and manipulating basic processes in gene expres-
sion, remain elusive. This is because the interactions between
sub-part components (called “elements” hereafter) are also
complex. For instance, prokaryotic promoters constitute a cate-
gory of biological parts that encode transcriptional control of gene
expression and function as key factors in information processing.
In general, prokaryotic promoters have a multi-element
architecture consisting of a minimal promoter (−10 box, −35
box, and transcription-start site +1, called the “promoter core”
hereafter) for transcription initiation and one or several operators
for transcription factor binding25. Canonical views assume that
this architecture is modular and that operators simply acts as
docking sites for transcription factors that either enhance or
repress transcription initiation at the promoter core26, 27.
However, studies have revealed that the interplay between
sub-promoter elements could be far more complex than hypo-
thesized by this “modular assumption”, as the operator sequences
alone can significantly perturb the intrinsic activity of promoter
cores and vice versa28–30. Consequently, despite the intensive
efforts focused on interpreting and dissecting these modes of
interplays in order to develop a rational basis for promoter
engineering, either computationally or experimentally29, 31–33, the
bottom-up design of prokaryotic promoters using sub-promoter
elements is still largely an ad hoc exercise, with prokaryotic
promoters are generally regarded as functionally “indivisible”
parts in genetic circuit engineering.

Natural promotersa c

d

e

b

Putative promoter core Surrounding context Transcription-start site

Natural single operators Insulated synthetic operators

Putative location of promoter core

Mix-and-match design of genetic circuits

Transcriptional repression data

Refinement

Design &
refinement

Characterization

Characterization

Biophysical
modeling

Biophysical
modeling

Promoter: T7M2

Operator: O1-cl434

Repressor

Operator

Basic genetic gates Complex transcriptional networks

NOT gate

Input
Input

Input

O
ut

pu
t

O
ut

pu
t

Output

KA: activator Kd

KR: repressor Kd
nR: Hill coefficient

�R: non-equilibrium
correction

nA: Hill coefficient
�: basal txn rate

�: max. txn rate

Insulated promoter cores Transcriptional activation data
Activation parameter

database

Repression parameter
database

Retrieving parameter
values from databases

No-free-parameter
model prediction
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We reasoned that, if the highly interconnected sub-promoter
elements could be decoupled to satisfy the “modular assumption”,
we would be able to precisely design promoter parts from scratch
by simply combining sub-promoter elements. This easy mix-and-
match approach would significantly boost our overall capacity for
rationally designing genetic circuits. As a demonstration, we
randomly combined 53 different promoter cores and 36 different
synthetic operators to design 83 combinatorial promoters that
encode NOT-gate functions. Furthermore, these insulated
transcriptional elements were utilized to build four-node tran-
scriptional networks with incoherent feed-forward loop (IFFL)
topology encoding a stripe-forming function. In silico screening
of all 30,528 possible designs directly captured the one with the
best stripe-forming performance without any trial-and-error
work, as verified experimentally (up to 66-fold pulsing, mean
errors <1.4-fold for all examined circuit designs). This insulation-
based, sub-promoter-resolution circuit engineering methodology

provides a mix-and-match approach for the bottom-up design of
genetic circuits and will greatly facilitate rational gene expression
engineering in synthetic and systems biology.

Results
Overview of promoter design. We first developed a design
strategy to functionally insulate the promoter core and sur-
rounding operators and prevent their interaction (Fig. 1). Natural
promoters from bacteria and bacteriophages were genetically
refined via saturation mutagenesis through the following steps: (i)
promoter cores were identified as minimal promoters
(DNA sequences <20 bp) that are insensitive to their surrounding
sequence context (Fig. 1a); and (ii) synthetic operators used to
add transcriptional regulation to these promoter cores were
designed using natural operators and further refined to eliminate
any unwanted cryptic promoters (Fig. 1b). Due to the modularity
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of these refined elements, biophysical models without any
free parameter were subsequently derived to parameterize the
roles of promoter cores and operators in transcription regulation.
In this process, experimental characterization data for individual
sub-promoter elements were converted into activation- and
repression-dependent parameter databases (Fig. 1c, d). The
resulting parameter databases, in conjunction with no-free-
parameter modeling were then used for the bottom-up design
of promoters with extraordinary feasibility and precision (Fig. 1e).
Of these, 80 promoters performed as predicted (mean errors
<1.5-fold, R2= 0.95 across all 1397 predictions), corresponding a
success rate of >96%.

Identification of insulated promoter cores. Operators are
sequence-defined short DNA fragments (usually 10–20 bp) that
are responsible for the specific binding of transcription factors. To
evaluate how intrinsic transcriptional activity of promoter cores is
perturbed by operator identity, we collected 11 single operators
recognized by different transcriptional repressors (Fig. 2a; see
Supplementary Table 1 for detailed information); the Plac pro-
moter was selected as the archetype of promoter cores recognized
by the Escherichia coli housekeeping σ factor σ70 (Fig. 2b). The
collected operators were then individually inserted into the spacer
between the −10 and −35 boxes of Plac promoter; this region is
reportedly the most often used for operator-mediated transcrip-
tional repression in both natural and synthetic promoters29. To
exclude the effect of spacer length variation on promoter core
activity25, the operators >18 bp were truncated before insertion to
yield a uniform length of 18 bp. Measurements of the activity of
the resulting promoter variants revealed an 86-fold variation (CV
= 2.3; Fig. 2b), indicating that the σ70-dependent promoter core is
highly sensitive to the sequence context imposed by the operators.
This finding showed that σ70-dependent promoter cores are not
modular in function and, therefore, are not a good choice for use
in the bottom-up design of promoters.

We then turned to other types of promoter cores, such
as the Pecf11_3726 promoter (PECF11) recognized by
bacterial extracytoplasmic function (ECF) σ factor σECF11 34,
and the T7 promoter (PT7) recognized by T7 RNA polymerase
(T7 RNAP; see Supplementary Table 1 for the sequences
of promoters, σ factors and RNAPs). Using the method
described above, the same set of operators was inserted
individually into the spacer region of PECF11 and the immediate
downstream region of PT7, respectively, to evaluate the effect
of operator identity on promoter core activity in pre-built E. coli
strains constitutively expressing σECF11 or T7 RNAP. Surpris-
ingly, the resulting PECF11 variants showed only a 2.2-fold
variation in transcriptional activity (CV= 0.2); similarly, 1.9-fold
variation in transcriptional activity was observed for PT7 (CV=
0.2; Fig. 2b), indicating that the promoter cores of PECF11 and PT7
are comparatively insensitive to the sequence context imposed by
operators.

In order to systematically evaluate the functional modularity of
the promoter cores of PECF11 and PT7 and to identify their
minimal sequences, we divided the promoters and their
surrounding sequences into segments of 3–9 bp in length and
conducted saturation mutagenesis segment by segment (Fig. 2c).
For any given segment, the mutations were introduced by
synthesizing the promoter using degenerate primers via PCR
annealing. This yielded 11 mutant libraries for PECF11 and 9
mutant libraries for PT7. For each mutant library, we tested at least
90 randomly-picked mutants and analyzed the magnitude of their
variation in transcriptional activity. The results showed that for
PECF11 the segments R1, R2, R6, and R7, which correspond to the
−35 and −10 boxes, are crucial for maintaining transcriptional
activity (>35-fold variation; CV> 0.89). Segments R8 and R9,

which are located between the −10 box and the transcription-start
site, were found to be less crucial but still important (>2.5-fold
variation; CV> 0.25; Fig. 2d). To our surprise, the segments
R3, R4, R5, R10, and R11, which correspond to the spacer
between the −10 and −35 boxes and the sequence immediately
downstream of the transcription-start site, were almost totally
insensitive to sequence variation, indicating that they are
unnecessary for maintaining transcriptional activity (<1.3-fold
variation; CV< 0.13; Fig. 2d). Likewise, for PT7, the segments
corresponding to the promoter core are crucial for promoter
activity (>18-fold variation; CV> 0.85). All of the segments
outside of the promoter core, however, were found to be
dispensable (<1.9-fold variation; CV< 0.11; Fig. 2e). To evaluate
whether promoter core modularity is plasmid context-dependent,
we performed segment-by-segment mutagenesis of PECF11 on a
new plasmid backbone (p15A origin and medium-copy number,
in contrast to the previous one of pSC101 origin and low-copy
number). The new results were basically the same as those shown
in Fig. 2d (Supplementary Fig. 1). Collectively, these results
indicate that the promoter cores of PECF11 and PT7 are indeed
functionally modular, with a minimal length of 19 and 21 bp,
respectively.

As promoter recognition stringency is a common feature of
ECF σ factors and T7-family RNAPs16, 34, the cognate promoters
of two additional ECF σ factors (σECF16 and σECF20) and three
T7-family RNAPs (MmP1, T3, and gh-1) were experimentally
scanned in the same manner using saturation mutagenesis. The
results revealed indispensable promoter cores with dispensable
surrounding sequences similar to those of PECF11 and PT7
(Supplementary Fig. 2). From the standpoint of engineering, the
promoter cores of ECF σ factors and T7-family RNAPs are thus
functionally well-insulated, which means that their roles in
transcription initiation would be maintained quantitatively,
regardless of the operators used in combination with them.
Conversely, the context sequences surrounding these promoter
cores can serve as ideal locations for operators used to add
transcriptional regulation.

Design and refinement of synthetic operators. Next, we set out
to design synthetic operators using the single operator collection.
The synthetic operators would be expected to mediate only
transcriptional repression. Therefore, we wanted to detect and
exclude operators exhibiting spontaneous transcriptional activity.
Four different promoter architectures were utilized in our work,
having one or four operators located downstream of a promoter
core, with or without one operator in the upstream region (Fig. 2f,
g). This was done in order to impart more flexibility and diversity
in transcriptional regulation. Architectures with multiple opera-
tors would be expected to allow for cooperative binding of
transcriptional repressors such as cI homologues, which intrin-
sically have this ability35. The distance between operator centers
was set to 10 or multiples of 10 bp in order to maximize the
potential for cooperative binding36. The single operators from our
collection were then permuted to fit these promoter architectures,
yielding 40 different synthetic operators that were subsequently
connected to a promoter-less reporter cassette (Fig. 2f). Indeed,
some synthetic operators, such as O2-LmrA and O4-LmrA bound by
the LmrA* repressor, were found to cause considerable reporter
expression, up to orders of magnitude above background fluor-
escence (Fig. 2g). The cryptic σ70-dependent promoters, respon-
sible for the unwanted transcriptional activity, were predicted
using the BPROM program (http://www.softberry.com/berry.
phtml?topic=bprom&group=programs&subgroup=gfindb, Sup-
plementary Table 2). Such operators were consequently excluded
from further experiments.
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Parameterizing promoter cores via biophysical modeling. Next,
we quantitatively described the process of transcription activation
mediated by the interactions between the promoter cores and the
corresponding σECF11 and T7 RNAP (both referred to as tran-
scriptional activators hereafter). An experimental framework
reported in our previous study37 was used. In this framework, the
expression level of a transcriptional activator is indicated by an
independently characterized circuit in which superfolder green
fluorescent protein (sfGFP) is driven by the same “input pro-
moter” (Fig. 3a). In this way, the input–output functions (called
response functions hereafter) describe the intrinsic properties of
interactions between the promoter cores and their cognate tran-
scriptional activators regardless of the identity of the “input
promoter”.

A biophysical model that is mathematically equivalent to the
conventional Hill function10, 38 was adopted to interpret the
experimentally measured response functions:

Output ¼
α InputA

KA

� �nA

1þ InputA
KA

� �nA þβ ð1Þ

where α, β, nA, and KA represent the maximal and basal promoter
activity, the Hill coefficient, and the dissociation constant of the
transcriptional activator–promoter core pair, respectively; InputA
represents GFP fluorescence as a proxy for the expression level of
the transcriptional activator (Fig. 3b). We found that, if nA is fixed
at 1.0 (i.e. there is no cooperativity in the transcriptional
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activation), the best-fit parameters sufficiently interpreted the
experimental data for σECF11 (Fig. 3c). However, a model with
such a value of nA could not explain the slight but discernible
sigmoid feature in the response function of T7 RNAP (Fig. 3d).
Mathematically, this issue cannot be resolved unless nA is relaxed
for parameter fitting. We found that the best-fit value of nA is

1.34, suggesting that there is weak cooperativity in transcription
activation by T7 RNAP (Fig. 3d). To assess whether the
cooperativity is a result of cell growth retardation39 in response
to the burden/toxicity of T7 RNAP, we calculated the relative
growth rates of the samples described in Fig. 3c, d and plotted
them against the expression level of T7 RNAP (Supplementary
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library c. The promoter region subjected to mutagenesis is highlighted in red. The corresponding value for [Activator]/KA is provided for each mutant.
d Experimentally determined and predicted response functions of combinations of five σECF11 promoter cores and four cI434 operators. Mean relative
(-fold) error= 10

1
Q

P
log10Measurement�log10Predictionj j, whereby Q represents the number of data points for each response function. e Experimentally determined

and predicted response functions of combinations of six T7-RNAP promoter cores and four cI434 operators. The mean relative(n-fold) error for the
prediction of each response function is given. Data represent the means± SD from at least three replicate experiments. NE+, with non-equilibrium
correction term; NE−, without non-equilibrium term
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Fig. 3). The results disproved this hypothesis. In addition,
re-examining the parameter fitting for σ ECF11 revealed that it is
insensitive to the relaxation of nA. Based on these observations,
nA was relaxed for both σECF11 and T7 RNAP in the subsequent
parameter fitting.

It is notable that the abovementioned four parameters (α, β, nA,
and KA) are sufficient to describe the interactions of ECF11 and
T7 RNAP with their respective promoter cores. Therefore, the
biological roles of promoter cores in transcription initiation can
be parameterized as a table of “transcriptional activation-
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dependent parameters” (Supplementary Table 3) for which the
values would be constant regardless of the operators they are to
be combined with.

Parameterizing operators via biophysical modeling. For the
characterization of operator–repressor interactions that mediate
transcriptional repression, an experimental framework similar to
that for transcriptional activation was used (Fig. 3e), with the
following differences: (i) the expression of repressors such as
cI434 was varied; (ii) the “output promoter” was the combination
of an operator and a given promoter core; and (iii) σECF11 and T7
RNAP were constitutively expressed.

According to the promoter architectures that we have designed
(Fig. 2g), repressors would inhibit transcription by simply binding
to their cognate operators, thus restricting the access of activators
to the promoter core (Fig. 3f). Due to this simplicity, the
transcriptional repression can be described by introducing new
parameters into Eq. (1):

Output ¼
α ½Activator�

KA

� �nA

1þ ½Activator�
KA

� �nAþ InputR
KR

� �nR þβ ð2Þ

where [Activator] is a constant due to the constitutive expression
of a transcriptional activator; and KR and nR represent the
dissociation constant and Hill coefficient of a repressor’s binding
to its cognate operator, respectively. In Eq. (2), α, β, nA, and KA

are the same as described for Eq. (1), whereas KR and nR describe
the interactions between a repressor and its cognate operator that
mediate transcriptional repression (Fig. 3f). We substituted the
values of the activation-dependent parameters into Eq. (1) to
solve [Activator] and further into Eq. (2), seeking to fit
repression-dependent parameters. However, we found that
Eq. (2) could not satisfactorily fit the response functions of
repressors such as cI434 when the transcriptional activator was
T7 RNAP (Fig. 3g). This inconsistency derives from the operator-
dependence of basal transcriptional activity at saturated levels of
repressor expression, because the Output values are supposed to
converge at the value of β when InputR is sufficiently high
(Fig. 3g, gray dashed lines). This suggests that, in addition to the
conventional equilibrium assumption, possible non-equilibrium
competition between transcriptional activators and repressors
should also be taken into consideration. For instance, during the
DNA replication process, most DNA-bound proteins temporally
detach from the DNA, which creates a time window (usually
called relaxation time) for both transcriptional activators and
repressors to re-bind to the promoter40. Therefore, we introduced
a correction term into Eq. (2) to describe such non-equilibrium
effects:

Output ¼
α ½Activator�

KA

� �nA

1þ ½Activator�
KA

� �nAþ InputR
KR

� �nR þβþ Activator
KA

� �
� δR

ð3Þ

where δR can be interpreted as the relaxation time of a repressor
re-binding to its operators. As shown in Fig. 3f, the first two terms
represent an equilibrium-state description of transcriptional
regulation and basal transcriptional activity, respectively; the
third term is the newly introduced correction term for the non-
equilibrium effect.

When this refined model was applied to the operators of cI434
with T7 RNAP as the activator, precise fitting was easily achieved
for all four response functions (Fig. 3g, solid lines). When
σECF11was used as the activator and PECF11 as the promoter core,

the response function fitting for cI434 operators was insensitive to
the addition of the non-equilibrium term: fitting using Eq. (3) was
satisfactory, whereas fitting with Eq. (2) resulted in only merely a
slight decrease in precision (Fig. 3h). These results confirmed that
our new model for transcriptional repression is reliable for both
ECF11 and T7 RNAP. As such, the values of repression-
dependent parameters that recapitulate the interactions of
transcriptional repressors with their cognate operators can also
be obtained via model fitting without introducing free parameters
(Supplementary Table 3).

We also measured the response functions of cI434 operators
using T3 and gh-1 RNAPs as the transcriptional activators and
applied Eq. (3) to fit them. Interestingly, in both cases, the
response functions could be satisfactorily fit using the new rather
than old model (Supplementary Fig. 4), suggesting that the
non-equilibrium effect is a common transcriptional activation
feature of T7-family RNAPs.

Prediction for promoter core and operator combinations. In
the non-equilibrium term of our model, the activation- and
repression-dependent parameters are interconnected by δR
(Fig. 3f). For a given transcriptional activator, however, δR is
solely repression-dependent. Therefore, we hypothesized that, for
a given transcriptional activator (e.g. σECF11 or T7 RNAP), N sets
of activation-dependent parameters from promoter cores and M
sets of repression-dependent parameters from operators could be
combined to design N × M novel combinatorial promoters with
parameter-free prediction power (Fig. 4a). To test this hypothesis,
five promoter core mutants for σECF11 and six for the T7 RNAP
with 38- and 108-fold variation in transcriptional activity,
respectively, were characterized and parameterized using the
abovementioned experimental and modeling framework (Fig. 4b,
c). Within each group, the values of α, β, nA, and [Activator] were
identical; the only difference was the value of KA (Fig. 4b, c).
When integrating the promoter cores of σECF11 with the opera-
tors of cI434 to design combinatorial promoters encoding NOT-
gate functions, we were surprised by the extraordinary precision
of model prediction regarding the promoter response curves
(Fig. 4d). Afterwards, the mean fold error of prediction against
the measurements was calculated for every response curve and we
found that it was ≤1.43 throughout all 20 combinatorial pro-
moters (Fig. 4d). The precision of model prediction for promoter
design using T7 RNAP-dependent promoter cores was similar, or
even higher, with mean errors ≤1.21-fold throughout all 24 NOT-
gate promoters (Fig. 4e). The ability to make precise predictions
about these combinatorial promoters demonstrates that, for a
given transcriptional activator, the activator- and repressor-
derived parameters together are sufficient to provide a complete
picture of the outcome of their combination.

The necessity of the non-equilibrium correction term contain-
ing “δR” in our model was also highlighted. If the promoter
response curves were calculated without including this term
(Eq. (2)), predictions about the combinatorial promoters using
σECF11-dependent promoter cores roughly matched the measure-
ments (Fig. 4d, dashed lines); for those using T7 RNAP-
dependent promoter cores, however, the resulting predictions
were far from precise (Fig. 4e, dashed lines), indicating an
unambiguous requirement for the non-equilibrium term in T7
RNAP-dependent transcriptional activation.

Designing genetic NOT gates at sub-promoter resolution.
Putting the precision of promoter design at sub-promoter reso-
lution into the context of genetic circuit engineering, we realized
that we might be able to transform the process of circuit engi-
neering from the conventional design-build-test-learn cycle to a
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much simpler, mix-and-match workflow. As a proof of concept,
we sought to manufacture combinatorial promoters encoding
genetic NOT-gate functions using a large quantity of insulated
transcriptional elements (Fig. 5). The table of repression-
dependent parameters was expanded to include all 11 repres-
sors and their 36 corresponding synthetic operators via the
abovementioned experimental and mathematical methods
(Fig. 5a); this yielded a parameter database for designing tran-
scriptional repression with considerable diversity of dynamic
features (Fig. 5b; see results for individual repressor–operator
pairs in Supplementary Fig. 5). With respect to transcriptional

activation, T7 RNAP was selected as the activator and the cor-
responding promoter cores were taken from a library of 53 T7
promoter mutants (Fig. 5c). A database of activation-dependent
parameters, with a >100-fold variation in the value of the
[Activator]/KA term, was computationally abstracted from the
characterization data of this library (Fig. 5d; see raw data in
Supplementary Fig. 5); the promoter core (PT7M1) used to obtain
the repression-dependent parameter database was not included.

Next, we computationally enumerated all 1908 possible
promoter designs, randomly selected 83 of these for biological
implementation, experimentally characterized their NOT-gate
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functions, and compared the measurements with model predic-
tions (Fig. 5e; see results for individual promoters in Supple-
mentary Fig. 6). The results showed that, despite the wide
parameter ranges of these promoters (Supplementary Table 5), 80
were precisely predicted to function with mean errors <1.50-fold,
corresponding to a success rate of >96% (Fig. 5e, f). It should be
noted that the three exceptions (PT7M43 + O2-cI434, PT7M11 +
O3-HKcI, and PT7M48 + O3-TP901cI) had 1.50-, 1.76-, and 2.20-fold
mean errors of model prediction, respectively, which means that
they were also firmly within the same order of magnitude, albeit
beyond the cutoff. To illustrate the design precision more
intuitively, the predictions and measurements for all 127 T7
RNAP-dependent NOT gates, including those shown in Fig. 4e,
were subjected to a linear regression analysis. Notably, the R2

value was 0.95 across the entire set of 1397 data points (Fig. 5g).

Designing transcriptional networks with complex functions.
We next asked whether the insulated transcription elements
and no-free-parameter modeling framework could be used
to precisely design complex transcriptional networks. As a
proof of concept, we attempted to design four-node transcrip-
tional networks with IFFL network topology. In these networks,
only the intermediate (and not the high or low) level of input can
activate the output (Fig. 6a). Such a function is designated “stripe
forming” because the natural counterpart networks involved
in metazoan embryonic development often interpret a morpho-
gen concentration gradient as a central single stripe of gene
expression41–43.

To test whether our no-free-parameter modeling framework
still precisely described transcriptional IFFL networks, the
four nodes were assigned as follows: lacI to receive an IPTG
input, cI434 as the repressor, T7 RNAP as the activator,
and sfGFP as the output (Fig. 6b). Considering the high efficiency
of T7 RNAP in transcription initiation, two operators, O3-cI434

and O4-cI434, were selected in order to achieve the strong
repression needed for the stripe-forming function. Accordingly,
a no-free-parameter model describing such a network designs was
derived from Eq. (3). The predictive power of the model was
evaluated by comparing the measurements with the predictions.
The model predictions, regarding the response curves of the
O3-cI434 and O4-cI434 IFFL networks, were both precise, with mean
errors of 1.30- and 1.27-fold, respectively (Supplementary Fig. 9).
It is interesting to note that if the non-equilibrium term
containing “δR” was not taken into account, complete repression
of GFP expression was predicted when the expression of
repressors was saturated (Supplementary Fig. 9, dashed lines),
which obviously did not match the measurements. If, on the
other hand, this term was included, the secondary increase of
GFP expression in the response curves could be precisely
predicted (Supplementary Fig. 9, solid lines), once again high-
lighting the necessity of this non-equilibrium term. The
explanation for the secondary increase of GFP expression is
straightforward: at very high IPTG concentrations, the contribu-
tions of the equilibrium terms to the overall output tends to be
negligible due to the high expression level and high Hill
coefficient of cI434. In such a situation, the overall output
depends primarily on the contribution of δR (arrows in
Supplementary Fig. 9). These results demonstrate that our
modeling framework can be still highly predictive with respect
to complex transcriptional networks.

Subsequently, we used our modeling framework and insulated
transcriptional elements to design transcriptional IFFL networks
with minimal a priori consideration, in order to determine
whether the mix-and-match design process is indeed feasible.
Links L1 and L2 in the IFFL networks were assigned to four

PTAC promoter variants with different dose–response curves
(Supplementary Fig. 7). Links L3 and L4 corresponded to the
transcriptional activation and repression exerted by the promoter
cores and operators, respectively (Fig. 6c). The computational
task was defined with the goal of identifying the transcriptional
IFFL network with the greatest stripe-forming ability. Accord-
ingly, the transcriptional activation- and repression-dependent
parameters were first retrieved from the databases of T7 promoter
cores and operators, together with the parameters of PTAC
promoters, and then substituted into the model of IFFL networks
in order to traverse the entire design space. The procedure
yielded 30,528 different in silico network designs. To quantify the
stripe-forming ability of these network designs, a “fitness” index
was developed (Fig. 6c). The network fitness landscape revealed
that the stripe-forming ability (i) strongly depends on the identity
of repressor–operator pairs and (ii) is enhanced by promoter
cores exhibiting strong transcriptional activity (Fig. 6d;
see Supplementary Fig. 8 for full fitness landscape). Subsequently,
all 30,528 network designs were ranked according to their fitness
and the design with the highest fitness was implemented in vivo
(Fig. 6e, O4-PhlF + PT7wt + PTACwt + PTACwt). The experimental
results showed that this network executes the stripe-forming
function in response to IPTG concentration gradients with
66-fold pulsing (Fig. 6f). Moreover, the mean error of model
prediction was as low as 1.38-fold (Fig. 6f, left panel). To verify
the reliability of this computational search, four more network
designs were selected throughout the ranking and subjected to the
same experimental evaluation. As expected, both the network
fitness and response functions of these network designs were
precisely predicted (mean errors <1.30-fold; Fig. 6f, right panel).

One advantage of our insulated transcriptional element
approach is that transcriptional activation and repression can
be separately modulated in genetic circuits without affecting each
other. We hypothesized that tuning the peak height by changing
the promoter core would not affect the peak position in the IFFL
circuits. This prediction was confirmed by re-design of the
highest-fitness IFFL network with five new promoter cores to
replace the PT7wt promoter (Supplementary Fig. 10). Based on
the collective results, we conclude that our insulation-based,
sub-promoter-resolution genetic circuit design strategy is
sufficiently powerful at the level of complex networks.

Discussion
The engineering of promoters has thus far been a largely ad hoc
exercise due to the high degree of complexity in the interactions
between sub-promoter elements22. As a consequence, promoters
are usually regarded as basic, functionally indivisible parts in
conventional genetic circuit engineering, despite their multi-
element nature4, 6. For instance, promoter design per se was not
undertaken in the work of Nielsen et al.24, even though some
engineering, such as utilization of insulator sequences, was car-
ried out to eliminate the interferences between promoters and
surrounding parts. The scaling-up of genetic circuits, however,
has highlighted that the limitations affecting the rational design of
promoters as the information processing hubs have become
technical bottlenecks and the rate-limiting step in synthetic
biology4, 44. To address this issue, we developed an experimental
and modeling framework that functionally decouples the
prokaryotic promoter elements, yielding modular promoter
cores and operators. These transcriptional elements, which
are functionally insulated from each other, can be re-used in
combination to predictably design new promoters for a variety of
circuits. Following this strategy, even a small number of promoter
cores and operators can be reused to substantially increase
diversity in synthetic transcriptional regulation.
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In synthetic biology, information about biological systems
is organized using an abstraction hierarchy in order to enable
researchers working at one layer of complexity to disregard
the details encountered at other layers3, 6. Previous studies
represented by Nielsen et al.24 have developed methods
for rational design from the layer of “parts” to the layer of “cir
cuitry”7. Rational design at more basic hierarchical layers,
however, remains largely unexplored. Our study achieved the
functional insulation and predicable combination of “sub-parts”-
level genetic components, thus pushing the resolution of
genetic circuit design to a new limit. Moreover, because our
method works at a different layer, it is compatible with existing
genetic circuit technologies including the “Cello” and “Clotho”
software23, 24, 45.

In this work, synthetic transcriptional regulation was
defined by specific interactions between defined components.
For instance, transcriptional activation by T7 RNAP at the
T7 promoter is fully independent of the host transcription
machinery. Regarding this biological simplicity, the insulated
transcriptional elements hold the promise of being transferred
from E. coli to other organisms while still retaining their function.
One recent study46 showed that the performance of promoter
cores, recognized by other T7-family RNAPs, is highly compar-
able between E.coli and phylogenetically distant bacteria
(R2≥0.94). For ECF σs, the promoter cores function comparably
when transferred from E. coli to Klebsiella oxytoca34, probably
due to the evolutionary conservation of bacterial RNAP sub-
units47. Collectively, these results provide evidence for the
transferability of insulated transcriptional elements.

The insulated promoter cores used in this study were derived
from T7 and ECF11 promoters. We have shown that an insulated
promoter core is a common feature of T7-family RNAPs and
bacterial ECF σ factors (Supplementary Fig. 2). As a result, the
toolset of promoter cores can be expanded to include many other
well-studied T7-family and ECF σ promoters16, 34, 46 and further
combined with “part mining” technology48 to source more can-
didates for refinement, in accordance with the scale-up of circuit
construction. The toolset of synthetic operators is even more
extensive due to the higher abundance of available
repressor–operator pairs18, 35. Intriguingly, regarding the simple
role of operators in our promoter architectures, it is possible to
incorporate dCas9-sgRNA complexes into our promoter design
as the repressors to further enhance the diversity of our toolset.

We noticed that there was unusually high transcriptional
activity in two failed combinatorial promoter designs (PT7M43 +
O2-cI434 and PT7M48 + O3-TP901cI), even in the absence of T7
RNAP; this activity could not be explained by either the promoter
core or the operator alone (Supplementary Fig. 11a). Analyses
using the BPROM program revealed that, unexpectedly,
σ70-dependent promoters emerged at the physical interface
between the promoter cores and operators (see Supplementary
Table 2 for prediction results). Interestingly, when the contribu-
tion of emergent transcriptional activity was integrated into the
promoter models, the precision of the predictions regarding these
two promoters immediately increased (Supplementary Fig. 11b).

Unexpected cryptic promoters arising from the connection
of parts were also reported in previous studies20, 49, motivating
us to re-examine all 83 combinatorial promoters in the absence
of T7 RNAP (Supplementary Fig. 11c). Indeed, we found six
combinatorial promoters that exhibited strong transcriptional
activity, indicating that promoter emergence from the sequence
composition is not a rare event and is in fact more common
than one would assume based purely on the rate of significant
phenotypical failures. Therefore, in large genetic circuits in which
many parts are combined with various permutations, DNA
sequences that resemble regulatory elements, such as promoters

and terminators, would appear at the part junctions with
considerable frequency. One potential solution is to develop
computational tools that scan circuit DNA sequences for
such unintended regulatory elements in the design or debugging
process50. A more straightforward solution would be to apply
omics technologies, such as RNA-sequencing, to characterize
and debug the genetic circuits51–53, in order to identify any
unexpected cryptic regulatory elements.

Counterintuitively, we found that the best-fitting value of nA
was >1 in modeling transcriptional activation for T7 RNAP. The
mechanism underpinning this phenomenon, to our knowledge,
has not been elucidated. One possible explanation is that the
binding of a T7 RNAP molecule to the promoter facilitates its
future binding, which is supported by a previous report that
exposure of T7 RNAP to the binding region of the promoter
alone leads to reorganization of the T7 RNAP to facilitate
its future recruitment to the promoter54. Another possible
explanation involves DNA allostery caused by the promoter
unwinding of T7 RNAP. It was recently reported that the specific
binding of a protein to DNA is considerably strengthened by
the deformation of the proximal double-helical structure55.
Considering the slow rate of transition from transcriptional
initiation to elongation and the high rate of promoter binding-
releasing for T7 RNAP56, 57, the relatively long-term promoter
unwinding caused by the leading T7 RNAP could also facilitate
the promoter binding by the subsequent T7 RNAP.

In modeling transcriptional repression, we introduced a
correction term to describe the non-equilibrium effect. Accord-
ingly, post-DNA replication competitive binding of activators and
repressors was proposed as a possible explanation that proved to
be consistent with our many experimental observations. For
instance, operators with low repressor-binding affinity generally
tend to have high δR values (Fig. 5b). This fits our explanation
that strong repressor binding leads to a small permissive
time window (δ) for the activator to re-bind. Although our
explanation might not be consistent with the biological scenario,
the non-equilibrium term is still necessary for precise model
predictions and does capture the salient features of underlying
biological processes. Interestingly, the non-equilibrium effect was
found to be negligible for σECF11, indicating that our modeling
is not contradictory to observations in previous studies where
σ70-dependent promoters were usually used, regarding the highly
similar biochemical nature of σ70 and ECF σ factors58. Differ-
ences in the non-equilibrium effect between the three types of
transcriptional machinery could be important criteria for part
selection in circuit design.

Regarding the future use of insulated transcriptional elements,
one issue we might encounter is activator/repressor titration
arising from the connection of more than one downstream
promoters to a circuit4, 59. For example, if the repressor/activator
of an IFFL network is shared by newly added output promoters,
the repressor/activator would be titrated away from its original
circuit; this effect is also called retroactivity60, 61. In such cases,
the assumption that the activator/repressor copy number greatly
exceeds that of the promoters, breaks down59. In order to retain
the accuracy of predictions, the mathematical model describing
the transcriptional regulation of a given promoter should be
adjusted from the total concentration of the repressor/activator
([Repressor/Activator]total) to the concentration of free repressor/
activator ([Repressor/Activator]free).

Methods
Strains and plasmids. E. coli K-12 DH10B was used for plasmid construction,
parts characterization, and circuit measurements throughout this study. This strain
was also used for the construction of strains that chromosomally express phage
RNAPs or ECF σ factors in a constitutive or inducible manner. The vast majority of
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the plasmids used in this study were constructed using two basic vectors, pPT and
pRG, which were constructed and preserved in our laboratory. pPT was derived
from the standard BioBrick backbone pSB4C5 and was used to construct the
cassettes for the “output promoter”-driving reporters. pRG with p15A-AmpR
backbone was used as the carrier for the “input promoter” to express transcrip-
tional repressors in response to IPTG. Golden Gate Assembly was used to
incorporate the output promoter into pPT and RBS-CDS into pRG (see Supple-
mentary Fig. 12 and Supplementary Table 4 for the detailed construction process).
The collection of plasmids and host strains, as well as details of their use in each
experiment, are described in “Detailed plasmid specifications” below.

Detailed plasmid specifications. For identification of insulated promoter cores
and the refinement of synthetic operators, the constitutively expressed RNAP was
integrated into the chromosome of E. coli DH10B using pOSIP (for T7RNAP and
σECF11) or cloned into the plasmid pRG (for T3, gh-1, MmP1, σECF16, and σECF20).
Saturation mutagenesis of a given promoter segment was conducted using
degenerate primers via PCR annealing. Specifically, a random DNA sequence
corresponding to the segment was designed near the 5′ end of one primer, and the
sequence of the other primer was defined; these two primers were annealed at their
3′ ends and further extended using Phusion DNA polymerase (NEB, M0530) to
create the entire promoter region. The resulting promoter mutation library as a
mixture was then cloned into the plasmid pPT via Golden Gate Assembly for the
subsequent colony picking and in vivo analysis.

For characterization of transcriptional activation, the PTAC-RNAP cassette was
integrated into the chromosome of E. coli DH10B using pOSIP, and the plasmid
carrying the pPT-promoter core cassette was introduced into the resulting strain,
along with the plasmid pRGc (pRG plasmid with the PTAC-lacZα fragment
deleted).

For characterization of transcriptional repression, the RNAP genes were all
integrated into the chromosome of E. coli DH10B using pOSIP for constitutive
expression, and the pPT-derived plasmids carrying the combinational promoters
were introduced into the resulting strain, along with the pRG-derived plasmid
carrying the corresponding repressor.

For construction of dose–response curves for the “input promoters”, the RNAP/
repressor gene downstream of the PTAC promoters was exchanged for sfgfp.
A blank plasmid (pPTc), containing the same replication origin and resistance gene
as pPT, was co-transformed with the “input promoter” plasmid into the
corresponding strains to standardize the antibiotics usage.

The plasmid specifications of the transcriptional IFFL networks were similar to
those used for the characterization of transcriptional repression, except that the
cassette integrated into the chromosome was the same as that used for the
characterization of transcriptional activation. The plasmids used in each
experiment discussed above are summarized in Supplementary Table 5. The
sequences of important cassettes are summarized in Supplementary Table 6 and
Supplementary Table 7.

Cell growth and fluorescence measurement. All incubations were carried out
using a Digital Thermostatic Shaker (AOSHENG) maintained at 37 °C and 1000 r.
p.m., using Corning flat-bottom 96-well plates sealed with sealing film (Corning,
BF-400-S). For characterization of parts and circuit response functions, a
previously developed quantitative method37 that measures gene expression at
steady state was used. Briefly, bacteria harboring the parts or circuits of interest
were first inoculated from single colonies into a flat-bottom 96-well plate for
overnight growth, after which the cell cultures were diluted 196-fold with M9
medium. After 3 h of growth, the cultures were further diluted 700-fold with M9
medium, and incubated for another 6 h. Finally, 20-μl samples of each culture were
transferred to a new plate containing 180 μl per well of PBS supplemented with
2 mgml−1 kanamycin to terminate protein expression. The fluorescence distribu-
tion of each sample was assayed using an LSRII flow cytometer (BD Biosciences)
with appropriate voltage settings; each distribution contained >20,000 events. Each
sample was experimentally assayed at least three times. The arithmetical mean of
each sample was determined using FlowJo software (v7.6). For identification of
insulated promoter cores and operator refinement, the quantitative steady-state
method was adjusted to allow for high-throughput measurement. The differences
were: (i) the culture duration after the second dilution was decreased to 4.5 h; and
(ii) cell fluorescence was assayed using a Synergy Mx microplate reader (BioTek)
and normalized to the OD600 (normally 0.4–0.6) for each sample.

Media and buffers. All chemicals used in the study were purchased from Sigma-
Aldrich unless stated otherwise. LB medium: 10 g l−1 tryptone, 5 g l−1 yeast extract,
and 10 g l−1 NaCl. For agar plates, 15 g l−1 agar was added. M9 medium: 6.8 g l−1

Na2HPO4, 3 g l−1 KH2PO4, 0.5 g l−1 NaCl, 1 g l−1 NH4Cl), 0.34 g l−1 thiamine, 0.2%
casamino acids (BD Biosciences), 0.4% glucose, 2 mM MgSO4, and 100 μM CaCl2.
Antibiotic concentrations: where appropriate, the media contained ampicillin at a
final concentration of 100 μg ml−1 from a 100mgml−1 aqueous stock solution and
chloramphenicol at a final concentration of 25 μg ml−1 from a 34 mgml−1 stock
solution in absolute ethanol; for pOSIP-KO-mediated chromosomal integration,
50 μg mL−1 kanamycin-sulfate was used. The indicated concentrations of anti-
biotics were used for both LB and M9 media. Inducer concentration: an isopropyl-

d-1-thiogalactopyranoside gradient was prepared at 0, 1, 5, 10, 20, 30, 50, 70, 100,
200, and 500 μM final concentrations, diluted from a stock in DMSO. Phosphate-
buffered saline (PBS): 8 g l−1 NaCl, 0.2 g l−1 KCl, 1.44 g l−1 Na2HPO4, and 0.24 g l−1

KH2PO4. Kanamycin (2 mgml−1) was added to the PBS before sampling in order
to terminate protein expression.

Data analysis and modeling. The parameters in Eqs (1–3), describing the
dynamic features of promoter cores and operators, were obtained by fitting using
the “fminsearch” function in MATLAB (version 2010a). The predictions for the
combinations of promoter cores and operators were performed using the same
function, except that the parameter values were retrieved from the fitting results of
characterization data. Modeling of the four PTAC promoter variants was adapted
from the Supplementary Eq. (7) of a previous study21, with the following
modification: the value of one parameter, ND, was fixed at 1. The steady-state
solutions for transcriptional IFFL networks were calculated using MATLAB
(version 2010a). The fitness function was calculated by directly multiplying the
widths and heights of the peaks in the response functions, wherein the width was
defined as the magnitude of the input change when the output began to increase
from 0.1-fold of the maximum value, and subsequently reverted to this value, and
the height was defined as the magnitude of the output change when the output
increased from the minimum to the maximum value (left height) or decreased
from the maximum to the minimum value (right height). Therefore, the mathe-
matical expression of the fitness function is width×(left height)×(right height).

Data availability. We declare that all relevant data supporting the findings of this
study are available within the article and its Supplementary Information Files or
from the corresponding authors upon request.

Received: 20 December 2016 Accepted: 28 April 2017

References
1. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to

modular cell biology. Nature 402, C47–C52 (1999).
2. Cardinale, S. & Arkin, A. P. Contextualizing context for synthetic biology--

identifying causes of failure of synthetic biological systems. Biotechnol. J. 7,
856–866 (2012).

3. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).
4. Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods

11, 508–520 (2014).
5. Cameron, D. E., Bashor, C. J. & Collins, J. J. A brief history of synthetic biology.

Nat. Rev. Microbiol. 12, 381–390 (2014).
6. Slusarczyk, A. L., Lin, A. & Weiss, R. Foundations for the design and

implementation of synthetic genetic circuits. Nat. Rev. Genet. 13, 406–420
(2012).

7. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic
biological parts and devices. Nat. Biotechnol. 26, 787–793 (2008).

8. Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. & Voigt, C. A. Genetic programs
constructed from layered logic gates in single cells. Nature 491, 249–253 (2012).

9. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle
switch in Escherichia coli. Nature 403, 339–342 (2000).

10. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional
regulators. Nature 403, 335–338 (2000).

11. Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network
topologies that can achieve biochemical adaptation. Cell 138, 760–773 (2009).

12. Klumpp, S. & Hwa, T. Bacterial growth: global effects on gene expression,
growth feedback and proteome partition. Curr. Opin. Biotechnol. 28, 96–102
(2014).

13. Moser, F. et al. Genetic circuit performance under conditions relevant for
industrial bioreactors. ACS Synth. Biol. 1, 555–564 (2012).

14. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic
ribosome binding sites to control protein expression. Nat. Biotechnol. 27,
946–950 (2009).

15. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-
specific control of gene expression. Cell 152, 1173–1183 (2013).

16. Temme, K., Hill, R., Segall-Shapiro, T. H., Moser, F. & Voigt, C. A. Modular
control of multiple pathways using engineered orthogonal T7 polymerases.
Nucleic Acids Res. 40, 8773–8781 (2012).

17. Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold switches: de-novo-
designed regulators of gene expression. Cell 159, 925–939 (2014).

18. Stanton, B. C. et al. Genomic mining of prokaryotic repressors for orthogonal
logic gates. Nat. Chem. Biol. 10, 99–105 (2014).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00063-z

12 NATURE COMMUNICATIONS | 8:  52 |DOI: 10.1038/s41467-017-00063-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


19. Mishra, D., Rivera, P. M., Lin, A., Del Vecchio, D. & Weiss, R. A load driver
device for engineering modularity in biological networks. Nat. Biotechnol. 32,
1268–1275 (2014).

20. Chen, Y. J. et al. Characterization of 582 natural and synthetic terminators and
quantification of their design constraints. Nat. Methods 10, 659–664 (2013).

21. Lou, C., Stanton, B., Chen, Y. J., Munsky, B. & Voigt, C. A. Ribozyme-based
insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol.
30, 1137–1142 (2012).

22. Davis, J. H., Rubin, A. J. & Sauer, R. T. Design, construction and
characterization of a set of insulated bacterial promoters. Nucleic Acids Res. 39,
1131–1141 (2011).

23. Mutalik, V. K. et al. Precise and reliable gene expression via standard
transcription and translation initiation elements. Nat. Methods 10, 354–360
(2013).

24. Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341
(2016).

25. Browning, D. F. & Busby, S. J. The regulation of bacterial transcription
initiation. Nat. Rev. Microbiol. 2, 57–65 (2004).

26. Buchler, N. E., Gerland, U. & Hwa, T. On schemes of combinatorial
transcription logic. Proc. Natl Acad. Sci. USA 100, 5136–5141 (2003).

27. Bintu, L. et al. Transcriptional regulation by the numbers: models. Curr. Opin.
Genet. Dev. 15, 116–124 (2005).

28. Garcia, H. G. et al. Operator sequence alters gene expression independently of
transcription factor occupancy in bacteria. Cell Rep. 2, 150–161 (2012).

29. Cox, R. S. 3rd, Surette, M. G. & Elowitz, M. B. Programming gene expression
with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

30. Lanzer, M. & Bujard, H. Promoters largely determine the efficiency of repressor
action. Proc. Natl Acad. Sci. USA 85, 8973–8977 (1988).

31. Garcia, H. G. & Phillips, R. Quantitative dissection of the simple repression
input-output function. Proc. Natl Acad. Sci. USA 108, 12173–12178 (2011).

32. Amit, R., Garcia, H. G., Phillips, R. & Fraser, S. E. Building enhancers from the
ground up: a synthetic biology approach. Cell 146, 105–118 (2011).

33. Gertz, J., Siggia, E. D. & Cohen, B. A. Analysis of combinatorial cis-regulation
in synthetic and genomic promoters. Nature 457, 215–218 (2009).

34. Rhodius, V. A. et al. Design of orthogonal genetic switches based on a crosstalk
map of sigmas, anti-sigmas, and promoters. Mol. Syst. Biol. 9, 702 (2013).

35. Ptashne, M. A Genetic Switch: Phage Lambda Revisited. 3rd edn, (Cold Spring
Harbor Laboratory Press, 2004).

36. Hochschild, A. & Ptashne, M. Cooperative binding of lambda repressors to sites
separated by integral turns of the DNA helix. Cell 44, 681–687 (1986).

37. Zhang, H. M. et al. Measurements of gene expression at steady state improve
the predictability of part assembly. ACS Synth. Biol. 5, 269–273 (2016).

38. Kuhlman, T., Zhang, Z., Saier, M. H. Jr & Hwa, T. Combinatorial
transcriptional control of the lactose operon of Escherichia coli. Proc. Natl Acad.
Sci. USA 104, 6043–6048 (2007).

39. Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-modulating
positive feedback circuit. Nat. Chem. Biol. 5, 842–848 (2009).

40. Mitarai, N., Semsey, S. & Sneppen, K. Dynamic competition between
transcription initiation and repression: role of nonequilibrium steps in cell-to-
cell heterogeneity. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 022710
(2015).

41. Papatsenko, D. Stripe formation in the early fly embryo: principles, models, and
networks. Bioessays 31, 1172–1180 (2009).

42. Cotterell, J. & Sharpe, J. An atlas of gene regulatory networks reveals multiple
three-gene mechanisms for interpreting morphogen gradients. Mol. Syst. Biol.
6, 425 (2010).

43. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic
multicellular system for programmed pattern formation. Nature 434,
1130–1134 (2005).

44. Ang, J., Harris, E., Hussey, B. J., Kil, R. & McMillen, D. R. Tuning response
curves for synthetic biology. ACS Synth. Biol. 2, 547–567 (2013).

45. Xia, B. et al. Developer’s and user’s guide to Clotho v2.0 A software platform
for the creation of synthetic biological systems. Methods Enzymol. 498, 97–135
(2011).

46. Zhao, H. et al. Novel T7-like expression systems used for Halomonas. Metab.
Eng. 39, 128–140 (2017).

47. Werner, F. & Grohmann, D. Evolution of multisubunit RNA polymerases in
the three domains of life. Nat. Rev. Microbiol. 9, 85–98 (2011).

48. Bayer, T. S. et al. Synthesis of methyl halides from biomass using engineered
microbes. J. Am. Chem. Soc. 131, 6508–6515 (2009).

49. Yao, A. I. et al. Promoter element arising from the fusion of standard BioBrick
parts. ACS Synth. Biol. 2, 111–120 (2013).

50. Casini, A. et al. R2oDNA designer: computational design of biologically neutral
synthetic DNA sequences. ACS Synth. Biol. 3, 525–528 (2014).

51. Smanski, M. J. et al. Functional optimization of gene clusters by combinatorial
design and assembly. Nat. Biotechnol. 32, 1241–1249 (2014).

52. Ingolia, N. T., Brar, G. A., Rouskin, S., McGeachy, A. M. & Weissman, J. S. The
ribosome profiling strategy for monitoring translation in vivo by deep
sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 7, 1534–1550
(2012).

53. Seo, J. H. et al. Multiple-omic data analysis of Klebsiella pneumoniae MGH
78578 reveals its transcriptional architecture and regulatory features. BMC
Genomics 13, 679 (2012).

54. Kukarin, A., Rong, M. & McAllister, W. T. Exposure of T7 RNA polymerase to
the isolated binding region of the promoter allows transcription from a single-
stranded template. J. Biol. Chem. 278, 2419–2424 (2003).

55. Kim, S. et al. Probing allostery through DNA. Science 339, 816–819 (2013).
56. Skinner, G. M., Baumann, C. G., Quinn, D. M., Molloy, J. E. & Hoggett, J. G.

Promoter binding, initiation, and elongation by bacteriophage T7 RNA
polymerase. A single-molecule view of the transcription cycle. J. Biol. Chem.
279, 3239–3244 (2004).

57. Gong, P. & Martin, C. T. Mechanism of instability in abortive cycling by T7
RNA polymerase. J. Biol. Chem. 281, 23533–23544 (2006).

58. Campagne, S., Allain, F. H. & Vorholt, J. A. Extra cytoplasmic function sigma
factors, recent structural insights into promoter recognition and regulation.
Curr. Opin. Struct. Biol. 30, 71–78 (2015).

59. Brewster, R. C. et al. The transcription factor titration effect dictates level of
gene expression. Cell 156, 1312–1323 (2014).

60. Jayanthi, S., Nilgiriwala, K. S. & Del Vecchio, D. Retroactivity controls the
temporal dynamics of gene transcription. ACS Synth. Biol. 2, 431–441 (2013).

61. Del Vecchio, D., Ninfa, A. J. & Sontag, E. D. Modular cell biology: retroactivity
and insulation. Mol. Syst. Biol. 4, 161 (2008).

Acknowledgements
This study was supported by the NSFC (No. 11074009 to Q.O., No. 11434001 to Q.O.,
and No. 31470818 to Chunbo L.), the “863” Program (No. 2012AA02A702 to Q.O.),
MSTC (No. 2011CBA00805 to Q.O., Nos. 2013CB734001 and 2015CB910300 to Chunbo
L.), and the CAS Interdisciplinary Innovation Team (No. Y429012CX8 to Chunbo L.).

Author contributions
Chunbo L., H.M.Z., and Q.O.: Conceived and supervised the project. Y.Z., H.M.Z., X.J., J.
H., and X.G.: Designed and performed the experiments. C.L. and Chunbo L.: Con-
structed the biophysical model. H.M.Z., Y.Z., and Chunbo L.: Wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00063-z.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2017

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00063-z ARTICLE

NATURE COMMUNICATIONS |8:  52 |DOI: 10.1038/s41467-017-00063-z |www.nature.com/naturecommunications 13

http://dx.doi.org/10.1038/s41467-017-00063-z
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Insulated transcriptional elements enable precise design of genetic circuits
	Results
	Overview of promoter design
	Identification of insulated promoter cores
	Design and refinement of synthetic operators
	Parameterizing promoter cores via biophysical modeling
	Parameterizing operators via biophysical modeling
	Prediction for promoter core and operator combinations
	Designing genetic NOT gates at sub-promoter resolution
	Designing transcriptional networks with complex functions

	Discussion
	Methods
	Strains and plasmids
	Detailed plasmid specifications
	Cell growth and fluorescence measurement
	Media and buffers
	Data analysis and modeling
	Data availability

	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




