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Machine learning based predictors 
for COVID‑19 disease severity
Dhruv Patel1, Vikram Kher1, Bhushan Desai2, Xiaomeng Lei2, Steven Cen2, Neha Nanda2, 
Ali Gholamrezanezhad2, Vinay Duddalwar2, Bino Varghese2 & Assad A Oberai1*

Predictors of the need for intensive care and mechanical ventilation can help healthcare systems 
in planning for surge capacity for COVID‑19. We used socio‑demographic data, clinical data, and 
blood panel profile data at the time of initial presentation to develop machine learning algorithms 
for predicting the need for intensive care and mechanical ventilation. Among the algorithms 
considered, the Random Forest classifier performed the best with AUC = 0.80 for predicting ICU 
need and AUC = 0.82 for predicting the need for mechanical ventilation. We also determined the 
most influential features in making this prediction, and concluded that all three categories of data 
are important. We determined the relative importance of blood panel profile data and noted that the 
AUC dropped by 0.12 units when this data was not included, thus indicating that it provided valuable 
information in predicting disease severity. Finally, we generated RF predictors with a reduced set of 
five features that retained the performance of the predictors trained on all features. These predictors, 
which rely only on quantitative data, are less prone to errors and subjectivity.

The current coronavirus disease 2019 (COVID-19) pandemic has strained healthcare delivery models across 
the world. In the US there are over 8 million cases and 5.4% have required hospitalization. Of the hospitalized 
patients, to date, 20% have required care in the intensive care unit (ICU)1. Based on current projections, by Janu-
ary 1st 2021 the number of ICU beds needed for COVID patients will exceed the available ICU beds by 10.6%2,3. 
With this challenge in supply of ICU beds, states and counties have created detailed surge plans to ensure timely 
care of critically ill patients suffering with COVID-19. In order to sustain healthcare delivery through this pan-
demic, it is imperative to adopt a proactive approach towards utilization of healthcare resources like ICU beds 
and ventilators. Given the urgency for resource allocation and optimization, we sought to identify patient-level 
clinical characteristics at the time of admission to predict the need for ICU care and mechanical ventilation in 
COVID-19 patients.

Several studies have reported predictors for the severity of COVID-19 that are trained on data acquired at or 
around the time of  admission4–7. The study described in this manuscript differs from these in several significant 
ways. First, instead of applying a single predictive model, we assess the performance of a cohort of models and 
then select the one that performs the best. Second, we do not include any imaging data and rely only on socio-
demographic data, data acquired from a physical exam, and lab marker data obtained from a blood draw. This 
combination may be relevant to facilities in under-resourced scenarios where rapid imaging is not available. 
Third, we evaluate the relative benefit in predictive accuracy that is obtained from the lab-marker data alone, 
and conclude that it is significant. Fourth, we also consider a reduced model with only five features as input, 
and report good predictive performance for our model. This simplified model is easy to use, and only contains 
quantitative features thereby making it less prone to error and subjectivity. Finally, in training our model we 
consider data from Los Angeles county, while other studies are based on populations in other world regions. This 
is relevant since the outcome for COVID-19 are known to be dependent on demographics.

Methods
Data for this study was extracted from an Institutional Review Board (IRB) approved COVID-19  REDCap8 
repository. Informed consent for the repository was waived by the USC IRB consistent with §45 CFR 46.116(f). 
The study was conducted in accordance with USC policies, IRB policies, and federal regulations. Subjects’ privacy 
and confidentiality were protected according to applicable HIPAA, and USC IRB policies and procedures. The 
repository contained demographic, clinical, and laboratory data for all COVID-19 positive patients seen at the 
Keck Medical Center of USC, Verdugo Hills Hospital, and Los Angeles County + USC Medical Center. Repository 
data elements include data from three categories: (a) socio-demographic data including age, sex, travel, contact 
history, and co-morbidities; (b) presenting clinical data gleaned from symptoms and the results of an initial 
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physical examination including fever, dyspnea, respiratory rate, and blood oxygen saturation  (SpO2); (c) blood 
panel profile including RT-PCR, InterLeukin-6, d-Dimer, complete blood count, lipase, and C-reactive protein 
(CRP). They also include the outcome data, namely, the need for ICU admission and mechanical ventilation. A 
description of all the input features, their type, and their median, minimum and maximum values is presented 
in Tables 1, 2, 3, 4 and 5.    

The study cohort comprised of 212 patients (123 males, 89 females) with an average age of 53 years (13–92 
years), of which 74 required intensive care at some point during their stay, and 47 required mechanical ventila-
tion. We note that only data obtained at the time of initial presentation, with 24 hours of initial presentation, 
was included as input to the predictive models, and the need for ICU admission and mechanical ventilation at 
any time during hospitalization were selected as outcomes.

Features with more than 30% missing data were excluded from the analysis. In the retained features, missing 
data was imputed using an iterative imputation method. In this method the feature to be imputed is treated as a 
function of a subset of other highly-correlated features and missing values are obtained using  regression9. This 
subset of features is then iterated over to arrive at the final estimate. As part of this strategy, in order to prevent 
data leakage, only the training samples were used to develop regression models for imputation.

The retained features were used to compute the correlation of the outcome with input features. Thereafter, data 
was split into training (60%), and testing sets (20%). Fivefold cross-validation was performed using the training 
set to train the supervised learning models and tune their hyperparameters (random forest, multilayer percep-
tron, support vector machines, gradient boosting, extra tree classifier, adaboost). Among all these algorithms 
the Random  Forest10 (RF) classifier was found to be the most accurate and was considered for further analysis.

The tuned RF model was applied to testing data to compute the probability of ICU admission and mechanical 
ventilation. This was repeated with five different folds, yielding predicted probabilities for 212 subjects generated 
by five distinct RF models. These were used to generate an ROC curve and compute the area under the curve 
(AUC). The relative importance of the input features was evaluated by computing their Gini importance.

The analysis describe above was first performed with input data from all categories, that is, socio-demographic 
data, presenting clinical data, and blood panel profile data. Thereafter, the blood panel profile data was excluded 

Table 1.  Socio-demographic features used as input.

Socio-demographic numerical features Median Min Max

Age (years) 53 12 93

BMI ( kg/m2) 29 0 84.05

Table 2.  Socio-demographic features used as input.

Socio-demographic categorical features Distribution

Sex Male (58.02%), Female (41.98%)

Pregnant Yes (2.83%), No (93.87%), Unsure (3.30%)

Race American Indian or Alaska Native (0%), Asian (3.77%), Black or African American (5.66%), 
Native Hawaiian or Other Pacific Islander (0%), White (22.64%), Other (67.92%)

Ethnicity Hispanic/Latino (59.43%), Non-Hispanic/Non-Latino (30.66%), Unknown (9.91%)

International travel Yes (7.08%), No (92.92%)

Primary contact Yes (17.45%), No (40.09%), Unsure (42.45%)

Secondary contact Yes (10.38%), No (42.92%), Unsure (46.70%)

Other contact Yes (9.91%), No (41.04%), Unsure (49.06%)

Work contact Yes (10.84%), No (89.16%)

Table 3.  Input features from presenting clinical data and the results of an initial physical examination.

Clinical numerical features Median Min Max

Days since symptoms presented (days) 5 1 29

Systolic blood pressure (mmHg) 129.5 54 228

Diastolic blood pressure (mmHg) 75.5 34 116

Heart rate (bpm) 106 53 156

Respiratory rate (br/min) 20 12 48

Body temperature (°C) 37.11 35 39.7

SpO2 (%) 95 48 100
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and the analysis was performed once again. This second analysis was done to assess the relative importance of 
the blood panel data in predicting the outcomes.

Results
In Fig. 1, we have plotted the AUC values for predicting the need for ICU and mechanical ventilation for all the 
algorithms considered in this study. From this figure we observe that the algorithms based on decision trees, that 
is, Random Forest, Extra Tree Classifier, and Gradient Boosting tend to perform better. This is likely because 
the simpler algorithms like Support Vector Machines do not have sufficient capacity to capture the complexity 
in the prediction, while other algorithms like Multi-Layer Perceptrons (MLP) do not have sufficient data for 
efficient training. This leads to issues with robustness and over-fitting. Further, among the algorithms based on 
decision trees, the Random Forest (RF) classifier is the most accurate and was considered for further analysis.

For the RF predictor, we reported an AUC of 0.80, 95% CI (0.73–0.86) in predicting the need for ICU and an 
AUC of 0.83, 95% CI (0.76–0.90) for predicting the need for mechanical ventilation. At the optimal cut-point 
in the ROC  curve11, the ICU predictor yields a Sensitivity of 0.73, Specificity of 0.74, a Positive Predictive Value 
(PPV) of 0.6 and a Negative Predictive Value (NPV) of 0.84, whereas the predictor for Mechanical Ventilation 
yields a Sensitivity of 0.72, Specificity of 0.73, a PPV of 0.44 and an NPV of 0.90 (see Table 6). These values dem-
onstrate that we are able to accurately predict the need for intensive care and ventilation from data acquired at 
the time of admission. In terms of the AUC, the performance of the RF predictor is similar to results reported 
in studies from  China4, New  York7 and the  Netherlands5 (AUC of 0.88, 0.8, and 0.77, respectively). We note 
that these studies differ from ours due to the regional differences in the population and the viral strain. Further, 

Table 4.  Input features from presenting clinical data and the results of an initial physical examination.

Clinical categorical features Distribution

Immuno-compromised Yes (11.79%), No (88.21%)

Cardiac history Yes (7.55%), No (92.45%)

Diabetes mellitus Yes (31.13%), No (68.87%)

COPD Yes (1.89%), No (98.11%)

Asthma Yes (6.60%), No (93.40%)

Interstitial lung disease Yes (0.47%), No (99.53%)

Obesity Yes (33.96%), No (66.04%)

Auto-immune disease Yes (5.66%), No (94.34%)

Hypertension Yes (38.21%), No (61.79%)

Other morbidity Yes (48.11%), No (51.89%)

Fever Yes (53.77%), No (46.23%)

Chills Yes (40.57%), No (59.43%)

Shortness of breath or dyspnea Yes (60.85%), No (39.15%)

Chest pain Yes (16.98%), No (83.02%)

Cough Yes (74.06%), No (25.94%)

Loss of smell Yes (3.77%), No (96.23%)

Loss of taste Yes (11.79%), No (88.21%)

Body ache/myalgia Yes (36.79%), No (63.21%)

Fatigue Yes (25.94%), No (74.06%)

Throat pain Yes (15.09%), No (84.91%)

Abdominal pain Yes (10.85%), No (89.15%)

Diarrhea Yes (17.92%), No (82.08%)

Influenza like illness symptoms Yes (37.26%), No (62.74%)

Other symptom Yes (60.85%), No (39.15%)

General appearance Normal (61.17%), Abnormal (29.61%), Not done (9.22%)

Head Normal (76.62%), Abnormal (2.99%), Not done (20.40%)

Eyes Normal (78.00%), Abnormal (1.00%), Not done (21.00%)

Ears Normal (73.47%), Abnormal (0%), Not done (26.53%)

Nose Normal (73.87%), Abnormal (1.51%), Not done (24.62%)

Throat Normal (75.62%), Abnormal (2.99%), Not done (21.39%)

Chest and lungs Normal (42.31%), Abnormal (57.21%), Not done (0.48%)

Heart Normal (68.27%), Abnormal (24.52%), Not done (7.21%)

Abdomen Normal (77.45%), Abnormal (7.84%), Not done (14.71%)

Extremities Normal (77.45%), Abnormal (6.86%), Not done (15.69%)

Nervous system Normal (78.71%), Abnormal (11.39%), Not done (9.90%)

Skin Normal (71.78%), Abnormal (3.47%), Not done (24.75%)
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some these studies also included chest x-ray imaging features and tested a single type of ML algorithm (logistic 
regression or random forest). Deep learning models were also developed based on a cohort from  China6, and 
these report an AUC 0.89 for a coarse measure of disease severity that clubs together patients receiving ICU care 
or mechanical ventilation, and those ultimately succumbing to the disease.

When only socio-demographic and presenting clinical data was used as input (lab markers were excluded), 
the AUC value for predicting ICU need dropped to 0.68, 95% CI (0.60–0.75), and that for predicting ventilation 
dropped to 0.70, 95% CI (0.61–0.79). The values of Sensitivity, Specificity, PPV and NPV at the optimal point 
also dropped by about 0.1 (see Table 6). This indicates that the lab marker data provides significant additional 
information and is important in improving the accuracy of these predictions. A recent comprehensive survey 
of laboratory markers concluded that many of the markers that are included in this study are correlated with 
COVID-19 severity and should therefore be used in models for predicting disease  severity12. However, our 
results also indicate that it is possible to make moderately accurate predictions with only socio-demographic and 
presenting clinical data. This is particularly useful when quick decisions are required and the time or resources 
necessary for acquiring lab marker data are not available in a timely manner.

The top ten features with the strongest correlation to ICU admission are shown in Fig. 2A, and the most 
important features for the RF classifier for ICU need are shown in Fig. 2B. Similarly, the top ten features with 
the strongest correlation to the need for mechanical ventilation are shown in Fig. 3A, and the most important 
features for the RF classifier for mechanical ventilation need are shown in Fig. 3B.

Taken together, this set represents features that strongly influence the likelihood of ICU admission and 
mechanical ventilation. We note that they belong to all three categories—socio-demographic data, presenting 
clinical data, and blood panel profile data—showing that all these type of data are necessary in making an accu-
rate assessment of disease severity. Several of these features have been implicated in determining the severity of 
COVID-19 by other  researchers7,13–19; however, there are few studies that have considered them together and 
determined their relative importance.

Table 5.  Input features from blood panel profile.

Blood panel features Median Min Max

Glucose (mg/dL) 131 53 575

Calcium (mg/dL) 8.7 6.7 11.2

Albumin (g/dL) 3.9 0 4.7

Total protein (g/dL) 7.1 0 9.3

Sodium (mmol/L) 136 124 154

Potassium (mmol/L) 4.1 2.7 6.3

Bicarbonate (total  CO2) (mmol/L) 23 11 37

Chloride (mmol/L) 98 84 114

Blood urea nitrogen (BUN) (mg/dL) 13 0.56 137

Creatinine (mg/dL) 0.84 0.37 17.59

Alkaline phosphatase (ALP) (U/L) 80 29 417

Alanine amino transferase (ALT/SGPT) (U/L) 35.5 5 247

Aspartate amino transferase (AST/SGOT) (U/L) 47 13 355

Bilirubin (mg/dL) 0.5 0.2 20.5

C-reactive protein (CRP) (mg/L) 91.7 0.6 470.8

d-dimer (mcg/mL FEU) 0.81 0.14 20

Procalcitonin (ng/mL) 0.18 0.02 31.9

Figure 1.  Area under the curve (AUC) for the classifiers considered in the study for predicting the need for 
ICU (A) and mechanical ventilation (B).
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Table 6.  Performance of Random Forest Predictors at the optimal operating point. We report Sensitivity, 
Specificity, Positive Predictive Value (PPV), and Negative Predictive Value (NPV). Numbers in parenthesis are 
the 95% confidence interval.

Model Sensitivity Specificity PPV NPV

ICU (w. lab markers) 0.73 (0.63, 0.83) 0.74 (0.67, 0.81) 0.60 (0.50, 0.70) 0.84 (0.77, 0.90)

ICU (no lab markers) 0.64 (0.53, 0.74) 0.64 (0.56, 0.72) 0.48 (0.39, 0.58) 0.77 (0.69, 0.84)

ICU (five features) 0.70 (0.60, 0.81) 0.70 (0.63, 0.78) 0.56 (0.46, 0.66) 0.82 (0.75, 0.88)

Ventilation (w. lab markers) 0.72 (0.60, 0.85) 0.73 (0.67, 0.80) 0.44 (0.33, 0.55) 0.90 (0.85, 0.95)

Ventilation (no lab markers) 0.60 (0.46, 0.74) 0.61 (0.53, 0.68) 0.30 (0.21, 0.39) 0.84 (0.77, 0.91)

Ventilation (five features) 0.74 (0.62, 0.87) 0.75 (0.68, 0.81) 0.45 (0.34, 0.57) 0.91 (0.86, 0.96)

Figure 2.  (A) Ten most highly correlated features with the need for ICU care. (B) Ten features with the highest 
relative importance for predicting the need for ICU care.

Figure 3.  (A) Ten most highly correlated features with the need for mechanical ventilation. (B) Ten features 
with the highest relative importance for predicting the need for mechanical ventilation.
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Finally, we considered RF predictors that are trained only using the top five features for predicting ICU need. 
These are the values for CRP, d-Dimer, Procalcitonin,  SpO2, and respiratory rate. Models based on this reduced 
set of features are easier to implement since they require less data. They are also more robust and not prone to 
subjective assessment since all these features are quantitative numbers that can be measured accurately. For 
the model designed to predict ICU need using these features we report an AUC of 0.79 (0.72, 0.85) and for the 
model designed to predict the need for mechanical ventilation we report an AUC of 0.83 (0.77, 0.9). Both these 
values are very close to the corresponding predictors that utilize all 72 features, thereby indicating not much 
accuracy is lost by employing the simpler, more robust models. The sensitivity, specificity, PPV and NPV values 
for these reduced models are reported in the third and sixth rows of Table 6, and these are also quite close to the 
corresponding models that utilize all 72 features.

In Fig. 4, we plot the distribution of some of the most important input features, including lab markers, pre-
senting symptoms, and socio-demographic data for two sets of patients: those who require ICU care and whose 
who do not. We observe that the distribution of Creatinine (indicator of kidney function), C-reactive Protein 
(measure of inflammatory response), d-Dimer (measure of blood clot formation and breakdown), and Procal-
citonin (elevated during infection and sepsis) among patients who require ICU care is spread over a larger range 
and has a higher average value. A similar trend is observed in the distribution for the respiratory rate. For  SpO2 
levels also we observe a distribution spread over a wider range for patients admitted to the ICU; however, in this 
case this group has a lower average value. We also note that the presence of the influenza-like symptoms roughly 
doubles the likelihood of requiring ICU care (from around 25% to 52%). Further, the percentage of males who 
are admitted to the ICU is much higher than the percentage of females (46% to 20%).

Discussion
The results presented in this study demonstrate that data acquired at or around the time of admission of a 
COVID-19 patient to a care facility can be used to make an accurate assessment of their need for critical care 
and mechanical ventilation. Further, the important features in this data belong to three different sets, namely, 
socio-demographic data, presenting clinical data, and blood panel profile data. We report that in cases where 
the blood panel data is not available, useful prediction might still be made, albeit with some loss of accuracy. 
This would be relevant to situations where the time or resources to acquire this type of data are limited. Out of 
all the machine learning models considered in this study, we found the random forest to be most accurate and 
robust to data perturbation for both critical care and mechanical ventilation prediction. We also demonstrate that 
the values of just five features, namely, CRP, Procalcitonin, d-Dimer,  SpO2, and respiratory rate, can be used to 
predict the need for critical care and mechanical ventilation with an accuracy that is comparable to using all 72 
features. The list of important features identified in our study is also indicative of a disease that affects multiple 
systems in the body including the respiratory, the circulatory system, and the immune system.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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