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Functional screening of Alzheimer risk loci identifies PTK2B
as an in vivo modulator and early marker of Tau pathology
P Dourlen1,2,3, FJ Fernandez-Gomez4,5,6, C Dupont1,2,3, B Grenier-Boley1,2,3, C Bellenguez1,2,3, H Obriot4,5,6, R Caillierez4,5,6,
Y Sottejeau1,2,3, J Chapuis1,2,3, A Bretteville1,2,3, F Abdelfettah1,2,3, C Delay1,2,3, N Malmanche1,2,3, H Soininen7, M Hiltunen7,8,
M-C Galas4,5,6, P Amouyel1,2,3,9, N Sergeant4,5,6, L Buée4,5,6, J-C Lambert1,2,3,11 and B Dermaut1,2,3,10,11

A recent genome-wide association meta-analysis for Alzheimer’s disease (AD) identified 19 risk loci (in addition to APOE) in which
the functional genes are unknown. Using Drosophila, we screened 296 constructs targeting orthologs of 54 candidate risk genes
within these loci for their ability to modify Tau neurotoxicity by quantifying the size of 46000 eyes. Besides Drosophila Amph
(ortholog of BIN1), which we previously implicated in Tau pathology, we identified p130CAS (CASS4), Eph (EPHA1), Fak (PTK2B) and
Rab3-GEF (MADD) as Tau toxicity modulators. Of these, the focal adhesion kinase Fak behaved as a strong Tau toxicity suppressor in
both the eye and an independent focal adhesion-related wing blister assay. Accordingly, the human Tau and PTK2B proteins
biochemically interacted in vitro and PTK2B co-localized with hyperphosphorylated and oligomeric Tau in progressive pathological
stages in the brains of AD patients and transgenic Tau mice. These data indicate that PTK2B acts as an early marker and in vivo
modulator of Tau toxicity.
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INTRODUCTION
Since 2009, the Alzheimer's disease (AD) genetic field has
benefited from the advent of genome-wide association studies
(GWASs), which revealed numerous genetic risk factors of AD. The
International Genomics of Alzheimer’s Project (IGAP) consortium
was the latest attempt to improve our knowledge of the genetic
landscape of AD by meta-analyzing the available GWAS for
common late-onset AD. This study raised the number of genome-
wide significant AD risk loci up to 19 in addition to APOE.1

However, while GWASs and IGAP in particular represent major
breakthroughs in our understanding of the genetic risk underlying
late-onset AD, it is difficult to identify the functional genes and
variants within these loci and to understand how they mechan-
istically contribute to AD pathogenesis. These points are important
challenges of the post-GWAS era, and strong efforts are needed to
decipher the link between AD genetics and pathogenesis. To date,
several studies have indicated that some of these genes, for
example, SORL1 or ABCA7, might be involved in amyloid precursor
protein metabolism, Aβ peptide production or clearance,2–4

implying that the amyloid cascade hypothesis could be relevant
not only in monogenic forms of AD.5 However, beyond the central
role of amyloid precursor protein metabolism and its catabolites,
we also recently described BIN1 as the first genetic risk factor
modulating Tau pathology.6 This implies that pathological path-
ways directly involving Tau might also be responsible for the
development of AD at the early stage. Interestingly, this latter
point was reinforced by a recent report from IGAP describing a
novel risk locus located near the gene encoding the Tau protein

(MAPT) in non APOE-ε4 carriers.7 Within this background, one can
argue that, in addition to BIN1, some of the recently discovered
genetic risk factors of AD might exert their pathogenic effect by
modulating toxicity of the Tau protein and/or neurofibrillary
tangle (NFT) pathology.
For our study on BIN1,6 we took advantage of the Drosophila

model, which is a small model organism that displays easily
scorable and AD-relevant readouts for high-throughput genetic
modifier screens.8 In Drosophila, expression of the human MAPT
gene in the eye results in small rough eyes associated with vacuolar
neurodegeneration without NFT formation.9 It thus constitutes a
genetically sensitized system of early-stage pre-NFT AD that allows
the identification of genetic modifiers by assessing roughening and
size of the eye as readouts of Tau neurotoxicity. In the present
study, we decided to screen genes within AD risk loci in a
systematic manner for their ability to modify Tau toxicity in flies.

MATERIALS AND METHODS
Drosophila genetics and imaging
Flies were raised at 25 °C on standard fly medium (Nutri-fly BF, Genesee
Scientific, San Diego, CA, USA). We used the same GMR4Tau (2N4R) line as
previously described.6 RNA interference (RNAi) stocks were obtained from
the National Institute of Genetics Fly Stock Center (NIG collection, Kyoto,
Japan), the Vienna Drosophila RNAi Center (VDRC, GD and KK collections,
Vienna, Austria) and the Harvard Transgenic RNAi project (TRiP, attP2 and
attP40 collections). Additional loss-of-function mutant lines and gain-of-
function lines were obtained from the Bloomington Drosophila Stock
Center (BDSC, Bloomington, IN, USA) and the fly research community
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(Supplementary Table S2). For eye size measurement, we stuck fly heads on
a 45°-angled piece of wood such that the left eye pointed to the top. We
took images of the eyes with a Leica (Wetzlar, Germany) Z16 APO
macroscope (46000 images). We quantified the size of the eyes using Fiji
software (open source, http://fiji.sc/). A detailed explanation of the
screening in the eye is available in Supplementary Information. For results
other than the ones of the screen, comparison of the eye size was
performed by a Kruskal–Wallis test followed by Wilcoxon comparisons of
the conditions of interest using R software. For wing imaging, we dissected
and mounted Drosophila wings between a slide and a coverslip in vaseline
oil. Images were taken with an AxioImager Z1 (Zeiss, Oberkochen,
Germany) equipped with a × 2.5 objective. Proportions of flies with blisters
on 0, 1 or 2 wings were compared with a Cochran–Mantel–Haenszel test
using R software over three experiments.

Transcriptional analysis
See Supplementary Information.

Immunohistofluorescence of human and mouse brain tissue
Formalin-fixed brain tissue samples were obtained from hippocampus and
frontal cortex of eight neuropathologically confirmed AD patients at Braak
stages II–VI (Supplementary Table S4). Human brain samples were
obtained from the Lille Neurobank, which was given to the French
Research Ministry by the Lille Regional Hospital (CHRU-Lille) on 14 August
2008 under the reference DC-2000-642. The Lille Neurobank fulfills criteria
from the French Law on biological resources, including informed consent,
ethics review committee and data protection (article L1243-4 of the Code
de la Santé publique, August 2007). THY-Tau22 transgenic mice (five
animals per age) were killed by decapitation and the brains were rapidly
recovered and postfixed for 7 days in phosphate-buffered saline (PBS) with
4% paraformaldehyde. The postfixed brains were kept at 4 °C in 30%
sucrose in PBS until inclusion in Tissue Tek. Floating sections (40-μm thick)
of human and mouse brain were performed with a Leica CM3050 cryostat
microtome. Slices were immersed in PBS-0.2% Triton and blocked with
goat/horse serum (Vector Laboratories, Burlingame, CA, USA) for 60 min.
Slices were incubated overnight at 4 °C with AT8 (phosphoSer202-
phosphoThr205 Tau, MN1020 Thermo Fisher Scientific, Waltham, MA,
USA) or TOC1 (antibody against Tau oligomers, generous gift of Pr. LI
Binder) and PTK2B (SAB4300468, Sigma-Aldrich, Saint-Quentin Fallavier,
France) antibodies diluted in PBS with 0.2% Triton. After several washes in
PBS-0.2% Triton, brain slices were incubated 60 min at room temperature
with Alexa Fluor 488 and 568 goat secondary anti-rabbit and anti-mouse
antibodies in PBS-0.2% Triton. After several PBS washes, autofluorescence
was quenched by incubating the brain slices with a Sudan Black solution
according to the manufacturer's instructions (Merck Millipore, Darmstadt,
Germany). Slices were mounted under a coverslip with Vectashield
mounting medium for fluorescence with 4,6-diamidino-2-phenylindole
(Vector Laboratories, AbCys). Images were acquired with a Zeiss Apotome
and a Zeiss confocal LSM710 microscope for human and mouse brain
images, respectively.

GST pull down
GST-PTK2B construct was generated by synthesizing the PTK2B sequence
in between BamH1/XhoI sites (geneart, Thermo Fisher Scientific) and
subcloning the sequence into PGEX 6P1 plasmid (GE Healthcare Life
Sciences, Buckinghamshire, England). HEK293 cells were transfected
with pCMV-SPORT6-PTK2B (IMAGE ID: 4343040) to overexpress PTK2B.
Tau-expressing plasmid and GST-Tau constructs are published.10 Details

about the protocol are available in Supplementary Information. Proteins
were detected by immunoblot using PTK2B antibody (P3209, Sigma-
Aldrich) and chemiluminescence.

Western blotting analysis
Drosophila heads were dissected and crushed in LDS sample buffer
supplemented with antioxidant (Life Technologies) and analyzed by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (4–12% gel
NuPAGE Novex, Life Technologies). Proteins were detected by immunoblot
using AT8 (phosphoSer202-phosphoThr205 Tau, MN1020 Thermo-Pierce),
phosphoTyr18 Tau (MM-0194-100, MediMabs, Montréal, Québec, Canada),
RZ3 (phosphoThr231, Dr P Davies), PHF1 (phosphoSer396 phosphoSer404,
Dr P Davies), Tau1 (dephosphorylated aa197-205, MAB3420, Millipore),
AT270 (phosphoThr181, MN1050, Thermo-Pierce), pS422 (phosphoSer422,
44764G, Life Technologies) and actin (A2066, Sigma-Aldrich) antibodies
and chemiluminescence.

RESULTS
Selection of Drosophila orthologs of candidate AD risk genes
We selected all annotated genes within the 19 IGAP genomic risk
regions (with the exception of the APOE locus) as defined by IGAP
regional association plots assuming that the functional risk
variants are located in the vicinity of the single-nucleotide
polymorphism (SNP) producing the top signal and taking into
account the linkage disequilibrium patterns within the loci of
interest (Supplementary Table S1). We identified 148 human
genes within these intervals and determined their corresponding
Drosophila orthologs with the Drosophila RNAi Screening Center
Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.
org/diopt).11 We used a DIOPT cutoff score of ⩾ 3 to select high
confidence homologs.11 We found that 54 of the 148 human
genes had at least one Drosophila ortholog. From the 19 loci, 6
were excluded for further analysis (31%), because they did not
contain any fly orthologs in the genomic region of interest (CR1,
CLU, HLA-DRA, MS4A6A, NME8, SORL1). Conversely, some human
genes had several Drosophila orthologs and we retained 74
Drosophila orthologs corresponding to 54 human genes in the
13 remaining loci (Supplementary Figure S1; Supplementary
Table S1). For these 74 orthologs, we obtained 274 corresponding
RNAi lines, that is, around 4 RNAi lines per gene of interest, from
5 publicly available collections (Supplementary Figure S1; Supple-
mentary Table S2).

Genetic screen of candidate AD risk genes identifies BIN1 and four
novel modifiers of Tau toxicity
To test whether these Drosophila orthologs could modify Tau
neurotoxicity, RNAi lines were crossbred with flies expressing the
longest isoform of human Tau (2N4R) in the eye (GMR driver). In
this model, expression of Tau causes neuronal degeneration
without NFT formation and results in smaller rough eyes.12,13 We
determined whether RNAi-mediated knockdown of the genes of
interest were able to modify this Tau-induced phenotype by
quantifying the eye surface (Figure 1a). We discarded all RNAi lines

Figure 1. Functional screen of AD susceptibility loci in Drosophila. (a) Quantification of the eye size of flies co-expressing Tau and AD candidate
gene loss-/gain-of-function constructs. Each symbol in the graph represents the median of the measurement of the size of 10 fly eyes per
construct and control (30 values for the 3 pooled controls). Blue circles, squares and triangles represent RNAi, mutant and overexpression
constructs, respectively (○, □, Δ), and black circles represent controls (○). For RNAi, we plotted values normalized according to their origin (see
Materials and Methods section). When the size of the eye was statistically different from the control (Wilcoxon test, Bonferroni correction, for
RNAi with and without correction), we used red color (○, □, Δ). Positive hits were re-tested and plotted with filled symbols (•, ■, ▴, •, ■, ▴).
The two horizontal lines mark the eye size range of the Tau expressing control. Constructs that are above the controls are Tau toxicity
suppressors and the ones that are lower are enhancers. Vertical dashed and solid lines separate Drosophila genes and loci. The name of the
Drosophila gene targeted by the construct is indicated below the two graphs, as well as the name of their human orthologs and the name of
the locus they belong to. Positive hits are shaded in gray. (b) Representative images of the positive hits (scale bar 0.1 mm). Images for the Fak
gene are available in Figure 2.
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that induced an external eye phenotype on their own when
expressed with the GMR driver. Heterozygous genomic loss-of-
function alleles and overexpression constructs were also tested

when available. Genes were considered positive hits when at least
two lines (RNAi, mutant alleles or overexpressing constructs)
from different collections modified Tau toxicity (Figure 1a;

Figure 1. For caption please refer page 875.
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Supplementary Table S3; Table 1). RNAi and mutant alleles had to
give identical suppressing or enhancing effects.
By applying these criteria, we confirmed that BIN1 ortholog Amph

modulates Tau toxicity (Figures 1a and b; Supplementary Table S3;
Table 1) as we previously reported.6 In addition, we identified the
Drosophila genes p130CAS (ortholog of CASS4), Eph (ortholog of
EPHA1), focal adhesion kinase (Fak; ortholog of PTK2B) and Rab3-
GEF (ortholog of MADD) (Figures 1a and b; Supplementary Table S3;
Table 1) as Tau toxicity modulators. Although downregulation of
Eph and Rab3-GEF, and upregulation of p130CAS, enhanced Tau
toxicity, both upregulation and downregulation of Fak suppressed
Tau toxicity (Figures 1a and b; Supplementary Table S3; Table 1). Of
note, p130Cas, Eph and Fak correspond to orthologs of genes
closest to the top SNP signal in the IGAP study, while this is not the
case for Rab3-GEF for which the top GWAS signal was within the
CELF1 gene (Supplementary Figure S2).

PTK2B ortholog Fak suppresses Tau toxicity in the eyes and wings
We focused on the PTK2B ortholog Fak, as it behaved as a
consistent suppressor of Tau toxicity in our screen suggesting that
Fak might be a specific downstream mediator of Tau toxicity
(Figures 2a and b). We confirmed the Tau–Fak genetic interaction
in the eye with an independent 0N4R Tau construct, the FakCG1

null14 and the FakKG hypomorphic15 alleles in heterozygous,
homozygous and transheterozygous states. The transheterozy-
gous genotype is important to rule out effects of possible second-
site mutations on the chromosome. The 0N4R Tau construct
allows assessing the requirement of the 2 N alternative domains of
Tau for the interaction. We also observed a Fak gene dose-
dependent suppression of Tau toxicity, confirming the Tau–Fak

interaction without requirement of the 2 N domains of Tau
(Figures 2c and d). Next we wanted to confirm the interaction
between Fak and Tau in an independent assay and chose the
more specific wing blister phenotype, which links Fak to its
established function in the focal adhesion pathway downstream
of integrins.16 Wing blisters are the result of cell adhesion defects
between the dorsal and ventral blade of the wing. As reported
previously,16 overexpression of Fak results in wing blisters in 20%
of the flies (Supplementary Figure S3). We tested the expression of
Tau (2N4R) in the posterior compartment of the wing using the
engrailed driver. Overall, 62% and 11% of the flies exhibited
blisters in one or their two wings, respectively, in addition to a
reduced wing size (Figures 2e and f). When co-expressed with Fak
RNAi, the proportion of flies with wing blisters in one or two wings
significantly decreased to 53% and 2%, respectively. With this
readout, we also wanted to confirm the interaction with an
independent Tau construct and Fak loss-of-function mutations.
We used the Tau construct expressing the 0N4R Tau isoform.
Expression of this construct induced a strong reduction of the
wing size with some of them exhibiting blisters (Supplementary
Figure S4). In FakCG1/+ and FakKG/+ loss-of-function backgrounds,
the size of the posterior compartment of the wing was partially
restored but we were unable to quantify the blister frequency
owing to the greatly reduced wing size (Supplementary Figure S4).
To circumvent this problem, we tested the phosphodeficient
TauAP (0N4R) construct, in which 14 Serine or Threonine
phosphorylation sites are mutated into alanine and which is
known to be less toxic in the eye.17 Expression of TauAP was also
less toxic in the wing and resulted in a mild reduction of the wing
size, with 80% of the flies exhibiting typical blisters in their two
wings (Figures 2g and h). In FakCG1/+ and FakKG/+ backgrounds, the
proportion of flies with blisters in their two wings was significantly
reduced to 31% and 62%, respectively. Together, using three
different Fak and three different Tau lines, these results indicated
that Fak and Tau genetically interact in an independent readout
related to focal adhesion.

PTK2B and Tau interact biochemically in vitro
We next tested whether PTK2B and Tau are able to physically
interact. We performed GST pull down experiments (Figures 3a
and b). We were able to pull down PTK2B from PTK2B-transfected
HEK293 cell extracts with GST-Tau1N4R and GST-Tau2N4R constructs
(Figure 3a). Reciprocally, we were able to pull down 1N4R and
2N4R Tau isoforms from transfected HEK293 cell extracts with a
GST-PTK2B construct (Figure 3b). These results indicate that PTK2B
and Tau interact directly or indirectly in a complex.
As PTK2B is a protein tyrosine kinase, we tested whether PTK2B

could phosphorylate Tau directly or indirectly through the
activation of other kinases. 2N4R Tau isoform has five tyrosine
residues (Tyr18, Tyr29, Tyr197, Tyr310, Tyr394) but antibodies have
been developed only for Tyr18. In Drosophila, we assessed the
effect of the modulation of Fak on the phosphorylation of Tau
Tyr18 and on the main AD Tau phosphorylation sites (Figure 3c).

Table 1. Summary of the functional screen results of the AD risk loci
in Drosophila

IGAP locus Human genes
(with fly orthologs)

Fly genes Tau-toxicity modifiers
(human ortholog)

CD2AP 3 (1) 1
BIN1 1 (1) 1 Amph (BIN1)
MEF2C 4 (1) 1
PICALM 2 (1) 1
INPP5D 3 (1) 1
SLC24A4 2 (2) 2
CASS4 6 (2) 2 p130CAS (CASS4)
FERMT2 6 (4) 6
EPHA1 10 (4) 4 Eph (EPHA1)
PTK2B 5 (3) 7 Fak (PTK2B)
ABCA7 12 (6) 7
CELF1 23 (13) 18 Rab3-GEF (MADD)
ZCWPW1 46 (15) 23
Total 123 (54) 74

Abbreviations: AD, Alzheimer's disease; IGAP, International Genomics of
Alzheimer’s Project.

Figure 2. Genetic interaction between Fak/PTK2B and Tau in the eye and wing of Drosophila. (a) Images of fly eyes expressing the 2N4R Tau
isoform (GMR4Tau) in five different Fak conditions (scale bar 0.1 mm). The GMR4 images are the five different Fak conditions without Tau
expression as control. (b) Quantification of the eye size of the progeny of Tau-expressing flies crossed with the different lines targeting Fak
(*Po1.68 × 10− 4). (c) Images of fly eyes expressing the 0N4R Tau isoform or the control mCherryNLS construct in the background expressing
decreasing amount of Fak, from wild-type expression of Fak to no expression of Fak in FakCG1/CG1 flies (scale bar 0.1 mm). (d) Corresponding
quantification of the eye size. (e) Wings co-expressing Tau (2N4R) or GFP and FakRNAi17957 or GFP with the engrailed driver. The dashed line in
the top left panel marks the border between the anterior and posterior compartment, the driver being expressed in the latter (scale bar
0.5 mm). Arrows label wing blisters (yellow shaded). (f) Quantification of the wing phenotype in flies co-expressing Tau or GFP and FakRNAi17957

or GFP. The total numbers of flies over three experiments are indicated above the column. (g) Wings expressing GFP and TauAP (0N4R) with the
engrailed driver in wild-type and Fak+/− backgrounds. Arrows label wing blisters (yellow shaded) (scale bar 0.5 mm). (h) Quantification of the
wing phenotype in flies expressing GFP and TauAP in wild-type and Fak+/− backgrounds. The total numbers of flies over three experiments is
indicated above the column.
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Loss and gain of Fak did not change the phosphorylation of these
sites. Of note, this is in agreement with the suppressive effect of
Fak on the phosphodeficient TauAP-induced phenotypes in the
wing (Figures 2g and h). As we cannot exclude that Fak modulates

other tyrosine or non-tyrosine Tau phosphorylation sites directly
or indirectly, we tested whether the kinase activity of Fak is
required for the suppression of Tau toxicity. We tested a FakY430F
mutant in which the Tyr430 autophosphorylation site is mutated

Figure 2. For caption please refer page 877.
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into the non-phosphorylable Phe residue, a mutant that has been
used as a mutant of Fak kinase activity.15,18,19 We observed that
FakY430F also suppressed Tau toxicity (Figure 3d). This suggested
that the suppressive effect of Fak on Tau toxicity is independent of
its kinase activity.

Neuronal cell bodies harboring hyperphosphorylated and
oligomeric Tau accumulate PTK2B in the brains of AD patients and
transgenic Tau mice
To further validate a potential link between PTK2B and Tau
pathology, we assessed whether the mRNA levels of PTK2B in the

Figure 3. For caption please refer page 880.
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temporal AD cortex were altered in relation to the progression of
neurofibrillary pathology (Braak staging). No statistically significant
differences between different Braak groups were observed
(Supplementary Figures S5a and b). Next we co-labeled Tau and
PTK2B in the human AD brains (Figure 4a). Already in early-stage
AD brains (Braak stage II), PTK2B was clearly detectable in Tau-
positive NFTs and neuritic processes labeled with the AT8
phospho-Tau antibody. In an advanced stage of AD (Braak stage
VI), PTK2B staining was more abundant and overlapped strongly
with AT8 indicating that PTK2B co-accumulates with NFTs
(Figure 4a; Supplementary Table S4). To determine whether
PTK2B accumulation occurs early during Tau pathology, we
performed a co-staining for PTK2B and Tau oligomers detected
with the TOC1 antibody.20 We observed a colocalization between
PTK2B and TOC1 staining, indicating that PTK2B accumulation is
an early event in AD pathogenesis (Figure 4b). Accumulation of
phosphorylated PTK2B has been observed in the brains of the Tau
transgenic pR5 mouse model.21 Using our THY-Tau22 mouse
model showing hippocampal NFTs starting at 2–4 months,22 we
assessed the neuronal presence of PTK2B at 2, 5 and 13 months to
establish whether PTK2B and Tau accumulate in the same neurons
and whether this is an early or late event. Accumulation of PTK2B
started at 2 months and progressively co-accumulated within the
cytoplasm of a growing number of AT8-positive degenerating
neurons (Figure 4c). These data suggest that the accumulation of
PTK2B represents an early pathological marker tightly coinciding
with progressive Tau pathology in AD.

DISCUSSION
In the postgenomic era, the identification of the causal genes and
their pathogenic function within GWAS-defined genomic risk
intervals for common diseases constitutes a major challenge. Indeed,
most signals discovered by GWASs do not clearly define the
responsible causal genes but typically implicate a broad genomic
region containing a number of candidate genes. Experimental
confirmation is therefore critical to validate a target for further
mechanistic investigation. For AD, the IGAP consortium recently
defined 19 risk regions containing around 150 candidate genes in
addition to APOE. We here present, to the best of our knowledge, the
first systematic functional in vivo follow-up study of IGAP AD risk loci
and identified, next to BIN1, four novel Tau toxicity modulators.
Among these, we observed strong interactions between Tau and
focal adhesion gene PTK2B in the flies, mice and human AD brains,
together suggesting that PTK2B is an important early marker and
modulator of Tau pathology in AD.
A first important aim of our study was to identify causal genes

in the 19 AD risk regions. To do so, we used the high-throughput
Drosophila system to screen hundreds of constructs correspond-
ing to IGAP AD candidate risk genes for their ability to modify the
neuronal toxicity of Tau. We could study 13 of the 19 loci of
interest (ABCA7, BIN1, CASS4, CD2AP, CELF1, EPHA1, FERMT2,
INPP5D, MEF2C, PICALM, PTK2B, SLC24A4 and ZCWPW1) because
the genes of the remaining 6 loci (CR1, HLA, NME8, CLU, MS4A6A,
SORL1) do not contain Drosophila orthologs with sufficient

homology. Importantly, we followed a quantitative and well-
controlled strategy that included the accurate measurement
of eye size and applied strict gene selection criteria to
restrict the number of false-positive or inconsistent results
introduced by variability in culture conditions, genetic back-
ground, RNAi-mediated off-target effects and second-site
mutations.
As a result, in addition to BIN1, we identified four new genes,

PTK2B, CASS4, EPHA1 and MADD, in four loci, as modifiers of Tau
toxicity. PTK2B, CASS4 and EPHA1 are the closest genes to the top
GWAS signal of their locus, whereas, in the CELF1 locus, we
identified the ortholog of MADD although the most significantly
associated SNP lies in the CELF1 gene. Of note, the Drosophila aret
gene, ortholog of the CELF1 gene, has been previously suggested
to modify Tau toxicity in another Drosophila screen.23 However,
the screening approach was different from ours as it used a
frontotemporal dementia-associated Tau construct (0N4R
TauV337M), other gain- and loss-of-function lines and a qualitative
rather than a quantitative way to assess Tau toxicity. The
involvement of the four identified genes in AD is supported by
literature data. SNPs within or adjacent to EPHA1, PTK2B and CASS4
are associated with AD clinical progression.24 When evaluating
crosstalk between AD risk loci by protein quantitative trait
analysis, rs2718058A, an AD susceptibility allele in the NME8
locus, was associated with increased PTK2B expression.25 In AD
pathological conditions, a reduction in EPHA4 and EPHB2 receptor
levels, belonging to the Eph receptor family such as EPHA1, has
been found in postmortem hippocampal tissue from patients with
incipient AD and in an AD mouse model overexpressing human
amyloid-β protein precursor.26 Finally, in AD brains and an Aβ
cellular model, MADD expression is reduced and MADD splicing is
altered, which promote neuronal vulnerability.27,28 For the eight
remaining loci (ABCA7, CD2AP, FERMT2, INPP5D, MEF2C, PICALM,
SLC24A4 and ZCWPW1), we did not identify positive hits. Beyond
the fact that the causal genes of these loci may not affect Tau
toxicity, it is important to keep in mind that some genes in these
loci have Drosophila orthologs with a low homology score, which
were not tested. This is the case for ABCA7, in which loss-of-
function functional variants that confer risk of AD were recently
discovered.29 The novel genes we identified were previously not
linked to Tau toxicity and suggest that a higher than expected
number of risk genes act at the level of Tau rather than Aβ
pathology. This notion is in accordance with recent work supporting
the MAPT locus as a genetic risk factor for AD7 and with the general
central role of MAPT in a wide range of neurodegenerative
diseases.30 However, it is important to note that our functional
screening strategy did not test for possible interactions with Aβ
toxicity and it is equally well possible that some of the AD risk genes
affect pathways that are not directly linked to Tau or Aβ.
As Fak appeared as a strong suppressor of Tau toxicity among

our five genes of interest, we decided to further decipher its
relation with Tau. First, we were able to validate the interaction of
Fak with Tau toxicity in a focal adhesion-related wing blister assay
that is fully independent of the Tau-related toxicity in eyes.
Second, we observed an in vitro biochemical interaction between

Figure 3. In vitro biochemical interaction between PTK2B and Tau. (a) Pull down of PTK2B with GST, GST-Tau1N4R and GST-Tau2N4R protein
constructs. Upper panel: detection of PTK2B in the pull down extract by western blotting. Lower panel: corresponding Coomassie blue gel
used as loading control of GST constructs. (b) Pull down of Tau1N4R and Tau2N4R with GST and GST-PTK2B protein constructs. Upper panel:
detection of Tau (arrows) in the pull down extract by western blotting (an unspecific band is labeled with a star, MW, molecular weight). Lower
panel: corresponding Coomassie blue gel used as loading control of GST constructs. As the GST-PTK2B constructs were difficult to produce
and visualize with Coomassie blue staining (arrows), we checked the GST-PTK2B construct through detection of PTK2B by western blotting
(middle panel). All results shown in panels (a and b) are representative of three independent experiments. (c) Western blotting analysis
of Tau phosphorylation in different Fak conditions in the Drosophila eye. Actin is used as a loading control (n= 2–4). (d) Images and
quantification of fly eyes co-expressing the 2N4R Tau isoform and a mCD8::GFP construct used as control or wild-type Fak or mutant FakY430F

(scale bar 0.1 mm).
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the human Tau, especially the 4R domain, and PTK2B proteins.
Finally, PTK2B co-localized with hyperphosphorylated and oligo-
meric Tau in progressive pathological stages in the brains of AD
patients and transgenic Tau mice. Altogether, these data strongly
support PTK2B as a genetic risk factor of AD likely involved in the
pathophysiological processes implicating Tau. In line with this

hypothesis, the time course analysis of Tau pathology in the
THY-Tau22 mouse model indicated that the accumulation of
PTK2B occurred simultaneously with the appearance of the first
AT8-positive labeling in neurons, and in the brain of AD patients,
the accumulation of PTK2B occurred in neurons exhibiting Tau
oligomers. This implies PTK2B as an actor of very early events in

Figure 4. PTK2B colocalizes with neurofibrillary degeneration in the brains of AD patient and Tau transgenic mouse. Co-labeling of PTK2B with
phospho-Tau (a) and PTK2B with oligomeric Tau (b) in the hippocampus of AD patients at Braak stages II and VI (scale bar 50 μm). (c) Co-
labeling of PTK2B with phospho-Tau in the hippocampus CA1 region of 2-, 5- and 13-month-old THY-Tau22 transgenic mice (scale bar 50 μm).
AD, Alzheimer's disease.
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Tau pathology. Of note, a redistribution of activated PTK2B to the
perinuclear region of pyramidal neurons has been described in
chronically stressed rats and is associated with retraction of
dendritic arbors.31 However, whether the accumulation of PTK2B
in the soma of degenerating neurons is a cause or a consequence
of Tau pathology remains to be explored.
Although the exact mechanism remains uncertain, it is

interesting to note that three of our positive hits Fak/PTK2B,
p130CAS/CASS4 and Eph/EPHA1 have previously been implicated
in the focal adhesion pathway. PTK2B and CASS4, respectively,
belong to the FAK and CAS families of proteins, which are known
to directly interact in the cell adhesion pathway.32,33 PTK2B has
been reported to physically interact with members of the CAS
family downstream of integrins.34 The EPH receptor family is less
directly connected. The activation of EPHA4, a paralog of EPHA1,
inhibits β1 integrin downstream signaling pathways, including
BCAR1 (a paralog of CASS4) and PTK2B, and regulates dendritic
spine morphology in hippocampal pyramidal neurons.35 Ephrin-
A1 ligand induces carcinoma cell retraction through EPHA2, a
paralog of EPHA1, and downstream SRC and FAK, a paralog of
PTK2B.36 Hence, our results suggest that a cell adhesion pathway
based on PTK2B and CASS4, and possibly regulated by EPHA1,
could be involved in Tau pathology and AD pathogenesis
(Supplementary Figure S6). Accordingly, Drosophila screening of
pre-IGAP AD risk genes also identified genes related to the focal
adhesion pathway as modulators of Tau toxicity.23 Of note, the cell
adhesion pathway has already been involved in AD as a potent
link between Aβ peptide and Tau pathogenesis.37–39

In conclusion, our work highlights the role of PTK2B as a major
actor in AD pathogenesis at the level of Tau toxicity.
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