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Abstract: N-acetyl-β-D-glucosaminidase (GlcNAcase) is a valuable biomarker for kidney health, as
an increased urinary level of the enzyme indicates cell damage within the renal tubular filtration
system from acute or chronic organ injury or exposure to nephrotoxic compounds. Effective renal
function is vital for physiological homeostasis, and early detection of acute or chronic renal mal-
function is critically important for timely treatment decisions. Here, we introduce a novel option
for electrochemical urinalysis of GlcNAcase, based on anodic differential pulse voltammetry at
boron-doped diamond disk sensors of the oxidizable product 4-nitrophenol (4NP), which is released
by the action of GlcNAcase on the synthetic substrate 4NP-N-acetyl-β-D-glucosaminide (GlcNAc-
4NP), added to the test solution as a reporter molecule. The proposed voltammetric enzyme activity
screen accurately distinguishes urine samples of normal, slightly elevated and critically high urinary
GlcNAcase content without interference from other urinary constituents. Moreover, this practice has
the potential to be adapted for use in a hand-held device for application in clinical laboratories by
physicians or in personal home health care. Evidence is also presented for the effective management
of the procedure with mass-producible screen-printed sensor chip platforms.

Keywords: kidney; N-acetylglucosaminidase; disease biomarker; urine; urinalysis; voltammetry;
diagnostics; nitrophenol; enzyme assay

1. Introduction

The kidneys are major components of the urinary system; their functions include the
elimination of waste and toxic species from the blood, regulation of blood volume and
pressure, control of electrolyte and metabolite levels and the maintenance of blood pH [1].
Blood entering through paired renal arteries passes through the glomerulus/nephron
network and after completion of decontamination it is returned to the circulatory system
through the renal veins, while excess water and unwanted chemical species pass through
the ureter as urine. Any reduction in the kidneys’ ability to regulate blood composition
and pressure is a serious health threat, and if left untreated for long, leads to severe body
degradation that may ultimately be fatal. In response to, for example, physical injuries
with severe blood loss, sepsis or the destructive impact of nephrotic toxins, an abrupt,
critical loss of function may result from an acute kidney injury [2,3]. On the other hand,
long-term diabetes, continuous high blood pressure, cardiovascular problems, obesity,
genetic vectors and/or smoking may cause the decline in renal capacity, which manifests
as chronic kidney disease [4,5]. Obviously, analytical methods that can provide an early
warning of deteriorating kidney function are useful diagnostic tools for clinicians and
individuals from high-risk groups. The most widely used indicator of kidney function is
the serum creatinine concentration, which is measured in clinical test centers to estimate
the glomerular filtration rate, and thus the passage of blood through the kidneys [6–8].
However, a practical drawback of creatinine-based assessment of kidney health is the slow
and non-specific manifestation of renal malfunction as detectable changes in the serum
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creatinine level; therefore, the onset and early stage of the degradation and thus the best
time for commencing treatment may be missed [9–12]. To improve this situation, comple-
mentary urinary and serum biomarker assays with a better focus have been proposed for
the detection and monitoring of acute [13–16] and chronic [17–20] renal disorders. Exam-
ples of suggested assay biomarkers include kidney injury molecule-1 (KIM-1), cystatin
C, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl-β-D-glucosaminidase
(GlcNAcase), to name just a few. Benchtop spectroscopic methodologies are usually em-
ployed to measure these biomarkers. Despite extensive work with various diagnostic and
prognostic signaling molecules, there is no simple urinalysis procedure available that could
be conveniently and efficiently applied by technical staff in clinical laboratories, doctors in
general practice and individuals from high-risk groups at home, as a quick and reliable
kidney health prescreen with diagnostic potential.

GlcNAcase is a 140-kDa lysosomal brush-border enzyme in proximal renal tubule
epithelial cells that does not normally enter the urine at significant rates [21,22]. Thus,
healthy urinary GlcNAcase levels are very low, while significant GlcNAcase elevation
indicates renal tubule cell injury and is a critical sign of prevailing upstream renal prob-
lems. Following earlier reviews [21,22], a summary of the potential of urinary GlcNAcase
testing [23] and topical reports on GlcNAcase electrochemical, electro-optical and optical
analysis [24–29], we recently established a sensitive, real-time electrochemical (EC) assay
for straightforward GlcNAcase activity determination. We used 4-methylumbelliferyl-N-
acetyl-β-D-glucosaminide (GlcNAc-4MU) as a redox-labelled GlcNAcase substrate, with
anodic oxidation of enzymically released 4-methylumbelliferone (4MU) at boron-doped
diamond (BDD) disk working electrodes (WEs) for scalable amperometric signal gener-
ation [30]. Two purely electrochemical strategies that used a redox-labelled GlcNAcase
substrate and detection by simple amperometry [24,30] had the potential for personal
health care application but were not applied to human urine samples and were used simply
as alternative assays of GlcNAcase activity in synthetic preparations. Tanaka et al. [25] de-
veloped a lab-on-a-compact disc platform with automated liquid handling and fluorescence
detection for GlcNAcase measurements in artificial samples that simulated human urine.
Ma et al. [28] determined GlcNAcase in human serum and urine using an optical assay
that relied on the quenching of fluorescence of carbon nanodots by 4-nitrophenol released
from 4-nitrophenyl-N-acetyl-β-D-glucosaminide (GlcNAc-4NP). Wang et al. [26,27] used
electrochemiluminescence-based immuno-sensing to assess GlcNAcase levels in human
serum. Finally, Kumar et al. [29] described a biosensor platform that quantified GlcNAcase
in milk samples by reflectance spectrometry with a porous silicon Fabry−Peŕot interfer-
ometer. These analytical procedures performed well in GlcNAcase activity assays and
are promising options for kidney biomarker urinalysis in well-equipped modern clinical
laboratories. However, the complexity of their sensor platforms and their spectroscopic
signal generation makes them unsuitable for personal urinary GlcNAcase monitoring with
small hand-held devices that employ mass-fabricated, single-use sensor strips for detection.

Kidney health screening, whether with optical or electrochemical signaling, is a rather
complex task. Sensor devices like the blood glucose meters available for diabetes patients
or the immunosensor strips used in cancer biomarker diagnostics do not yet exist for
kidney testing, apart from a commercial handheld meter for creatinine. This is a potentially
useful tool; however, because of the limited data on blood or urinary creatinine, such as
the delayed response to kidney deterioration, poor correlation of the variation in creatinine
level with kidney problems and the known crosstalk with other diseases [19], additional
complementary portable kidney screening devices would certainly be an asset for the
health care system and for patients at risk. This is even more important with the growing
number of kidney problem cases in an aging world population with increasing exposure to
unhealthy diets and lifestyles. However, despite the urgent need, there is no report of a
successful product for the health care market.

Using an adaptation of our previously established GlcNAcase electroanalysis [30],
we describe here simple voltammetric detection of GlcNAcase as a biomarker of proximal
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tubule epithelial cell damage in the complex medium of urine samples. Procedural opti-
mizations included the replacement of GlcNAc-4MU by GlcNAc-4NP, a three-fold cheaper
redox-labeled GlcNAcase substrate, the use of a cheap and portable potentiostat instead
of a bulky desktop model, and the use of differential pulse voltammetry (DPV) instead of
amperometry for redox label electroanalysis to remove capacitive charging contributions
to measured currents and improve signaling. The validation of this methodology involved
model sample trials with GlcNAcase in sodium phosphate buffer solution and tests of
actual urine with added GlcNAcase. Zero, low and high GlcNAcase levels were consis-
tently identified for both sample types. We then demonstrated the feasibility of operation
on mass-producible screen-printed electrode (SPE) platforms with a BDD WE disk, thus
laying the foundation for an electrochemical urinary GlcNAcase strip test. The use of this
test in an approved professional clinical trial on libraries of samples from patients with
recognized kidney problems and from healthy control subjects, and the design and further
realization of easy-to-use SPE-based GlcNAcase sensing strips in a portable device for
personal kidney homecare testing will be the next issues addressed.

2. Materials and Methods

Standard chemicals for electrolyte preparation and 4-nitrophenol were obtained from
S.M. Chemical Supplies Co., Ltd. (Bangkok, Thailand) as analytical grade Sigma-Aldrich
Corporation (St. Louis, Missouri, US) reagents. The chosen biomarker for kidney defects, N-
acetyl-β-D-glucosaminidase (EC 3.2.1.52), was purchased as a purified enzyme preparation
from Canavalia ensiformis (Jack bean), from the same suppliers. Monobasic (NaH2PO4) and
dibasic (Na2HPO4) sodium phosphate for sodium phosphate buffer solution preparation
were from Italmar (Thailand) Co., Ltd., (Bangkok, Thailand). Ultrapure de-ionized water
was used for all solutions.

All electroanalysis was conducted with a portable PalmSens4 mini-potentiostat (Palm-
sens BV, GA Houten, The Netherlands). For voltammetry execution, the device was
controlled by its own software, PS Trace, Edition 5.8. Collected data were analyzed with the
PS trace software and graphs visualizing the obtained results were constructed by using
GraphPad Prism 8 and Microsoft Excel and PowerPoint 2019 software.

Voltammetry was carried out in a three-electrode electrochemical cell with a 3-mm-
diameter BDD disk working electrode (Windsor Scientific Ltd., Slough Berkshire, UK),
a platinum (Pt) sheet counter electrode (Metrohm Siam Ltd., Bangkok, Thailand) and
an Ag/AgCl (3 M KCl) reference electrode immersed in 3 mL of electrolyte in a small
glass beaker. Test solutions were 0.1 M PBS pH 7.0 with or without 4NP or urine sample
supplementation. Before measurements, the surface of a used BDD disk was regenerated
by polishing with alumina powder with a particle size of 0.4 µm to optimize 4NP detection.
The procedure involved a thick suspension of the alumina in water and a handheld dental
drill. A tiny drop of the alumina slurry was placed on the BDD disk and a few minutes
of gentle polishing with the soft rubber-covered tip of the fast-rotating bit was used for
cleaning.

Commercial screen-printed electrodes with integrated 3.6-mm-diameter BDD disk
sensors (Metrohm Siam Ltd., Bangkok, Thailand) were tested as alternative sensor strips
for urinary GlcNAcase assessments. They were immersed in 5 mL of 0.1 M PBS pH 7.0
with the addition of urine or urine/GlcNAcase. 4NP voltammetry used a three-electrode
configuration, but to allow better comparison with standard BDD electrode voltammetry,
it was performed with the Pt-sheet and the Ag/AgCl (3 M KCl) used in standard trials
serving as external equivalents, rather than the built-in counter- and reference-electrodes
of the SPE platform.

Solutions of 0.1 M PBS, pH 7.0 with additions of 5, 20 and 100 U/L GlcNAcase served
as model samples. Urine for real sample tests was from a healthy investigator in this study
who approved its use for the purpose of electrochemical inspection. Collections from other
individuals were not involved and formal institutional study authorization, required for
medical trials on pools of body fluid or tissue from patients, was therefore unnecessary.
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3. Results

The principle of the proposed voltammetric urinary GlcNAcase assay is shown in
Scheme 1. Kidney damage results in an increase in the urinary concentration of GlcNAcase,
which in our assay catalyzes the release of 4-NP from the synthetic substrate, and this is
detected as an electrochemical signal.
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(GlcNAcase) in the urine of patients with suspected renal damage. Key components of the method are the three-electrode
electrochemical cell arrangement with a boron-doped diamond disk (BDD) working-electrode, a Pt plate counter-electrode
and an Ag/AgCl/3 M KCl reference electrode for voltammetric 4NP detection, a handheld portable potentiostat for
voltammetry, and finally 4NP, a redox-labeled GlcNAcase product that is added to the buffered supporting electrolyte.
GlcNAcase, from a urine sample with low (normal) or high (acute) levels, liberates the 4NP redox label from its sugar
substituent by glycosidic bond cleavage. Released 4NP is sensed at the BDD electrode by electro-oxidation in a voltammetry
mode; low or large voltammetric peak currents are diagnostic indicators of healthy or critical kidney state.

A three-electrode electrochemical cell is set in a 5 mL glass beaker with a BDD disk,
Pt plate and an Ag/AgCl (3M KCl) system, referred to as WE, CE and RE, respectively,
operated in 0.1 M PBS buffer. For GlcNAcase measurements, the buffered electrolyte
was supplemented with GlcNAc-4NP, which is a substrate of the biomarker GlcNAcase
and releases the redox-active, 4NP, the signaling molecule in the assay. Earlier work
reported pH 7.0 and 37 ◦C to be optimal for GlcNAcase assays [30,31]. Here the buffer was
at pH 7.0, but the assay was conducted at room temperature (25 ◦C) since the ultimate
application would be for personal kidney testing at home, where measurements at constant
elevated temperature would not be practicable. The time allowed for GlcNAcase, either as
a supplement of PBS model solutions or as a biomarker in urine samples, to act on GlcNAc-
4NP in the assay buffer, was varied between 5 and 60 min before the final assessment of
liberated 4-NP was carried out by DPV analysis.

Also important for a successful assay was a suitable choice of the WE and its protection
against electrode fouling, which adversely affects the electrochemical detection of 4-NP, and
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phenols in general, and is related to electro-polymerization following radical formation in
the anodic oxidation of phenolic analytes. Unwanted polymer film formation on the sensor
surface could affect electron transfer, and thus lead to a decrease in the quality of the 4-NP
measurements. A recent review provides an overview of the strategies that are available
to protect electrochemical phenol sensing against electrode activity degradation [32]. For
our analysis, a reusable conductive BDD disk was chosen as the sensor because these disks
suffer much less than other common electrode materials (e.g., glassy carbon, platinum
or gold) from phenol-related losses of performance quality [33–35]. To further ensure
that the 4-NP measurements were reliably reproduced between analytical sample runs,
we additionally polished the electroactive disk of the BDD electrode between individual
measurements to remove any polymeric residue that might have formed and reset sensors
to the same quality for every recording. That this strategy worked satisfactorily was
confirmed through the execution of triplicate DPV test runs on 500 µM solutions of 4-NP
in PBS buffer: the three recorded DPV plots could be overlaid virtually perfectly, with peak
currents of 33.3 µA and a small standard deviation of 0.04 µA (not shown).

When the urine of a donor contains GlcNAcase because of renal damage and conse-
quent leakage into the tubular lumen, addition of the sample to the electrolyte will cause
enhanced release of 4NP, compared to the urine of a healthy person. The three-electrode
arrangement transforms enzymic generation of free 4NP into a quantifiable electrical signal
that can be calibrated to allow calculation of the GlcNAcase concentration in the urine
sample. The responsiveness of BDD disk electrodes to the redox-active signaling molecule
in the assay was tested by cyclic and pulse voltammetry in PBS, pH 7.0 with increasing
concentrations of 4NP. Figures 1 and 2 are cyclic (CV) and differential pulse (DPV) voltam-
mograms that were obtained with the defined three-electrode set operating in solutions
of 0–1000 µM 4NP in PBS. The CVs contained tiny current elevations at the base of the
main peaks from the anodic oxidation of 4-NP. Zooms of the “foot” signals for the traces in
Figure 1A,B (not shown) showed that they were also present with buffer alone, at the same
potential and with the same magnitude for all 4-NP concentrations. Obviously, this tiny,
reproducible trace feature is unrelated to the target analyte, 4-NP, but originates either from
a trace contaminant in the PBS buffer or, more likely, it is a characteristic of the polished
BDD disk working electrode, which undergoes an anodic redox reaction, such as surface
carbon atom oxidation at that potential. However, since the artefacts are minor compared
to the height of the analytically relevant 4-NP peak, their presence did not detract from
the performance of our voltammetric GlcNAcase assay as the peaks of DPV recordings,
which are the basis of our urinary assay, were free from the artefact. The slight DPV peak
asymmetry and shoulder manifestation are likely a sign that oligomerization of radical
intermediates of the primary 4-NP electrode interaction, and to a minor extent oligomer
electrooxidation, took place at the anodically polarized BDD disk, but at slightly higher
potentials than are needed for electron transfer from monomeric 4-NP. Extraction of anodic
CV and DPV peak currents from triplicate repetitions of the voltammetric measurements
and plotting the mean values against 4NP concentrations produced regression graphs
with small data point standard deviations (<2%) and good linearity (R2 = 0.9959 (CV) and
R2 = 0.9968 (DPV)). Carefully polished BDD disk electrodes achieved reliable voltammetric
4NP detection, with about 5 µM being the lowest concentration to produce analyzable
anodic CV (Figure 1C) and DPV (Figure 2C) current peaks, which defined the practical
limit of the two methodologies. Since the current peaks recorded in the differential pulse
voltammetry mode were largely free of contributions from electrode capacitance charging
currents, all further electrochemical 4NP tests used this practice. As a first step, positive
4NP redox label voltammetry was acquired by measurements of the target species in
PBS solutions.
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Bearing in mind the application for electrochemical urinalysis, we inspected the DPV
response of BDD disks in buffers containing 4NP and a urine addition that might cause
signal interference. Figure 3 shows the results of the interference trials that were required to
confirm the selectivity of the assay in measurements involving real urine. For scans across
the potential range used for 4NP DPV acquisition, the BDD disk currents were virtually
zero with pure PBS, pH 7.0 and with urine diluted 10-fold in buffer. The addition of 500 µM
4NP to urine-free and urine-containing PBS produced anodic current waves equivalent
to those in the initial triplicate 4NP DPV calibration trials for both electrolyte conditions,
indicating concentration-dependent Faradaic 4NP oxidation. This was demonstrated by
the pronounced similarity of the DPVs in Figures 2 and 3 and the observation that peak
shapes and peak magnitudes for the identical analyte adjustment matched adequately.
Although urine is a complex chemical mixture, at 10-fold dilution it apparently introduced
no component with a formal reduction potential and concentration that could produce an
anodic oxidation current high enough to interfere with DPV detection of 4NP, the signaling
molecule in the assay. Undiluted urine is more critical because of significant residual
background currents in the region of the 4-NP detection potential and would require the
development of special interference and/or detection tactics.
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Figure 3. Differential pulse voltammograms (DPVs) from a 3-mm-diameter BDD disk electrode in
0.1 M PBS pH 7.0 containing 0 (black trace) and 500 µM (green trace) 4NP. Light blue and red traces
are DPVs obtained through the operation of a BDD sensor in urine diluted 10-fold in 0.1 M PBS pH
7.0 without and with the addition of 500 µM 4NP, respectively. Parameters for DPV acquisition were
as listed in Figure 2.

Lysosomal GlcNAcase in circulating blood is too large to pass through the filtration
system of the renal glomeruli into the urine; however, it might enter urine in tiny amounts
by, for instance, lysosomal exocytosis. The urine of healthy people with normal kidney
function is thus not entirely free of GlcNAcase, but its level is low with 5–10 U/L having
been reported for control populations in clinical studies [36,37]. The elevated and critical
levels are 20 and 100 U/L or higher, respectively. Thus, the model samples for the initial
tests of our electrochemical GlcNAcase assay were 0.1 M PBS, pH 7.0 solutions with
“healthy” (5 U/L), “concerning” (20 U/L) and “critical” (100 U/L) additions of GlcNAcase.

For the 5 U/L GlcNAcase sample present in the electrochemical cell at 0.5 U/L after
dilution, a minimum of 20 min was required to raise the concentration of 4NP produced by
cleavage of GlcNAc-4NP to achieve significant elevation in the anodic WE current above
the background, and even after a full hour of reaction, the observed DPV peaks were faint
(Figure 4A). At the same dilution the 20 and 100 U/L GlcNAcase samples both produced
clear, progressively increasing anodic peak currents (Figure 4B,C). Bar chart plots of the
anodic 4NP peak current magnitudes, ip, as a function of the GlcNAcase concentration and
trial time, t, show the marked difference between the voltammetry of low, medium and
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high GlcNAcase-level test solutions (Figure 4D). The slopes of regression lines through the
data points in plots of ip vs. corresponding reaction time (not shown), which are the rates
of GlcNAcase-induced growth in 4NP concentration for a particular trial condition, were
0.22, 0.83 and 2.22 µM/min for 5, 20 and 100 U/L GlcNAcase, respectively (Figure 4D,
inset). The methodology was applied in the following trials to measure the GlcNAcase
content of urine containing common physiological metabolites.
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Figure 4. Assessment of low (5 U/L, (A)), medium (20 U/L, (B)) and high (100 U/L, (C)) levels of the kidney status biomarker
N-acetylglucosaminidase (GlcNAcase) in 0.1 M PBS, pH 7.0 model samples. A total of 300 µL of the simulated urine samples
was added to 2700 µL of 0.1 M PBS, pH 7.0 containing 0.5 mM GlcNAc-4NP. 4NP differential pulse voltammograms (DPVs),
recorded 20, 30, 45 and 60 min after initiation of the trial, visualized 4NP release through the concentration-dependent action
of GlcNAcase on the labelled substrate with progressively increasing anodic peak currents. (D) Bar chart plot of anodic 4NP
peak current magnitudes, ip, as functions of catalytic time. Insets in (D) are the slopes of regression lines through plots of
the ip values as listed below the x-axes vs. corresponding reaction time. The average percentage standard deviation for the
y-axes data point values of the triplicate trial, not specifically visualized here as error bars, was (11 ± 5)%. Parameters for
DPV acquisition were as listed in Figure 2.

Urine from hospital patients with kidney problems, especially those with confirmed
renal tubular damage and associated elevated urinary GlcNAcase levels, was not available
in the laboratory phase of assay development during this study. Further measurements
were therefore made using urine from a healthy, unmedicated donor. Samples were tested
unmodified or with the addition of 20 and 100 U/L GlcNAcase to mimic a concerning or
severely critical state of the kidneys. Figure 5 is a representative display of the three sets
of DPVs that were acquired for unmodified and GlcNAcase-supplemented urine samples
20, 30, 45 and 60 min after their 10x dilution into 0.1 M PBS, pH 7.0. For simple urine
addition to measuring buffer with 0.5 mM GlcNAc-4NP no well-defined elevation of the
anodic WE current over the urine background was observed in the four timetabled DPV
recordings (Figure 5A). Apparently, the urine lacked electrochemically detectable levels of
metabolic interferents and as expected for a healthy person’s urine, its content of GlcNAcase
as an enzymic biomarker of kidney problems was also insignificant. However, 10-fold
diluted urine samples with 20 or 100 U/L GlcNAcase added to the electrolyte with 0.5 mM
GlcNAc-4NP increased the 4NP concentration enough to produce progressively increasing
anodic current peaks (Figure 5B,C). As with the entirely artificial PBS/GlcNAcase samples,
ip/t bar chart plots and a comparison of the slopes of the linear regressions through
the data points in plots of ip vs. corresponding reaction time showed a three- to four-
fold difference between the voltammetry fingerprints of urine samples that simulated
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minor or major deterioration of kidney function (Figure 5D) while unmodified urine was
voltammetrically silent.
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Figure 5. Assessment of model samples in 0.1 M PBS, pH 7.0: unsupplemented urine (A), urine with a medium (20 U/L,
(B)) and urine with a high (100 U/L, (C)) concentration of the biomarker GlcNAcase. A total of 300 µL of the urine samples
was added to 2700 µL of 0.1 M PBS, pH 7.0 containing 0.5 mM GlcNAc-4NP. 4NP differential pulse voltammograms (DPVs),
recorded 20, 30, 45 and 60 min after trial start, visualized 4NP release through the action of GlcNAcase on the substrate as
progressively increasing anodic peak currents. (D) Bar chart plot of anodic 4NP peak current magnitudes, ip, as a function
of catalytic time GlcNAc-4NP. Insets are the slopes of regression lines through plots of the ip values as listed below the
x-axes vs. corresponding reaction time. The width of the error bars of all data points is ±20%, which was the observed
worst-case scenario throughout all individual measurements of the triplicate trial with actual urine; average percentage
standard deviation was (10 ± 6)%. Parameters for DPV acquisition were as listed in Figure 2.

The suitability of urinary GlcNAcase electroanalysis for routine decentralized clinical
and personal kidney testing with a portable readout device was finally verified though the
conversion of the assay from use with the standard rod-type BDD disc WE to operation
on mass-producible planar BDD-SPE sensor platforms. With simple PBS pH 7.0 as the
supporting electrolyte, both electrode types offered a featureless and virtually zero-current
baseline DPV response (Figure 6, top, red and blue traces). The 20% larger disk diameter
and some surface roughness in the tested screen-printed BDD SPEs produced DPV peak
currents about 1.6-fold higher than for the BDD disk (Figure 6, top orange and light blue
traces) at the same 4NP concentration. On the other hand, an anodic shift of about 60 mV
in the BDD SPE peak potential was a sign of poorer electron transfer kinetics in the thick-
film BDD SPE surface, as compared to the redox behavior of the smooth polycrystalline
BDD layout. However, this effect did not obstruct practical 4NP voltammetry, and as
demonstrated in the top and bottom parts of Figure 6, the performance of the BDD-SPE
module was acceptable for urinary GlcNAcase electroanalysis. A 30 min incubation of
urine samples in GlcNAc-4NP-containing test buffer reliably produced a clear distinction
between the 4NP DPV peak current traces of normal, slightly elevated and critically high
GlcNAcase levels in the model samples. Thus, the proposed assay strategy is able to deliver
easy electrochemical signaling of abnormal GlcNAcase entry into urine and to provide a
binary “Yes”/”No” report on renal tubular damage.
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Figure 6. Application of screen-printed boron-doped diamond disk electrodes (BDD SPEs) to urinary
N-acetylglucosaminidase (GlcNAcase) voltammetry. Comparison of the DPVs of a standard rod-type
BDD disk electrode in 0.1 M PBS, pH 7.0 (top, dark blue trace) and in 0.1 M PBS, pH 7.0 supplemented
with 500 µM 4NP (top, light blue trace) with the DPVs of a BDD SPE in 0.1 M PBS, pH 7.0 (top, red
trace) and in 0.1 M PBS, pH 7.0 supplemented with 500 µM 4NP (top, orange trace). DPV assessment
of unmodified urine (bottom, blue trace) and urine with medium (20 U/L, bottom, red trace) and high
(100 U/L, bottom, green trace) added concentrations of GlcNAcase. DPVs were acquired in 0.1 M
PBS, pH 7.0 with 0.5 mM GlcNAc-4NP 30 min after the addition of 300 µL of a particular urine sample
to 2700 µL of buffered electrolyte and visualized 4NP release through the concentration-dependent
action of GlcNAcase on the labelled substrate with progressively increasing anodic peak currents.
The black and olive-colored traces refer to DPVs in 0.1 M PBS, pH 7.0 and in 0.1 M PBS, pH 7.0 with
0.5 mM GlcNAc-4NP but no GlcNAcase, respectively. Parameters for DPV acquisition were as listed
in Figure 2.

4. Conclusions

Thoroughly polished BDD disk electrodes were used in this study as voltammetric
probes for 4NP detection down to the low micromolar level. In the differential pulse
voltammetry mode in solutions that contained GlcNAcase together with a 4NP-labeled
substrate, GlcNAc-4NP, the conductive diamond sensors reliably monitored GlcNAc-
4NP hydrolysis and the resultant release of 4NP as gradually increasing magnitudes of
consecutively acquired anodic DPV peaks. Following reports that the GlcNAcase content
of urine is an effective biomarker for kidney degradation, and ultimately, organ failure due
to cell damage in the renal filtration system, advantage was taken of the BDD/DPV-based
enzyme activity assay for the completion of technically undemanding electrochemical
GlcNAcase urinalysis. The strategy correctly identified and classified the manifestation
of average healthy, moderately raised or seriously excessive GlcNAcase concentrations
in urine samples. Furthermore, evidence was provided that the proposed voltammetric
enzyme assay was successful in urinary GlcNAcase tests using mass-producible screen-
printed BBD disk sensor platforms. Obviously, the proposed practice has the potential,
with a suitably adapted design and with handheld electronic data acquisition and display
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devices, to ultimately become the first advanced sensor chip-based tool for rapid kidney
function checks in clinical laboratories, physicians’ offices and at home, for convenient and
straightforward personal urine checks.
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