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Abstract: The sigma-1 receptor (S1R) is a 223 amino acid-long transmembrane endoplasmic retic-
ulum (ER) protein. The S1R modulates the activity of multiple effector proteins, but its signaling
functions are poorly understood. S1R is associated with cholesterol, and in our recent studies we
demonstrated that S1R association with cholesterol induces the formation of S1R clusters. We propose
that these S1R-cholesterol interactions enable the formation of cholesterol-enriched microdomains in
the ER membrane. We hypothesize that a number of secreted and signaling proteins are recruited
and retained in these microdomains. This hypothesis is consistent with the results of an unbiased
screen for S1R-interacting partners, which we performed using the engineered ascorbate peroxi-
dase 2 (APEX2) technology. We further propose that S1R agonists enable the disassembly of these
cholesterol-enriched microdomains and the release of accumulated proteins such as ion channels,
signaling receptors, and trophic factors from the ER. This hypothesis may explain the pleotropic
signaling functions of the S1R, consistent with previously observed effects of S1R agonists in various
experimental systems.

Keywords: sigma-1 receptor; endoplasmic reticulum; mitochondria; contact sites; cholesterol; neu-
rodegeneration; Huntington’s disease; Alzheimer’s disease; amyotrophic lateral sclerosis; drug target

1. Introduction

The sigma-1 receptor (S1R) is a 223 amino acid-long transmembrane protein residing
in the endoplasmic reticulum (ER) [1–3]. S1R attracts significant attention as a potential
drug target for treating neurological disorders [2,4–6] and cancers [6].

S1R is expressed at high levels in the CNS and specifically in the cortex, basal ganglia,
and motor neurons of the spinal cord and brainstem [7–10]. The S1R is a chaperone protein
that is enriched at the ER/mitochondria-associated membrane (MAM), where it plays an
important role in the regulation of multiple cellular mechanisms and is key to maintaining
neuronal function and health. This is further supported by human genetic studies, showing
that complete loss of function (LOF) mutations in the S1R are associated with a juvenile
form of amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD), while partial
LOF mutations cause late onset ALS [11–14]. Thus, there is a gene dosage relationship
between S1R activity and the age of onset of ALS with the complete loss of S1R associated
with the earliest age of onset. Additional LOF mutations in the S1R cause distal hereditary
motor neuropathies (dHMN) [15–19]. Furthermore, S1R expression levels are reduced in
sporadic ALS [20], Parkinson’s disease (PD), and Alzheimer’s disease (AD) patients [21,22].
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In preclinical models, the genetic ablation of S1R in mice exacerbated pathology and
phenotypic presentation of several neurological disorders [23–25]. These results suggest
that S1R plays an important role in healthy neuronal physiology.

The first prototypic S1R agonist, SKF-10047, was identified in animal behavioral assays,
which led to the proposed existence of sigma opioid receptors [26]. However, SKF-10047
binding to sigma binding sites was not blocked by naloxone, an opioid receptor antagonist,
and displayed a different stereospecificity [27,28]. Subsequent cloning of sigma binding
sites confirmed that they share no homology with opioid G protein-coupled receptors
(GPCRs), as well as sharing little homology to any other mammalian protein [29,30]. Se-
quence analysis revealed homology with the fungi C7–C8 sterol isomerase. While the
S1R does not have isomerase activity, it contains two sterol-like binding domains as part
of its ligand-binding site [29]. Recent biochemical and structural analysis indicated that
the S1R is a single transmembrane domain protein with a short cytoplasmic tail and a
large luminal ligand-binding domain [31,32]. It is suggested that the S1R acts as a molecu-
lar chaperone, which can stabilize the native conformation of multiple client proteins in
stress conditions [1,33,34]. The S1R can be activated with highly selective synthetic ligands
with nanomolar affinity [34–36]. The identity of an endogenous ligand is under investiga-
tion, with endogenous steroids (pregnenolone, dehydroepiandrosterone sulfate (DHEA),
progesterone) being the most likely candidate [37,38], and N,N-dimethyltryptamine [39],
sphingolipids [40], and more recently, choline also investigated [41].

Despite its importance in physiology and disease, the biological function of S1R is
poorly understood [3]. This protein is involved in many biological processes and sig-
naling pathways including maintenance of calcium homeostasis [42–45], protein fold-
ing [42], stress-response [1,42,46,47], autophagy [48,49], and the regulation of cellular
excitability [50–52]. The S1R modulates the activity of ion channels via protein–protein
interaction [52,53]. The S1R mode of action is not coupled to any known signaling cascade
and is more consistent with its role as a modulatory or adaptor protein, or, using a term
first coined by Hayashi and Su, a “molecular chaperone” [34,42,54].

Several S1R-interacting partners have been identified and multiple recent reviews
comprehensively summarized these S1R interactors and the S1R-induced modulation of
their activities [2,3]. Apart from that, S1R is known to interact and mediate the clustering
of cholesterol and ceramides in the ER, as shown in cell-based assays [55–58]. We recently
demonstrated that S1R is associated with cholesterol-enriched clusters in the membranes
using in vitro reconstitution approach [59].

In this review we propose a hypothesis that the biological functions of the S1R are
mediated by its ability to form ER signaling cholesterol-enriched lipid microdomains,
analogous to the lipid rafts in the plasma membrane [60].

2. Intracellular Localization of the S1R

S1R primarily resides in the ER membrane where it forms microdomains [42,59,61,62].
Its localization is in contrast to the uniform distribution pattern of ER markers, such
as the Sec61b protein. A significant proportion of S1R is localized to MAMs, an ER
sub-compartment closely associated with the mitochondria [42,59], in proximity to lipid
droplets [63], and at the ER-plasma membrane (PM) junctions [59,64]. It is likely that S1R
are localized to additional inter-organelle contact sites, but this has not been systematically
investigated.

MAMs are distinct from the rest of the ER as they contain enzymes involved in
lipid synthesis, calcium signaling, cholesterol metabolism, and the ER stress-response
pathways [65–69]. A detailed protein composition of MAMs was initially characterized
by biochemical purifications [70,71] and more recently established using sophisticated
proximity labeling approaches [72–74].

While the precise lipid composition of the MAMs has not yet been elucidated, recent
evidence suggests that cholesterol and ceramide content is significantly higher in MAMs
compared to the rest of the ER [57,75,76]. Therefore, MAMs can be thought of as specialized
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ER signaling domains characterized by unique protein and lipid compositions, similar to
PM lipid rafts [60].

While PM lipid and protein heterogeneity was visualized using the giant plasma
membrane-derived vesicle technique [77–79], only recently was a similar method to yield
endomembrane-derived giant unilamellar vesicle (GUV)-like vesicles developed [80].
Using this approach, it was observed that certain, but not all ER contact sites (such
as ER-mitochondria, ER-PM, and ER-lipid droplets) showed separation of the glyco-
sylphosphatidylinositol (GPI) ER-targeted marker with a strong affinity for lipid-ordered
phase [80]. Similar lipid and protein compartmentalization were recently observed at the
inter-organelle contact sites in yeast [81], providing additional experimental evidence for
microscopic lipid heterogeneity in the ER.

Binding immunoglobulin protein/glucose-regulated protein 78 (BiP/GRP78) was
identified as a major S1R binding partner using pull-down experiments [42]. The S1R inter-
acts with BiP in a calcium- and agonist-dependent manner. At high Ca2+ concentrations or
in the absence of an agonist, the S1R forms a complex with BiP, keeping it in an inactive
state. Therefore, BiP interaction contributes to S1R retention in the ER.

Under conditions of calcium depletion, or agonist activation, the S1R dissociates
from BiP [42]. Agonist stimulation leads to redistribution of S1R from clusters to the
ER, plasma membrane, and extracellular space [55,61]. In flotation assays, activation by
an agonist causes the S1R to translocate from detergent-resistant to detergent-soluble
fractions [55,61,63].

S1R activation releases the inhibitory interaction with BiP and allows for the S1R to
interact with various partners inside and outside of the MAMs, including the inositol-
1,4,5-triphosphate receptor type 3 (InsP3R3) [34,42]. Our recent results [59] and previous
studies [57] suggest that a direct, high-affinity association of the S1R with cholesterol and
ceramides may also contribute to S1R targeting by MAMs.

3. Interaction of S1R with ER Membranes

S1R was shown to interact with cholesterol in vitro [55], suggesting that S1R associ-
ation with cholesterol plays an important role in MAM targeting of the S1R [57] and in
modulation of PM cholesterol levels [58].

Recently, we demonstrated that cholesterol promotes the formation of S1R domains in
a model lipid bilayer system [59]. Using GUVs with reconstituted fluorescent-labeled S1R,
we observed that cholesterol was sufficient to cause clustering of recombinant S1R in the
absence of any other proteins [59]. This study further identified a novel cholesterol-binding
site within the transmembrane (TM) domain of the S1R. Additionally, point mutations in
the TM domain, which weaken the interaction of the S1R with cholesterol, result in the
impaired redistribution of S1R into the entire ER network [59].

In vitro, S1R clustering was observed in a narrow range between 2.5% and 5.0%
mol cholesterol [59], comparable with the cholesterol-dependence of sterol regulatory
element binding protein-2: sterol regulatory element-binding protein cleavage-activating
protein complex (SREBP-2:Scap) [82]. Our data suggests that S1R actively participates
in the assembly of micrometer-size cholesterol-enriched microdomains. On the basis of
these observations, we propose that S1Rs promote the formation and stabilization of MAM
microdomains, and potentially other ER contact sites [59]. Consistent with this idea, the
genetic deletion of S1R impairs MAM stability and results in a reduced number of contacts,
as observed by electron microscopy (EM) and biochemical fractionation [43].

The S1R has an unusually long, single transmembrane domain [59]. Local “measure-
ments” of bilayer thickness with transmembrane sensors showed that bilayers surrounding
S1R domains are thicker [59]. In the crystal structure, the S1R molecules are organized
as trimers, with their C-terminal ligand-binding domain partially embedded in the mem-
brane [31,83]. These amphipathic helices at the C-terminus of the S1R are rich in aromatic
residues and, thus, can play a role in additional stabilization of the bilayer structure, a
phenomenon previously observed for other amphipathic helices [84,85].
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Thus, we reasoned that the local membrane thickness is increased in S1R-formed ER
microdomains [59], which likely plays a role in the sorting of ER membrane proteins to
these domains [79,81].

4. The S1R Interactome

To understand the functional significance of S1R-formed microdomains in the ER, we
performed an unbiased screen aimed at identifying proteins located in proximity to S1R in
cells. Analysis of such a “S1R interactome” further clarifies the composition and biological
function of these microdomains.

Our experiments utilized a Tet-inducible vector expressing S1R fused to the per-
oxidase APEX2 in a proximity labeling technique, which captures weak and transient
interactions [86].

For that purpose, we generated a plasmid encoding the S1R and fused to a genet-
ically engineered APEX2 peroxidase, under the Tet-On tetracycline-inducible promoter
(S1R-APEX2). Proteins in close proximity of S1R-APEX2 were biotinylated (see Materials
and Methods Section for details) and the biotinylated proteins were pulled down using
streptavidin-agarose. The eluted proteins were separated by sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) and analyzed by mass spectrometry. Control
non-induced cells were treated exactly the same way.

Using this approach, we identified several hundred proteins enriched in samples from
S1R-APEX2-induced HeLa cells (Figure 1A, Supplementary Table S1). To analyze these hits,
we first utilized the “cellular component” gene ontology (GO) term and determined that
the majority of these proteins were ER membrane or luminal proteins (Table 1), consistent
with the luminal localization of the S1R C-terminus [32,87]. Other enriched proteins were
components of the extracellular matrix (ECM) or the plasma membrane (PM), and a small
fraction were identified as Golgi and lysosomal proteins (Table 1). Since no S1R-APEX2
staining was detected on the plasma membrane by electron microscopy analysis ([32,87]
and our unpublished observations), we hypothesized that the PM proteins and ECM
components corresponded to a newly synthesized pool of proteins, that have not yet
exited from the ER membrane compartment (full lists of ECM and cell surface proteins are
provided in Supplementary Tables S1 and S2, respectively).

Hits from the S1R-APEX2 screen were then analyzed on the basis of their “biological
process” GO terms. The top GO terms identified in this analysis were protein folding,
oxidation-reduction processes, extracellular matrix organization, response to ER stress,
protein modification, and protein glycosylation (Table 2).

Table 1. Cellular component gene oncology (GO) classification of top hits from S1R-APEX2 screen.

GO_TERM
Cellular Component

% Fraction in Screen
(Number of Hits) p-Value

Total hits,
fold change > 2.5,

p-value < 0.05
100 (219) -

ER membrane 25.2 (55) 1.5 × 10−24

ER lumen 20.2 (44) 8.1 × 10−43

Extracellular space 18.3 (40) 1.9 × 10−7

Cell surface 13.8 (30) 1.3 × 10−11

Golgi 8.7 (19) 1.5 × 10−2

Lysosome 6.0 (13) 3.7 × 10−10

Nuclear envelope 4.1 (9) 6.5 × 10−4

ER-Golgi intermediate
compartment 4.2 (7) 1.6 × 10−4

ER quality compartment 2.8 (6) 2.7 × 10−7
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Figure 1. Identification of sigma-1 receptor (S1R) interactome. (A) The volcano plot of proteins iden-
tified in the S1R-APEX2 proteomic screen: x-axis—log2 fold change in S1R-APEX2-expressing HeLa
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sis (GSEA) identified S1R clusters as sites for protein folding and post-translational modifications;
the hits identified in the screen were compared to manually curated lists using GSEA.

Table 2. Biological process GO classification of top hits from S1R-APEX2 screen.

GO-SLIM_TERM
Biological Process Number of Hits p-Value

Protein folding in the ER 10 5.4 × 10−8

Extracellular matrix organization 7 5.4 × 10−8

ERAD pathway 5 2.8 × 10−4

ER stress-response 5 1.9 × 10−5

N-linked glycosylation 4 4.8 × 10−6

O-linked glycosylation 3 8.8 × 10−4

ER quality control 3 3.5 × 10−4

More specific analysis was performed using a gene-set enrichment analysis (GSEA) [88]
of these hits. GSE analysis (Figure 1B) revealed that the identified proteins (referred
here by their UniProt names) were involved in: (1) the formation and shuffling of disul-
fide bonds (multiple protein disulfide isomerases protein disulfide isomerases (PDIs)
PDIA3/4/5/6, thioredoxin-related transmembrane protein 3 (TMX3) and disulfide regen-
erating enzyme ERO1-like protein alpha (ERO1A)); (2) N- and O-linked glycosylation
(including enzymes involved in multiple steps of the co-translational attachment of the
dolichol-phosphate oligosaccharyl precursor (RPN1/2, STT3A/B), initial trimming of man-
nose chains (mannosyl-oligosaccharide glucosidase (MOGS); neutral alpha-glucosidase AB
(GANAB)), and quality control and refolding of sugar chains (UDP-glucose:glycoprotein
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glucosyltransferase 1/2 (UGGG1/2) and GANAB); (3) the attachment of a glycosylphos-
phatidylinositol (GPI) anchor (PIGS, PIGO, GPAA1); and (4) in ER quality control including
lectins, calnexin (CALX)/calreticulin (CALR), and machinery involved in targeting of
misfolded proteins to the retrotranslocation complex (ER degradation-enhancing alpha-
mannosidase-like proteins (EDEM2/3), ERLEC1, OS9 and protein SEL1 homolog (SEL1L)).
No significant components of the ER ubiquitin-ligase complex were identified, except
for SEL1L.

5. The Functional Role of S1R Microdomains: A Hypothesis

The results obtained in our studies with a reconstituted S1R [59] and in the S1R-APEX2
screen (Figure 1) led us to propose a novel hypothesis regarding the biological function
ofS1R in cells. We propose that S1R organizes cholesterol-enriched microdomains in the ER
(Figure 2). We reason that these microdomains are analogous to lipid rafts in the plasma
membrane [60] and that, similar to lipid rafts, these microdomains have unique lipid and
protein compositions when compared to the rest of the ER membrane. We also reason that
these microdomains are thicker than the rest of the ER [59]. Our data [59] suggest that these
microdomains are preferentially formed at ER membrane contact sites such as MAMs. We
propose that these microdomains serve as a platform for the post-translational modification
(PTM) and maturation of proteins in the ER, on a pre-secretory stage. These platforms may
also play a role in protein folding-modification processes that take place in the early stages
of protein synthesis, before properly folded proteins can be sorted to post-ER organelles.
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Figure 2. Proposed function of S1R microdomains in the endoplasmic reticulum (ER). S1R mi-
crodomains are formed in the ER membranes and enriched in MAMs. S1R microdomains are
characterized by higher cholesterol content and thicker bilayer structure when compared to the rest
of the ER membrane. In S1R domains, protein folding-modification machinery is compartmentalized
and allows a protein to proceed from a folding intermediate (FI) state to a fully folded (F) state. Client
proteins (shown here as a single transmembrane helix for simplicity), which can include ER resident
proteins, components of extracellular matrix, and PM channels/receptors, are recruited to these
clusters. Folding machinery include enzymes involved in the following processes: GPI transamidase
complex (PIG) catalyzing the transfer of a GPI moiety to nascent protein chains; initial glycosylation
steps (components of oligosacharyl transferase complex alpha-1,3/1,6-mannosyltransferase (ALG),
recognition particle 1/2 (RPN1/2)), initial mannose trimming steps (MOGS, GANAB), and glycan
refolding (UGGG1/2, GANAB); ER lectins involved in protein quality control and refolding (calnexin
(CALX)/calreticulin (CALR)); oxidative folding enzymes (TMX and protein disulfide isomerases);
and finally, quality control lectins guiding unfolded proteins for recognition by the ER-associated
protein degradation pathway (ERAD). Agonists affect the S1R oligomerization state and result in
partial disassembly of S1R domains, leading to release of proteins from S1R clusters.
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No major ER exit site markers were identified in the S1R-APEX2 screen (Figure 1A,
Supplementary Table S1), suggesting they are localized outside of the S1R-formed mi-
crodomains. According to our hypothesis, PM proteins and proteins destined for secretion
to the extracellular space are temporarily “trapped” in rigid and cholesterol-rich S1R-ER
microdomains. While located in the S1R microdomains, these proteins can be processed
through folding-modification cycles with the help of the enzymatic machinery residing in
these domains. Strategic placement of S1R microdomains at MAMs ensures constant ATP
supply for high-energy-dependent oxidative folding and protein modification reactions.

In agreement with this hypothesis, the experimental evidence indicates that membrane-
bound calnexin and TMX are recruited to MAMs through palmitoylation, a known raft
targeting mechanism [89,90]. Components of GPI machinery are localized to ER detergent-
resistant membranes [91]. ER detergent-resistant membranes play an important role in
assembly and secretion of viral particles [92,93]. The timeframe of protein maturation in
the ER is known to be tightly controlled by mannose-trimming enzymes [94]. This tim-
ing can be especially important for transmembrane proteins (such as ion channels and
receptors) that contain multiple transmembrane domains. Local thinning of the ER mem-
brane was recently proposed to be required for the retrotranslocation of proteins though
the ER-associated degradation (ERAD) mechanism [95,96]. Therefore, client proteins and
enzymatic machinery localized to the “thick” S1R microdomains [59] are largely protected
from a premature proteasomal degradation by ERAD.

6. The S1R as a Therapeutic Target for the Treatment of Neurodegenerative Diseases

The S1R is a well-established target for the treatment of neurodegenerative disorders,
and it plays a key role in neurodegenerative diseases. Several S1R mutations have been iden-
tified to be associated with ALS and frontotemporal dementia (FTD) [97]. Two complete
loss of function (LOF) mutations cause a juvenile form of ALS [12,43]. However, missense
mutations that partially impair protein function are associated with an adult form of ALS,
showing a dose response between the function of S1R and the age of onset of ALS [98]. Ad-
ditional LOF mutations in S1R cause hereditary motor neuropathies [15,18]. Furthermore,
some variants of the S1R gene are associated with increased risk for Alzheimer’s disease
(AD) [99]. In addition, S1R expression levels are reduced in sporadic ALS [20], Parkinson’s
disease (PD), and Alzheimer’s disease (AD) patients [21,100].

Further support for the role of S1R in neurodegenerative diseases comes from animal
models. In preclinical models, genetic ablation of S1R (S1R−/−) in mice exacerbates
pathology and phenotypic presentation of several neurological disorders. For example,
S1R−/−mice display impairments in motor function and degeneration of motor neurons
at 5 months of age [101]. AD mice (APPsweInd), which lack S1R, show enhanced behavioral
and cognitive impairments, as well as a significant reduction in the levels of the brain-
derived neurotrophic factor (BDNF) compared to APPsweInd mice expressing the S1R [102].
In the ALS SOD1G93A mouse model that also lacks S1R expression (SOD1G93A/S1R KO),
disease progression is accelerated, as revealed by earlier weight loss and by a ~32% decrease
in survival time relative to SOD1G93A mice with normal S1R expression [101]. These results
suggest that the S1R plays an important role in healthy neuronal physiology.

S1R activation by agonists has demonstrated neuroprotective effects in multiple cel-
lular and animal models of neurodegeneration (reviewed in [5,45,103,104]). Extensive
evidence suggests that the mechanisms responsible for the neuroprotective effects of
S1R agonists include the stabilization of Ca2+ signaling [42,44,105,106], an increase in the
secretion of BDNF and the potentiation of BDNF-tropomyosin-related kinase B (TrkB)
signaling [107–112], the stimulation of cyclic AMP-responsive element-binding protein
(CREB)-mediated transcription [110], changes in the activity of the plasma membrane ion
channels and receptors [113–116], the potentiation of the N-Methyl-D-aspartate (NMDA) re-
ceptor response [113,117–119], and an improvement in mitochondrial function [43,120–122].

For example, we and others have shown that the highly selective and potent S1R
agonist pridopidine restores the dysregulated ER Ca2+ signaling and enhances spine
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density in Huntington’s disease (HD) and Alzheimer’s disease (AD) neurons [44,45,123].
Furthermore, S1R activation by pridopidine enhances synaptic plasticity in HD cortical neu-
rons [123] and exhibits a robust neuroprotective effect against mutant huntingtin-induced
cell death in mice’s primary HD neurons and in HD patient-derived induced-pluripotent
stem cells (iPSCs) [124]. Pridopidine has been found to upregulate BDNF secretion, potenti-
ate BDNF-TrkB signaling, and enhance BDNF axonal transport in several different models
of neurodegenerative diseases including HD and ALS [109,110,125]. Pridopidine has shown
protective effects on several mitochondrial functions in various human and mouse models
of HD. In primary HD neurons, pridopidine enhances mitochondria-ER tethering and
restores mitochondrial function as measured by increased ATP production, respiration,
and mitochondrial membrane potential [126]. All these effects are exquisitely mediated
by the activation of the S1R, as either a genetic deletion of the S1R or a pharmacological
inhibition using an S1R antagonist, completely abolishes pridopidine’s neuroprotective
effects, as shown in the studies mentioned above [126].

Recent clinical studies have shown the potential efficacy of the selective S1R ago-
nist pridopidine in HD patients, demonstrating maintenance or slowing the decline of
the patient’s functional capacity [127,128]. The non-selective S1R/Muscarinic (M1R) ago-
nist blarcamesine shows a potential beneficial effect in AD [129]. Clinical pivotal studies
with pridopidine are currently ongoing for HD and ALS (NCT04556656, NCT04297683).
Blarcamesine is currently being evaluated for AD, Rett syndrome, and PD dementia pa-
tients (NCT04314934, NCT04304482, NCT04575259). Results of completed clinical trials
of S1R agonists in variety of disorders have been comprehensively summarized in recent
reviews [4,130].

How can the activation of S1R exert such pleotropic and variable effects on cellular
signaling? We propose that the agonist activation of S1R results in the remodeling of S1R
microdomains (Figure 2). In our experiments [59] and in published studies [55,61], the
activation of S1R has resulted in the disassembly of the S1R oligomers. We propose that
agonists cause partial disassembly and remodeling of S1R microdomains in the ER, leading
to a rapid release of mature proteins that are trapped in these microdomains.

Consistent with this hypothesis, increases in the levels of PM proteins are often ob-
served following S1R stimulation with an agonist. For example, the S1R agonist SKF-10047
increased the plasma membrane fraction of the GluN1, GluN2A, and GluN2b NMDAR
subunits [118]. Cocaine increased the PM fraction of Kv1.2 [50,51]. Cell surface expression
of programmed cell death 1 ligand 1 (PD-L1) was increased after the agonist stimulation,
and lower levels of PD-L1 were observed in S1R knockdown (KD) cells [131]. On the
other hand, S1R knockdown (KD) decreased the stability and levels of the mature human
ether-à-go-go-related gene (hERG), as well as hERG currents [132]. A shorter protein half-
life was observed for InsP3R3 in MAMs in S1R KD cells [42], and the turnover of p35,
which is dependent on protein myrostyilation, was lower in S1R deleted cells [133]. In
contrast, however, the stability of UDP-galactose:ceramide galactosyltransferase (UGT8)
was increased in S1R deleted cells [134].

The same idea applies not only to PM proteins, but also to secreted proteins. BDNF
release increased after treatment with the S1R agonists pridopidine and cutamesine in B104
cells and in astrocyte cultures [111,135]. Levels of secreted BDNF and glial cell-derived
neurotrophic factor (GDNF) were increased in substantia nigra after pridopidine and sigma
receptor agonist PRE-084 treatment in the experimental Parkinsonism model [112,136].
Moreover, it was shown that BDNF processing is modulated by S1R at the post-translational
stage [135], in line with our hypothesis.

On the basis of these results, we propose that there is a “reserve pool” of PM and
secreted proteins which accumulate in cholesterol-rich ER microdomains. S1R agonists
facilitate the remodeling of these microdomains and the rapid release of PM and secreted
proteins, resulting in a robust response to stress and in neuroprotective effects.

Additional neuroprotective effects of S1R activation may also be related to the modu-
lation of ER Ca2+ signaling, in particular inositol trisphosphate receptor (InsP3R)-mediated



Int. J. Mol. Sci. 2021, 22, 4082 9 of 16

Ca2+ signaling [42,44,137] and ER-mitochondrial Ca2+ transfer [42,43]. The possible expla-
nations for the observed potentiation of InsP3-induced Ca2+ release [137–139] can include
the direct effects of cholesterol on the activity of the InsP3Rs, the modulation of ER Ca2+

content through cholesterol regulation of sacro/endoplasmic reticulum Ca2+ (SERCA)
pump [140–142], the removal of the ankyrin inhibition of InsP3Rs [137], and the redistribu-
tion of InsP3Rs from MAMs to the peripheral ER [42,43].

This proposed model may explain the pleiotropic effects of S1R agonists and provide
appropriate context for the development of S1R-targeting therapeutic agents.

7. Materials and Methods
7.1. Construct Design and Molecular Cloning

For cloning the S1R-APEX2 fusion gene, APEX2 (https://www.addgene.org/92158, ac-
cessed on 1 March 2019) and human S1R (NM_005866) genes were amplified by PCR using
the following primers: S1R-EcoRI-F 5′ TAAATGAATTCATGCAGTGGGCCGTGGGCCGG,
S1R-NotI-R 5′ GATGCGGCCGCAGGGTCCTGGCCAAAGAGGTAGGT, APEX2-NotI-F 5′

ATCGCGGCCGCCACCATGGACTACAAG, APEX2-BamHI-Rev 5′ ATTGGATCCTTAG-
GCATCAGCAAACCCAAGCTC. The NotI site was introduced to the APEX2 5′ primer and
to the S1R 3′ primer. PCR products were ligated using T4 ligase (NEB, Ipswich, MA, USA)
and amplified using the outer primers S1R-EcoRI-F and APEX2-BamHI-Rev to produce
the fusion gene S1R-APEX2. The resulting S1R-APEX2 gene was cloned into pTRE-3g
expression vector (Takara, Kusatsu, Japan) using EcoRI and BamHI cloning sites.

7.2. Generation of Stable HeLa Cell Lines

For the generation of stable lines, pTRE-3g-S1R-APEX2 plasmid was transfected in
HeLa Tet-On inducible cell line (kindly provided by Phillip Thomas’s lab, UTSW) together
with a linear puromycin-resistant marker (Takara, Kusatsu, Japan). Stable doxycycline-
responsive monoclonal lines were isolated and expanded. The induction of the S1R-APEX2
fusion protein was confirmed by Western blot analysis using anti-APEX2 horseradish
peroxidase-conjugate (ab192968, 1:1000, Abcam, Cambridge, UK) and anti-S1R (B-5, 1:300,
Santa-Cruz, CA, USA) antibodies.

7.3. Proximity Biotinylation Experiments

For the APEX2-based proximity-labeling experiments, we followed a procedure de-
scribed in [143]. Briefly, for each experiment, the S1R-APEX2 HeLa cells were cultured on
six 10 cm2 dishes. S1R-APEX2 production was induced by the addition of 1 µM doxycycline
to the medium. After 72 h post-induction, the cells were incubated in 500 µM biotin-phenol
(Iris Biotech, Marktredwitz, Germany) in complete medium at 37 ◦C for 1 h. Then, proteins
were labeled by the addition of 1 mM H2O2 for 1 min and quenched with 10 mM sodium
ascorbate, 5 mM Trolox, and 10 mM sodium azide in phosphate buffered saline (PBS).
Cells were lysed in radioimmunoprecipitation assay buffer (RIPA) buffer (50 mM Tris-HCl
pH = 7.4, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% Triton X-100, 1× com-
plete protease inhibitor cocktail) for 15 min at 4 ◦C on a rocker shaker. After centrifugation
at 14,000× g for 10 min, 1 mL of lysate was mixed with 50 µL of streptavidin-agarose
(Pierce) and incubated at 4 ◦C for 4 h on a rotary shaker. Resin was washed twice with
1 mL of RIPA buffer, once with 1 M KCl, once with 0.1 M Na2CO3, once with 2 M urea in
25 mM Tris-HCl pH = 8.0, and twice with RIPA buffer. Proteins were eluted by boiling
beads in 50 µL of 2× SDS Laemmli loading buffer plus 2 mM biotin. Protein biotinylation
was confirmed by Western blot analysis using streptavidin-HRP (7403, 1:20,000, Abcam,
Cambridge, UK) antibody. Experiments were performed in duplicates with non-induced
cells serving as the control.

7.4. Protein Identification by LC-Tandem Mass Spectrometry and Data Analysis

Eluates were loaded on a 12% gel (BioRad, Hercules, CA, USA). Gels were stained
with Coomassie blue. Stained 1-cm bands were cut out of gels, sliced into 1-mm cubes
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and transferred to 1.5 mL Eppendorf tubes for submission. Raw mass spectrometry data
was pre-proceeded and provided by UT Southwestern Proteomics Core. The statistically
significant protein hits fold enrichment (calculated by diving a sum of spectral index
values in doxycycline-induced samples vs. control samples) and p-values were calculated
for each identified protein with at least three peptide sequences. Hits were selected by
applying the following criteria: fold change >2.5 and p-value < 0.05. For gene ontology
analyses, UniProt IDs were converted to gene names and analyzed by DAVID bioinformatic
resources v6.8 (Laboratory of Human Retrovirology and Immunoinformatics, Frederick
National Laboratory) [144]. Gene-set enrichment analyses (GSEA) were performed using
GSEA v.4.1.0 (UC San Diego/Broad Institute) [88] software using the indicated molecular
signature databases according to the instructions (https://www.gsea-msigdb.org/gsea,
accessed on 1 March 2020). Data was visualized in R using the ROTS [145] package and
GSEA software [88].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22084082/s1, Table S1: List of protein hits identified in the S1R-APEX2 proteomics screen.
Table S2: Extracellular matrix components. Table S3: Cell surface proteins and receptors.
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