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To meet the enormous demand for smart manufacturing, industrial robots are playing

an increasingly important role. For industrial operations such as grinding 3C products,

numerous demands are placed on the compliant interaction ability of industrial robots to

interact in a compliant manner. In this article, an adaptive compliant control framework

for robot interaction is proposed. The reference trajectory is obtained by single-point

demonstration and DMP generalization. The adaptive feedforward and impedance force

controller is derived in terms of position errors, and they are input into an admittance

controller to obtain the updated amount of position deviation. The compliant interaction

effect is achieved, which is shown that the grinding head fits on the curved surface of

a computer mouse, and the interaction force is within a certain expected range in the

grinding experiment based on the performance an Elite robot. A comparative experiment

was conducted to demonstrate the effectiveness of the proposed framework in a more

intuitive way.

Keywords: single point demonstration, DMP generalization, adaptive compliant control framework, position

deviation, grinding experiments

INTRODUCTION

With the rapid development of industry, the traditional model cannot meet the demand of high-
speed production, and as a result industrial robots are necessary to change the original production
model. In the industrial 4.0 age, industrial robots in intelligent manufacture have attracted more
and more attention (Qi et al., 2020; Cheng et al., 2021; Lu et al., 2021). In recent years, robot
technology has broad application prospects in many fields, most of the working procedures in
factories have long been replaced by industrial robots (Luo et al., 2020; Su et al., 2020). In the
processes of intelligent manufacturing, such as grinding steam turbine engine blades, polishing
helicopter propellers, automobile component assembly, and so on, it is impossible to realize these
precise and meticulous operations through only the traditional position control and force control.
Therefore, the research on the compliant force control of industrial robots has great practical value
and engineering significance (Chao, 2017; Zhang K. et al., 2021).

Compliance can be divided into active compliance and passive compliance (Kim et al., 2010).
Passive compliance relies on some auxiliary compliance mechanisms; active compliance means
that the robot uses the information feedback at the end and adopts a certain control strategy to
produce an active control force (Wang et al., 1998; Zhu et al., 2021). Due to the engineering value
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of compliance control, it has attracted extensive attention from
scholars. Some researchers use machine learning methods based
on Gaussian mixture models (GMM) and artificial neural
network models to model motion and force using temporal
information (Yun et al., 2012; Müller et al., 2020). The
development of vision sensors and force sensors also provides
great convenience for compliance control (Lee et al., 2012; Niu
et al., 2021). Following the obedience behavior mechanism of
the human arm also provides a new control strategy and idea
for the robot’s compliant force control (Zeng et al., 2022). Due
to the high-performance requirements of robot position control
and force control in grinding, engraving, and other operations,
the current research level on compliance control is insufficient
(Park et al., 2008; Zhou et al., 2021).

In this study, a complete framework of a compliant
control scheme for industrial robot interactive operation is
developed. Firstly, the reference trajectory is obtained by single
point teaching and DMP generalization. Then the motion
error information is input into the adaptive feedforward and
impedance force controller. Next, they are input into the
admittance controller to obtain the updated amount of position
deviation. Finally, the motion of the manipulator is controlled
by the robot joint controller. The framework can adaptively
adjust the reference trajectory and interaction force, which
greatly enhances the interaction accuracy. The contributions
can be summarized as follows. (1) A complete framework
of an adaptive compliant control scheme for industrial robot
interactive operation is developed to take into account the
feedforward force and impedance force, which guarantees the
robot end effector to better fit on the interacting surface and
the interaction force to be within a certain expected range. (2)
The framework is applied to the grinding task with rigorous
requirements for the control accuracy of position and force,
which achieves a good grinding effect.

The rest of the article structure is organized as follows. In
methodology, the methods of reference trajectory generation and
adaptive compliant controller used in this article are introduced.
In experiment and result, the experimental study is presented and
then the effectiveness of the framework proposed in this article
is verified via computer mouse surface grinding experiments. In
discussion, the experimental results are analyzed and explained.
Finally, the conclusions section summarizes the whole article.

METHODOLOGY

Overview of the Framework
The block diagram of the proposed framework is shown in
Figure 1. In the proposed compliant interaction framework, the
human tutor presents a demonstration at first. The trajectory
learned from the DMP model is regarded as the reference
trajectory Xr. Then the motion error information is input
into the adaptive feedforward and impedance force controller.
After removing part of the disturbance, they are input into the
admittance controller to obtain the updated amount of position
deviation. Finally, the motion of the manipulator is controlled by
the robot joint controller.

Preliminaries and Control Methods
Dynamic Movement Primitives
In this article, the DMP model is used to generate the motion
trajectory (Liu N. et al., 2020). The principle andmain calculation
process of the DMP model are as follows (Ude et al., 2014).

A single degree of freedom motion DMP model can be
expressed by a spring-damping nonlinear dynamical second-
order system as follows.

ξΥ̇2 = a(g − Υ1)− bΥ2 + Γ (s,ω) (1)

ξΥ̇1 = Υ2 (2)

ξ ṡ = −k1s (3)

where, in order to simplify the model, the time variable is
ignored. Υ1(t) is represented by Υ1; the system spring and
damping coefficient are represented by a and b respectively. We
set a = b2/4. g is the desired value of the motion trajectory.
ξ indicates the time scaling coefficient. Υ1 and Υ2 represent
the position and velocity of motion trajectory, respectively. ω
represents the weight of the Gaussian model. In Equation (3), s
represents the phase variable of the system, and k1 is a positive
constant. The nonlinear function Γ (s,ω) is defined as follows.

Γ (s,ω) =

∑N
i=1 ψiωi

∑N
i=1 ψi

(g − Υ0)s (4)

ψi = exp(−di(s− ci)
2) (5)

where, ωi di and ci, are the weight, width, and center of the i-th
kernel function, respectively. Υ0 is the initial value of the motion
trajectory; N is the total number of Gaussian models (Zhang Y.
et al., 2021).

We set the initial value of s as 1, which decays to 0 in the
process of time. The nonlinear function Γ (s,ω) is bounded
because the value of s tends toward 0. Thus, the model is a stable
second-order spring-damping system.

In this algorithm, the local weighted regression algorithm
(LWR) is used to determine model parameters ω. The
demonstration trajectory Υ (t) is obtained, where t = [1, 2..., T],
g = Υ (T) (Lin et al., 2020).

Gravity Compensation and Force Sensor Calibration
In applications of industrial robots such as grinding, the contact
force between the end tool of the robot and the external
environment needs to be accurately perceived, and the control
system modifies the motion of the robot accordingly in order
to ensure compliance of the operation. Therefore, gravity
compensation is very necessary (Yang et al., 2020; Yu et al., 2021).

On the basis of ensuring the sensor installation angle through
mechanical positioning, using the sensor data under the general
attitude of no <3 robots, the parameters such as sensor zero
point, robot installation inclination, load gravity, and load gravity
center coordinates are obtained by using the least square method.
The specific calculation process is referred to Zhang et al. (2017).
Finally, the real force in X, Y, and Z directions after gravity

Frontiers in Neurorobotics | www.frontiersin.org 2 March 2022 | Volume 16 | Article 865187

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xue et al. A Compliant Force Control Scheme

FIGURE 1 | Overview of the proposed framework.

FIGURE 2 | Grinding experiment platform based on Elite robot.

compensation is

Fsx = Fx − Fx0 − Gx (6)

Fsy = Fy − Fy0 − Gy (7)

Fsz = Fz − Fz0 − Gz (8)

where, Fx, Fy, and Fz are the three force components directly
measured by the force sensor; Fx0, Fy0, and Fz0 are the sensor zero
values obtained after identification; Gx, Gy, and Gz represent the

components of the load gravity in the X, Y, and Z directions of
the force sensor coordinate, respectively.

Kalman Filter
The force measured by the F/T sensor usually contains a
lot of noise, which can seriously affect the control accuracy.
Considering the good performance and simple implementation
of the Kalman filter, in this article, we choose the Kalman
filter for noise reduction to obtain a more accurate input force
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FIGURE 3 | Force compensation test with different end positions and angles. (A) Posture transformation in the Y-O-Z plane. (B) Posture transformation in the Z-O-X

plane.

TABLE 1 | Force compensation testing results in the case of no external

environment interaction.

End postures Forces in base coordinate

0◦ (0.06, −0.06, −0.22) N

45◦ (Y-O-Z) (1.21, 0.87, −0.49) N

−45◦ (Y-O-Z) (0.95, −0.69, 1.13) N

45◦ (Z-O-X) (−0.98, −1.20, 0.89) N

−45◦ (Z-O-X) (1.02, 0.91, −1.07) N

(Tsai et al., 2010; Liu J. et al., 2020). At first, we suppose that the
noise is Gaussian white noise. The system and measurement
model can be defined as Equations (9, 10).

Ẋ (t) = A0X (t)+ U (9)

Y (t) = B0X (t)+ C0g + V (10)

where, U and V are system andmeasured noise, respectively (Zhu
et al., 2018).

We discrete the continuous system and yield the different
equations as follows.

Xk = AXk−1 + Uk−1 (11)

Yk = BXk + Cg + Vk (12)

A =

[

I I
0 I

]

,B = B0,C = C0 (13)

The state X̂−
k|k−1

and the covariance P−
k|k−1

at time step k decided

by the result at time step k-1 can be calculated as follows, where
S and M indicate the covariance of the system and measured
noise, respectively.

X̂−
k|k−1

= AX̂k−1 (14)

P
−
k|k−1

= APk−1A
T + S (15)

The gain Gk and the optimal estimation at time step k is
obtained by:

Gk = P
−
k|k−1

BT(BP−
k|k−1

B+M)
−1

(16)

X̂k = X̂−
k|k−1

+ Gk(Yk − BX̂−
k|k−1

) (17)

The covariance Pk is updated at last:

Pk = (I − GkB)P
−
k|k−1

(18)

Robot Dynamic Description
The dynamics of the robot in the joint space is as follows (Murray
et al., 2018; Ahmad et al., 2021).

Mq

(

q
)

q̈+ Cq

(

q, q̇
)

q̇+ Gq

(

q
)

= τc + τext (19)

where q, q̇, and q̈ are the coordinate, speed, and acceleration in
the joint space, respectively. Mq(q) ∈ Rn×n is the inertia matrix
of the manipulator, Cq(q, q̇) ∈ Rn×n represents the centrifugal
and Coriolis force vector, Gq

(

q
)

∈ Rn×1 represents the gravity
torques, τc ∈ Rn is the vector of the control input, and τext ∈ Rn

is the vector of the measured interaction force, which is the force
exerted by the human on the robotic arm.

Since the manipulator is controlled in Cartesian space, the
above formula is transformed from joint space to Cartesian space
as follows:

Mx

(

q
)

ẍ+ Cx

(

q, q̇
)

ẋ+ Gx

(

q
)

= fc + fext (20)

where x, ẋ, and ẍ are the coordinate, speed, and acceleration
in Cartesian space, respectively. The remaining variables are
transformed from the joint space to Cartesian space as follows,
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and robot dynamics have the following two properties.

Mx = J−TMqJ
−1 (21)

Cx = J−T
(

Cq −MqJ
−1 J̇

)

J−1 (22)

Gx = J−TGq (23)

fc = J−T τc (24)

fext = J−T τext (25)

Property 1:Mx

(

q
)

is a symmetric and positive definite matrix.
Property 2: 2Cx

(

q, q̇
)

− Ṁx

(

q
)

is a skew-symmetric matrix.

Admittance Controller
The prescribed admittance model is defined as follows:

ME

(

Ẍ − Ẍr

)

+ CE

(

Ẋ − Ẋr

)

+ KEX = fin (26)

fin = fc − fR (27)

Where, fin is the input of admittance controller; fc is robot
drive force; fR is the desired reference interaction force. X, Ẋ,
and Ẍ represent the current position, velocity, and acceleration,
respectively. Ẋr and Ẍr represent the reference velocity and
acceleration, respectively.ME,CE, andKE represent the unknown
mass, damping, and stiffness matrices in the model, respectively.
However, since the mass matrixME is usually high nonlinear. In
this study, the mass-damping-stiffness model is simplified as the
damping-stiffness model, which is used to interact with a balloon
as a kind of flexible object (Huang et al., 2020; Shen et al., 2020).
The simplified model is as follows:

CE

(

Ẋ − Ẋr

)

+ KEX = fc − fR (28)

Adaptive Control Model
Inspired by the human arm motor learning mechanism, we can
think that the control input fc consists of the sum of a feedback
term and a feedforward term.

fc = z + w (29)

where z and w are the feedback force (impedance term) and the
feedforward force, respectively. The impedance term is described
as follows.

z = Dė+ Ke (30)

e = Xr − X (31)

ė = Ẋr − Ẋ (32)

where e and ė are the auxiliary displacement error vector and the
auxiliary velocity error vector, respectively.D andK represent the
endpoint damping matrix and stiffness matrix, respectively.

The stiffness matrix elements will be adapted according to
the task situation. Then we can calculate the damping matrix

by the stiffness matrix as Dt
i = ς

√

Kt
i at each time step. At

the beginning, we predefine the positive coefficient ς and the
constant i= [1, 2, 3].

We choose the following cost function for the concurrently
minimizing of the motion trajectory error and the effort (Ganesh
et al., 2010):

Jcost =
α

2
zTz +

N
∑

i=1

γiwi (33)

where α and γ are the N-dimensional parameter vectors. α >
0 and γ > 0 are used to calculate the corresponding endpoint
impedance force and feedforward force, respectively. The former
term indicates the cost of motion error, and the latter term, i.e.,
the weighted sum of the feedforward items, indicates the cost of
effort (Ye et al., 2021).

We suppose the impedance term z as a linear function,
increasing in both negative and positive directions. This
supposition is according to the mechanism of human motor
learning, which can be described as follows (Zeng et al., 2020).

zi = εi,+ + ζεi,−, ζ ∈ (0, 1) (34)

where, εi,+ and εi,− represent the negative and positive
directions, respectively, and they are defined as follows.

εi = π (ei + δėi) (35)

εi,+ = max (εi, 0) (36)

εi,− = (−ε)i,+ (37)

where, π and δ are positive constants, and ε represents the sliding
error vector.

The learning of Equation (33) can be defined as a gradient
descent problem, which can be described as follows.

1wt = wt+1 − wt = −
∂Jcost

∂w
(38)

Then yielding the following law:

1wt = αzt − γ (39)

According to Equations (34) and (35), we divide the adaptation
law into three terms: an antisymmetric term, a symmetric term,
and a bias term.

1wt =
α

2
(1− ζ ) εt +

α

2
(1+ ζ )

∣

∣εt
∣

∣ − γ (40)

EXPERIMENT AND RESULT

In this section, the performance of the proposed compliant force
control scheme was validated by conducting the experiment on
a 6 degree of freedom Elite-EC66 robot as shown in Figure 2.
The ATI Mini45 Force/Torque sensor was mounted on the end
of the manipulator through the connecting flange to sense the
interacting force between the end effecter and the environment
in real-time. The computer mouse model to be ground was fixed
on the experiment bench by a holding vice. The mouse model
used in the experiment was made by 3D printing, and its material
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FIGURE 4 | (A) Side view of the mouse model to be ground. (B) Distribution of demonstration points on mouse curved surface.

FIGURE 5 | Desired grinding trajectory generating via demonstration and DMP.

was PETG polymer. The side view of the mouse model is shown
in Figure 4A. A cylindrical sand grinding head with a diameter
of 1 cm was driven to rotate by a drive motor. The rated power of
the drive motor was 80w and the rotating speed was 5,000 r/min.
The force sensor and the upper computer communicated by the
UDP protocol whose sampling rate and control rate was set as
100 and 50Hz, respectively.

Gravity Compensation Effect Test
In order to more accurately reflect the interactive force
information between the grinding head and the mouse, it is
necessary to compensate for the zero point of the sensor and
the gravity of the end external tool. According to the method in
Section Gravity Compensation and Force Sensor Calibration, we
tested the force compensation effect. The weight of the end tool
identified by the algorithm was 790.33 g, and the two installation
inclination angles of the Elite robot were −4.34 and −1.35◦,
respectively. The zero point of the force sensor was: (Fx0, Fy0,

Fz0) = (−0.13, 0.76, −7.91) N. As shown in Figure 3, we tested
the effect of force compensation for different end postures. In
the case of no external environment interaction, the following
five representative gestures in the Y-O-Z plane and the Z-O-X
plane were selected for verification. The result data were shown
in Table 1.

Grinding Trajectory Generation
The grinding trajectory was generated by DMP generalization
after human teaching of the robot. Due to the function limitation
of the Elite manipulator, it was difficult to demonstrate through
continuous dragging. In the teaching stage, the single-point
teaching method was adopted for the elite robot. As shown in
Figure 4B, we marked the teaching points on the mouse surface
with a marker pen. The human tutor dragged the robot arm
to demonstrate 16 points on the long side and 4 points on the
short side. In the meantime, the teaching points information was
recorded through the program.

The teaching points were divided into four segments and put
into the DMP model for training. After that, the four trajectories
interpolated and generalized by DMP were spliced into one
trajectory as the grinding reference trajectory Xr . The three-
dimensional space graph of the desired grinding trajectory is
shown in Figure 5.

Compliant Grinding Experiments
In this part, we conducted grinding experiments according to
the reference trajectory generated in the previous part, and
monitored the actual grinding trajectory and grinding interaction
force. The main parameters in the experimental program were
set as: π = 1.7; δ = 0.02; α = [10, 10, 10]T; γ = [5, 5, 5]T;
CE = diag [4, 4, 4]; KE = diag [20, 20, 20]. The grinding time to
complete the reference trajectory was 85 s. Due to the proposed
algorithm being able to adjust the position, the end grinding
head trajectory did not completely follow the reference trajectory
in the grinding process. In order to more intuitively see the
effect of the compliant grinding framework proposed in this
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FIGURE 6 | Reference and actual grinding trajectories of two experiments. (A) Spatial view of grinding trajectories. (B) Grinding trajectories in the X direction. (C)

Grinding trajectories in the Y direction. (D) Grinding trajectories in the Z direction.

article, we also conducted another comparative experiment. In
the comparative experiment, we removed the compliant force
control scheme part and only carried out the grinding experiment
under the control of the joint controller of the Elite robot. To
meet the conditions of the two experiments as much similar as
possible, we used the same reference trajectory for grinding. We
replaced the mouse model with a fresh copy, and it is worth
mentioning that the mouse models used in the two experiments
are based on the same model and from the same 3D printer.
That is, their sizes and materials are identical. Similar to the first

experimental process, we also recorded the actual trajectories in
the X, Y, and Z directions of the end grinding head. Then, we
draw the reference grinding trajectory, the compliant grinding
trajectory, and the comparative experimental grinding trajectory
in the same coordinate system, as shown in Figure 6. During
two grinding experiments, the grinding interaction forces in X,
Y, and Z directions were recorded at the same time, as shown in
Figure 7.

After two grinding experiments, the actual grinding effect
photos of the mouse models are shown in Figure 8. The annular
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FIGURE 7 | Grinding interaction forces in X, Y, and Z directions. (A) Interaction force in X direction. (B) Interaction force in Y direction. (C) Interaction force in Z

direction.

FIGURE 8 | (A) Grinding effect based on the compliant grinding framework. (B) Grinding effect of the comparative experiment.

area between two black rectangles was the grinding effect based
on the compliant grinding framework, and the annular area
between two red rectangles indicated the grinding effect of the
comparative experiment.

DISCUSSIONS

From Figure 5, we can see that the grinding trajectory generated
by DMP generalization does not completely fit all teaching
points. Therefore, we cannot directly use the reference trajectory
obtained by the demonstration for position control, especially
for grinding tasks, which have high requirements on position
and force accuracy. So it is necessary to adjust and update the
desired position based on the reference trajectory in combination
with the interaction force information. From Figure 6, it is
not difficult to see that the compliant grinding framework

proposed in this article can calculate the updated amount of
position deviation depending on the size of the interaction
force, so as to ensure that the grinding head can better fit
the surface of the mouse model without excessive extrusion.
Figure 7 shows the change in interaction force during compliant
grinding. The contact force in the Z-direction fluctuates up
and down around 3N, and the maximum value does not
exceed 5N. However, if the compliant force control part is
removed, the degree of force instability and fluctuation increases.
Moreover, two peaks of the force in the Z-direction exceed
10N. It can also be seen from Figure 8B that excessive contact
force produces a large amount of grinding heat, and the
high temperature makes the mouse surface begin to melt. It
is obvious that excessive grinding force will seriously affect
the grinding effect of the mouse model. However, there are
many disturbances in the grinding process. Kalman filter alone
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cannot solve the problem of disturbance compensation. In
the later research work, we will further study how to better
compensate for the grinding disturbances and improve the
grinding accuracy.

CONCLUSIONS AND FUTURE WORK

In this article, a robotic-compliant grinding framework was
proposed. With learning from the demonstration approach,
the robot can obtain reference input more quickly. The
interpolation and generalization of DMP overcomes the difficulty
of continuous demonstration. In addition, the feedforward force
and impedance force were adaptively adjusted to realize the
compliant interaction with the ground workpiece. Then the force
information was input into the admittance controller to obtain
the updated amount of position deviation, so as to adjust the
reference trajectory in real-time. At last, the effectiveness of the
proposed framework was verified by the grinding experiment of
themousemodel surface. The experiments showed that the frame
canmake the grinding head close to the computer mouse’s curved
surface and control the interaction force within a certain expected
range. Our research will focus on overcoming various grinding
disturbances and we hope to improve the compliant grinding
performance of the platform.
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