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Many bioactivity databases offer information regarding the biological activity of small molecules on protein targets.

Information in these databases is often hard to resolve with certainty because of subsetting different data in a variety

of formats; use of different bioactivity metrics; use of different identifiers for chemicals and proteins; and having to access

different query interfaces, respectively. Given the multitude of data sources, interfaces and standards, it is challenging to

gather relevant facts and make appropriate connections and decisions regarding chemical–protein associations. The

CARLSBAD database has been developed as an integrated resource, focused on high-quality subsets from several bioactivity

databases, which are aggregated and presented in a uniform manner, suitable for the study of the relationships between

small molecules and targets. In contrast to data collection resources, CARLSBAD provides a single normalized activity value

of a given type for each unique chemical–protein target pair. Two types of scaffold perception methods have been

implemented and are available for datamining: HierS (hierarchical scaffolds) and MCES (maximum common edge sub-

graph). The 2012 release of CARLSBAD contains 439 985 unique chemical structures, mapped onto 1,420 889 unique bioac-

tivities, and annotated with 277 140 HierS scaffolds and 54 135 MCES chemical patterns, respectively. Of the 890 323 unique

structure–target pairs curated in CARLSBAD, 13.95% are aggregated from multiple structure–target values: 94 975 are

aggregated from two bioactivities, 14 544 from three, 7 930 from four and 2214 have five bioactivities, respectively.

CARLSBAD captures bioactivities and tags for 1435 unique chemical structures of active pharmaceutical ingredients (i.e.

‘drugs’). CARLSBAD processing resulted in a net 17.3% data reduction for chemicals, 34.3% reduction for bioactivities, 23%

reduction for HierS and 25% reduction for MCES, respectively. The CARLSBAD database supports a knowledge mining

system that provides non-specialists with novel integrative ways of exploring chemical biology space to facilitate know-

ledge mining in drug discovery and repurposing.

Database URL: http://carlsbad.health.unm.edu/carlsbad/.
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Introduction

As the number of chemicals and screening efforts multiply,

the number of bioactivity databases offering information

on biological activity of small molecules is increasing. They

represent a rich source of information in our quest to map

the chemical space of bioactive molecules to phenotypic

and target space. We estimate that the space of publicly

available bioactivity data indexes over at least 1.15 million

unique chemicals, annotated onto >15 000 targets (1), with

potentially an equal number of phenotypic screens. The

exact magnitude of this space could be derived only if

one could uniformly process these data into a single data-

base and harmonize chemicals, targets, bioassays and

bioactivities. Each of the many sources and databases avail-

able has its own interface and data query style, with both
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strengths and weaknesses. Such multitude of sources, inter-

faces and styles is likely to make it difficult for scientists

who are not expert in data mining to gather all facts,

make connections and appropriate decisions that would

lead their own research to the best possible outcome.

This difficulty is best illustrated by considering the chem-

ical biology of estrogen: estrogen-related macromolecular

targets include at least five nuclear receptors (estrogen

receptors ERa and ERb; estrogen-related receptors: ERRa,

ERRb and ERRg), one G-protein coupled receptor (G-protein

estrogen receptor, or GPR30), aromatase, several sulfo-

transferases and sulfatases, as well as the sex hormone ster-

oid-binding globulins. All these targets are associated with

and recognize a common chemical pattern (CCP), namely, a

para-substituted phenol at the ‘A’ ring. Non-steroidal scaf-

folds are known to bind one, or several, of the above tar-

gets. The steroidal scaffold would be identified by CCP

perception tools; however, other chemical signatures as

well as non-steroidal CCPs would require more complex

methods. Most chemists would not immediately associated

estrogen biology with all the above targets, whereas biolo-

gists would be less likely to associate estrogen-related

targets with non-steroidal chemical signatures.

To address some of these harmonization challenges, and

to achieve consistency and coherence among disparate

chemical—target—bioactivity pairs, we proposed to de-

velop the unified database, CARLSBAD (Confederated

Annotated Research Libraries of Small molecule Biological

Activity Data). A chemical relational database, CARLSBAD

integrates subsets of bioactivity data (that is, chemicals

tested for bioactivity on selected targets) from the follow-

ing databases: ChEMBL (2), IUPHAR (3), PDSP (4), PubChem

(5) and WOMBAT (6).

For the scientist interested in evaluating hundreds of

thousands of bioactive compounds, the ability to identify

global trends at the CCP or at the target level may be more

relevant than, for example, the exact Ki of Propranolol to

the three b adrenergic receptor subtypes under a particular

set of experimental conditions. Conceptually, for any given

‘compound A’ that shows activity on ‘target W’ in the

10–100 nM range according to three independent groups,

and only milimolar activity according to a fourth group,

most users interested in global trends would reasonably

conclude that compound A displays good bioactivity on

target W. The opposite trend may be encountered as

well: if ‘compound B’ shows double digit micromolar activ-

ity on ‘target Y’ according to two independent groups, and

shows nanomolar activity according to a third group, it

could be reasonably assumed that compound B is not po-

tent on target Y. Although detailed resolution of experi-

mental data may be lost during data processing into

CARLSBAD, this database aims to provide a ‘bird’s eye

view’ of the entire bioactivity landscape, one that is

useful for multi-disciplinary research.

The focus on high-quality subsets of data from the five

aforementioned databases was a major determinant for

CARLSBAD, which aggregates chemical bioactivity informa-

tion for drug discovery and repurposing activities from five

different sources, shown earlier in the text. Only bioactiv-

ities that can be normalized to negative log molar values

were processed for inclusion in the aggregated database.

No single-point bioactivity values or phenotypic/cellular

assay data were captured. In the current release,

CARLSBAD includes only activity values associated with pro-

tein targets from human, mouse and rat. All activity data

from the source databases that satisfy the aforementioned

criteria are stored in the CARLSBAD database.

For the purpose of data mining, patent analytics and

decision making, a single (highest confidence) activity

value for any given bioactivity type, e.g. inhibition con-

stant, Ki, or effective concentration at which 50% of the

response is obtained (EC50) is calculated, and returned for

each unique chemical–protein target pair (‘CARLSBAD

activity’). CARLSBAD activities correspond to unique four-

tuples (chemical–protein–species–activity type). For ex-

ample, the cholesterol-lowering drug lovastatin has only

one activity of type Ki on the human HMG CoA reductase

protein—the rate-limiting enzyme in the metabolic path-

way that produces cholesterol—stored in the CARLSBAD

database. To generate these unique four-tuples, we intro-

duced ‘confidence levels’ to establish a hierarchy for data

sources during aggregation. When multiple activity values

of the same type (e.g. Ki) with equal confidence levels were

found, the mean value was indexed.

One of the key distinguishing features of CARLSBAD is

that CCPs are pre-calculated and stored for all chemical

structures in the database. CCPs were derived using the

maximum common edge subgraph (MCES) and hierarchical

scaffold (HierS) algorithms, as discussed further. The choice

of MCES and HierS for CCPs is due to the complementarity

of these methods, as each method perceives chemical scaf-

folds and structural features for small molecules in a differ-

ent manner. The cross-indexing of bioactivity, target and

CCP data enables scientists to perform multiple tasks

related to data mining, hypothesis generation and chemical

biology space exploration. Classes of structural features

that might be responsible for invoking certain biological

responses can thus be examined within the CARLSBAD plat-

form. Alternatively, biological targets could be categorized

based on their preference toward particular CCPs.

Methods

Database implementation and schema

The CARLSBAD database is implemented as a PostgreSQL

relational database with entities such as substance, com-

pound, activity, target and so forth, and the various
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relationships between them (Figure 1). The CHORD chem-

ical cartridge from gNova Scientific Software (http://www.

gnova.com/) is used to provide fast chemical functionalities

such as SMILES canonicalization (7), chemical fingerprints

and structure searching. CHORD is based on the OEChem

toolkit, available from OpenEye Scientific Software (http://

www.eyesopen.com/).

Data sources, extraction and curation

Separate extract, transform and load (ETL) pipelines were

built for each of the data sources. The sections later in the

text detail the specific source of data used and the extrac-

tion criteria applied for each.

ChEMBL. A MySQL dump of ChEMBL v13, 2012–02–21

was downloaded from the website and used to create a

local MySQL staging database that served as the source

from which data were extracted and used to populate

the CARLSBAD database (2). ChEMBL data passing the fol-

lowing filters were loaded into CARLSBAD. Only activities

from publications were loaded; activities associated with

pharmacokinetic, cellular and in vivo assays, and any

other activities not associated with a protein target were

not imported; activities not associated with human, rat and

mouse targets were skipped; and activities without values

or units that could be converted to �log(molar) were also

skipped. Activities of the following type were loaded: EC50,

IC50, pEC50, pIC50, Log EC50, Log IC50, Ki, Kb, Kd, pKi, pKb,

pKd, Log Ki, Log Kb, LogKd, ED50, IC80, IC90, A2, D2, pA2,

pD2 and Km. Also, activities with units expressed in molar-

ity, as well as activities with an associated structure were

loaded. Additionally, activity values were converted to

molar wherever necessary and converted to negative log

where appropriate.

IUPHAR. Data were programmatically extracted from the

IUPHAR website (http://www.iuphar-db.org/) and used to

populate a local MySQL staging database (3). This staging

database was constructed during February 2011 and served

as the source from which data were extracted and used to

populate the CARLSBAD database. Only activities with the

following classes were loaded: agonists, antagonists, pore

blockers, activators, allosteric regulators, gating inhibitors

and channel blockers. In addition, midpoints or medians

were used for affinities expressed as ranges. Activities

not associated with human, rat and mouse targets as

well as activities with unknown affinities or units were

excluded.
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Figure 1. CARLSBAD database entity relationship diagram.
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PDSP. The text file (kidb110121.txt) was downloaded

from the website (http://pdsp.med.unc.edu/indexR.html)

(4). UniProt IDs were added to this file by the group of

Stephan Schurer, University of Miami. This file was used

as the source from which data were extracted and used

to populate the CARLSBAD database. Only PDSP data pas-

sing the following filters were loaded into CARLSBAD.

Activities associated with structures not parseable by

gNOVA, and activities with qualified values (i.e. >x) were

skipped.

PubChem. Only the subset of PubChem derived from the

Molecular Libraries Probe Network (PubChem MLP) was

used (5). The PubChem Assays and Substances to be

loaded into CARLSBAD were selected using the Entrez

EUtils API to search pcassay with the following queries/

filters: ‘Molecular Libraries Probe Production Centers

Network[SourceCategory]’, confirmatory[Filter] and

pcassay_protein_target[Filter]. Substance structures were

retrieved as SMILES using the PubChem Power User

Gateway (PUG). Assay data were loaded from xml and csv

files downloaded from the PubChem ftp site. PubChem

MLP data passing all of the following filters were loaded

into CARLSBAD. Only activities associated with human, rat

or mouse targets were loaded. Only activities with the fol-

lowing result types were loaded: various versions of EC50,

AC50, IC50, Ki and Potency. Activities without values or

units were skipped. Only activities with units expressed in

molarity were loaded. Only activities with an associated

structure were loaded. Additionally, activity values were

converted to molarity if necessary, and activity values

were converted to negative Log10 if necessary.

WOMBAT. Version 2011.2 (SDF and activities.tab files)

was used as the source from which data were extracted

and used to populate the CARLSBAD database (6). Only

activities of the following types were loaded: EC50, ED50,

IC50, IC80, IC90, Ki, Kb, Kd, Km, A2 and D2. In addition, the

following data were skipped: activities not associated with

a known target; activities not associated with human, rat

and mouse targets; activities associated with targets with-

out an associated UniProt identifier; activities from primary

screening; activities labeled ‘inactive’; and activities with

descriptive values (e.g. ‘active’).

When pairing structures with targets and bioactivities in

a similar effort (6), Tikkainen and Franke observed that

only 3.6% (i.e. 410 of 11 278) of the scientific articles with

activity indexed in more than one database matched each

other. Indeed, data discrepancies are ubiquitous as far as

data curation is concerned (8). The processing log for

CARLSBAD is summarized in Table 1: of 975 117 unique

structure–target pairs in the database, 84 794 were found

unique to WOMBAT and, therefore, have not been pro-

cessed into CARLSBAD. For the remaining 890 323 struc-

ture–target pairs, 124 231 (13.95%) were aggregated

from multiple structure–target values: 94 975 from two

bioactivities, 14 544 from three, 7930 from four and 2214

from five bioactivities, respectively. The highest number of

consolidated bioactivities is 109, with the second highest

number being 106. As data aggregation is the intended

purpose for CARLSBAD, we focused on eliminating ex-

tremes in the bioactivity spectrum, and aggregating

values towards a mean value. Hierarchical processing (i.e.

confidence levels) was used in �25% of the cases

(192 736 + 38 670 substance–target pairs) when generating

the CARLSBAD activity.

Chemical curation

In the CARLSBAD database, chemical substances are distin-

guished from compounds in a manner analogous to the

PubChem terminology. In this paradigm, compounds repre-

sent the abstract structure of any of the components of the

substance. Chemical structures are stored as canonical

SMILES (7) using CHORD (gNova/OpenEye). The correspond-

ing SDF format is also stored if present in the input data-

base. In addition, 26 chemical descriptors are calculated and

stored for each unique compound. These descriptors (e.g.

molecular weight, number of rings and so forth) are pro-

vided for convenience to users interested in specific subsets

of chemical space. A key feature of the CARLSBAD database

is the common chemical patterns (CCPs), which are calcu-

lated and associated with the corresponding chemical struc-

tures. Later in the text, we briefly describe the methods

used to calculate the two types of CCPs and how they are

stored.

HierS

HierS, the hierarchical scaffold grouping algorithm (9), is

based on the molecular framework concept described by

Bemis and Murcko (10). The ‘scaffold’ concept is central in

medicinal chemistry and provides a chemically intuitive

manner to visualize chemical classes, as ring-based linkages

are central structural features in most (>90%) drug mol-

ecules. The algorithm relates any two compounds by their

common shared scaffolds. HierS has two advantages: (i)

speed and (ii) HierS scaffolds are considered by some to

be more meaningful than the typical maximum common

substructure (MCS). To our knowledge, there is no currently

available implementation of HierS in any commercial or

open-source package. These tools are implemented in an

open-source Java library (http://code.google.com/p/unm-

biocomp-hscaf/) built on the JChem toolkit from

ChemAxon.

MCES. The maximum common edge subgraph (MCES)

concept (11) can be used to compute similarity between

two molecular graphs and has been widely used in many

applications (12–17). However, MCES computation is NP

complete, and several heuristics have been proposed to

reduce computational time, although computational time

required for large chemical datasets is prohibitive. Thus, in
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the CARLSBAD database, additional heuristics based on

common ring systems/scaffolds were applied to further

reduce computational time and make feasible MCES com-

putation for large libraries. The CARLSBAD database

contains 435 578 compounds with >99% compounds con-

taining at least one ring. As ring system determination

using HierS (9) is efficient and fast, scaffold information

determined using HierS was used to group compounds

based on the number of common scaffolds shared between

them. Once this preliminary heuristic was applied, pairwise

MCES between compounds sharing the same set of scaf-

folds was computed. Thus, the MCES algorithm was run

on the CARLSBAD database and used to identify clusters

of compounds with shared maximum common

substructures.

Target curation

Representation of targets varies greatly across source data-

bases, and this creates several challenges. In particular, tar-

gets are named and identified in different ways, which

makes it difficult to know whether a target from one

data source is the same as a target from another source,

i.e. target matching and ‘unification’. As the goal was to

have one target record in CARLSBAD for each unique pro-

tein represented in assays, a target curation step was per-

formed after each data source was loaded, where newly

loaded targets were annotated with data from UniProt

(18), to expedite the target unification process. Targets

identified in the source data by SwissProt or UniProt IDs

were annotated with name, description, sequence and

other identifiers (NCBI gi, RefSeq, Gene, UniGene and

PDB) from UniProt. This allowed a comparison for target

redundancy by sequence and identifiers after each data

source was loaded to be made. Data from UniProt were

also used to annotate targets in the CARLSBAD database

with the following classifiers: InterPro, Pfam and PROSITE

domains; GO terms; and UniProt family.

Web interface

A browsing and query interface to the CARLSBAD database

is available (http://carlsbad.health.unm.edu/carlsbad/)

(Figure 2). This web interface is delivered via the open

source Apache web server. The application is written in

the Perl programming language and uses Marvin Java app-

lets from ChemAxon for drawing and displaying chemical

structures. Users can query from structures by name, struc-

ture and/or properties; and for targets by name, species,

type and/or identifier.

Discussion

The availability of massive amount of molecular bioactivity

data creates rich new opportunities, yet for typical scientists

involved in biomedical discovery research, the difficulty of

processing and analyzing that data can often be a barrier.

With the occasional, less experienced end-user in mind, we

have developed a small molecule bioactivity database that

facilitates navigation in the small molecule/bioactivity

space. The unique features and underlying data structure

of the CARLSBAD database are designed to support poly-

pharmacology-driven drug discovery scenarios, such as drug

repurposing, side effect/off-target prediction and lead

identification workflows.

The net result of chemical, bioactivity and target aggre-

gation, curation and harmonization is summarized in

Table 2: the number of substances, i.e. chemicals tested

for bioactivity, is smaller than the one obtained by sum-

ming the five databases by 17.27%. A similar trend is

observed when examining bioactivities (34.35% reduction)

and CCPs (23.1% reduction using HierS and 25% using

MCES). The aforementioned values are the result of ma-

chine-based harmonization and consolidation of multiple

data objects in chemical, bioactivity and CCP space. An in-

dependent study by Tiikkainen and Franke (19), comparing

ChEMBL (release 14) and WOMBAT 2012.01, showed

>394 000 unique bioactivities in WOMBAT, compared

with nearly 3.3 million bioactivities in ChEMBL; and 2755

unique targets in ChEMBL, compared with 1486 unique tar-

gets in WOMBAT. The harmonization trends suggest that a

consolidated database is preferable to a federated collec-

tion, at least in this case, when seeking to evaluate global

bioactivity trends. This solution was, for example, imple-

mented in the ‘Merz Virtual Bioactivity Database’, which

integrates ChEMBL and WOMBAT, among other data

sources (8, 19).

Comparing the databases, it is apparent that ChEMBL is

the most populated in terms of substances, bioactivities and

CCPs, followed by WOMBAT and PubChem/MLP. This is to

be expected, given their chemogenomic purpose. Two of

the databases dedicated to pharmacology, IUPHAR and

PDSP, are significantly smaller. An in-depth comparison

Table 1. CARLSBAD database consolidation process summary

Processed substance–target

pairs

Number of bioactivities

975 117 Initial aggregated data

975 110 Valid processed pairs

84 794 WOMBAT only

658 917 Only one activity on record

192 736 Only one activity type

(each entered)

38 670 Multiple activity types

processed

932 881 total activities loaded
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with respect to targets, bioactivities and chemistry cover-

age for some of these databases has been performed (8).

Each of these databases provided relevant contributions in

terms of CARLSBAD aggregation.

Chemical errors were addressed with focus on the high-

value, high-confidence IUPHAR and PDSP subsets. We

found only one PDSP structure that was not parsable by

gNova/OEChem; it was manually corrected. For IUPHAR,

we extensively curated >2700 small molecules and peptides

from IUPHAR’s ‘Ligand List’ (http://www.iuphar-db.org/

DATABASE/LigandListForward: retrieved fourth February

2011). This curation involved reading the original ligand

references to resolve ligand names, 2D structures and bio-

logical activities, including >700 peptides for which struc-

tural information was not then available in IUPHAR-DB

(20). In the future, the teams supporting the CARLSBAD

and IUPHAR-DB projects will work together to ensure the

consistency of data between the two resources.

When aggregating data in CARLSBAD, we did not expli-

citly address biology or bioactivity errors. By cross-referen-

cing PubMed IDs for literature-based data (i.e. PDSP,

IUPHAR-DB, ChEMBL and WOMBAT), we found that iden-

tical articles are covered by these resources, yet data are

not always identical. Indeed, up to 3% errors in target pro-

tein identity, up to 2.7% errors in bioactivity values, and up

to 7% errors in chemical structure depiction were found in

comparing three data sources (19). In CARLSBAD, these

tuples were harmonized by providing median values wher-

ever possible, and by representing ‘higher curation’ values

where possible, when multiple conflicting values were

found. For example, bioactivity results from IUPHAR-DB

were given the highest priority, as they summarize the sig-

nificant curation effort made by members of the IUPHAR

Nomenclature Committee. Overall, this situation occurred

in <10% of the database. With respect to data generated

by the NIH Molecular Libraries Initiative (21), only data

from PubChem was uploaded into CARLSBAD, as stated

earlier in the text. Thus, any bioactivity value ‘feedback

loop’, i.e. propagation of errors from one database to an-

other, was avoided by importing non-overlapping sets of

data.

Chemical space overlap between structures in the

CARLSBAD database and drugs approved for human use

was determined using structure identity comparison with

an in-house curated database of drug structures approved

worldwide (DRUGSDB), which includes discontinued drugs

Figure 2. CARLSBAD Web Application. (A) Query forms. (B) Activity search results. (C) Substance view.

Table 2. Overview of the numbers of substances, activities and CCP data in the original databases, as well as the consolidated
CARLSBAD database

Source Version Release date Structures Activities CCPs

ChEMBL 13 2012–02–21 267 744 798 755 182 496 scaff 32 794 mces

IUPHAR 2011 2297 6049 2704 scaff 652 mces

PDSP kidb110121 3499 22 202 3422 scaff 823 mces

PubChem MLP 2011–11–04 133 435 320 311 83 570 scaff 20 867 mces

WOMBAT 2011.2 124 873 273 572 88 135 scaff 17 086 mces

Total 531 848 1 420 889 360 327 scaff 72 222 mces

CARLSBAD 2012.1 439 985 932 881 277 140 scaff 54 135 mces
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as well (22, 23). A total of 1435 unique chemical structures

for active pharmaceutical ingredients (i.e. ‘drugs’) were

identified in CARLSBAD of �4000 small organic molecules

from DRUGSDB. These chemical structures were flagged ac-

cordingly for user convenience and can be used to explore

biological activity space of known drugs.

CARLSBAD represents only a first step in our effort to

assist non-expert scientists to navigate chemical biology

data. For example, all protein targets related to estrogen

biology can be identified via a single CARLSBAD query.

However, their inter-connectedness via chemicals and

CCPs is intended to be explored in the networked environ-

ment provided by Cytoscape (24). The CARLSBAD network

extraction tool (SNAKE), the Cytoscape plugin and the pro-

cess of visualizing networks of connected protein targets,

chemical structures and bioactivities, are described else-

where (Hines-Kay et al., submitted for publication).

Summary

CARLSBAD is a database focused on high-quality subsets

aggregated from several bioactivity databases, which are

integrated in a uniform interface and manner, suitable

for chemical biology and drug discovery studies, as well as

large scale, ‘big data’ informatics and knowledge mining.

In contrast to the original data collections, CARLSBAD pro-

vides a single normalized activity value of a given type for

each unique chemical–protein target pair. Aggregation ac-

counted for �25% of the >975 000 structure–target pairs

processed, up to and including 109 bioactivities for a single

chemical. CARLSBAD data processing resulted in a net

17.3% reduction in terms of unique chemicals, 34.3% re-

duction in terms of unique bioactivities and >23% reduc-

tion in terms of CCPs, respectively, suggesting that data

consolidation is preferable to a federated database

system, at least where bioactivity is concerned. We imple-

mented two types of scaffold perception for common

chemical pattern detection HierS and MCES, respectively.

The 2012 release of CARLSBAD contains 439 985 unique

chemical structures, mapped onto 1 420 889 unique

bioactivities and annotated with 277 140 HierS scaffolds

and 54 135 MCES patterns, respectively. It also contains

bioactivities and tags for 1435 unique active pharmaceut-

ical ingredients. The CARLSBAD database can be accessed

using SNAKE; our dedicated subnet extraction tool, and

Cytoscape, via the CARLSBAD plugin (Hines-Kay et al., sub-

mitted for publication).

Access and linking to CARLSBAD

The CARLSBAD database can be accessed by accessing

the dedicated website, http://carlsbad.health.unm.edu/

carlsbad/. For more information on the CARLSBAD

platform, visit the project homepage, http://carlsbad.

health.unm.edu/. If you are interested in establishing

links to CARLSBAD, please notify us via email at

info-carlsbad@poblano.health.unm.edu.
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