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A B S T R A C T   

Purpose: AI modeling physicians’ clinical decision-making (CDM) can improve the efficiency and accuracy of 
clinical practice or serve as a surrogate to provide initial consultations to patients seeking secondary opinions. In 
this study, we developed an AI network to model radiotherapy CDM and used dose prescription as an example to 
demonstrate its feasibility. 
Materials/Methods: 152 patients with brain metastases treated by radiosurgery from 2017 to 2021 were included. 
CT images and tumor and organ-at-risk (OAR) contours were exported. Eight relevant clinical parameters were 
extracted and digitized, including age, numbers of lesions, performance status (ECOG), presence of symptoms, 
arrangement with surgery (pre- or post-surgery radiation therapy), re-treatment, primary cancer type, and 
metastasis to other sites. A 3D convolutional neural network (CNN) architecture was built using three encoding 
paths with the same kernel and filters to capture the different image and contour features. Specifically, one path 
was built to capture the tumor feature, including the size and location of the tumor, another path was built to 
capture the relative spatial relationship between the tumor and OARs, and the third path was built to capture the 
clinical parameters. The model combines information from three paths to predict dose prescription. The actual 
prescription in the patient record was used as ground truth for model training. The model performance was 
assessed by 19-fold-cross-validation, with each fold consisting of randomly selected 128 training, 16 validation, 
and 8 testing subjects. 
Result: The dose prescriptions of 152 patient cases included 48 cases with 1 × 24 Gy, 48 cases with 1 × 20–22 Gy, 
32 cases with 3 × 9 Gy, and 24 cases with 5 × 6 Gy prescribed by 8 physicians. The AI model prescribed correctly 
for 124 (82 %) cases, including 44 (92 %) cases with 1 × 24 Gy, 36 (75 %) cases with 1 × 20–22 Gy, 25 (78 %) 
cases with 3 × 9 Gy, and 19 (79 %) cases with 5 × 6 Gy. Analysis of the failed cases showed the potential cause of 
practice variations across individual physicians, which were not accounted for in the model trained by the group 
data. Including clinical parameters improved the overall prediction accuracy by 20 %. 
Conclusion: To our best knowledge, this is the first study to demonstrate the feasibility of AI in predicting dose 
prescription in CDM in radiation therapy. Such CDM models can serve as vital tools to address healthcare dis-
parities by providing preliminary consultations to patients in underdeveloped areas or as a valuable quality 
assurance (QA) tool for physicians to cross-check intra- and inter-institution practices.   

1. Introduction 

Clinical decision-making (CDM) is involved in every step of the ra-
diation therapy workflow, including initial consultation, patient simu-
lation scanning, target and healthy tissue contouring, dose prescription, 
treatment planning and review, quality assurance (QA), delivery of ra-
diation therapy, and follow-up care [1]. Consultation with a radiation 
oncologist is the first step in the clinical workflow. The radiation 
oncologist reviews detailed patient medical information and discusses 

with patients about different treatment options to decide upon a treat-
ment plan [2]. Following the initial consultation, the patient will un-
dergo a simulation CT image scan and other imaging modality scans 
such as MRI as needed. The physician will then use the images to contour 
the tumor and organs at risk (OAR) and prescribes radiation dose to the 
tumor with dose constraints for the surrounding OARs. Based on the 
contours and dose prescription, dosimetrists and physicists will design 
the treatment plan with different beam arrangements to achieve 
adequate dose coverage to the tumor while minimizing the radiation 
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dose to OARs. The treatment plan is then reviewed and approved by the 
physician and verified by the QA process. Once the treatment plan is 
ready, the patient returns for the actual treatment delivery, which spans 
from a few days to weeks. After the treatment is completed, follow-up 
visits and scans are arranged to assess the treatment response and 
design medical care accordingly [1,3]. Globally, there is a significant 
healthcare inequality with physicians in the developing countries or 
even low-resource areas in the developed countries lacking expertise or 
experience in CDM, significantly limiting the quality of care patients 
receive in these regions. Addressing this clinical challenge is especially 
critical for cancer patients since the physician’s CDM can directly impact 
the patient’s survival or life expectancy. Over half of all patients with 
cancer live in low-income or middle-income countries [4]. Workforce 
and equipment shortages in these resource-constrained settings have left 
>50 % of patients who are expected to benefit from radiotherapy 
without access to this treatment, with this value being up to 90 % in 
some low-income countries [5]. There is also a disparity among the 
workforce within developed countries with fewer resources and exper-
tise in small rural hospitals [6,7]. AI has the potential to alleviate some 
of these workforce shortages and inequality by providing specialized 
expert knowledge across disease sites and treatment modalities [8]. For 
example, AI can be trained to model the expert physicians’ decision- 
making process and act as a surrogate of them to assist the clinical de-
cision process in clinics with limited resources or experiences. AI- 
assisted clinical decision-making can increase the efficiency, accuracy, 
and quality of radiation therapy, thus enhancing value-based cancer 
care delivery in today’s resource-limited healthcare environment. 

AI has pushed the limits of what is possible in the domain of medical 
image processing, particularly in image registration, detection, seg-
mentation, regression, and classification [9–13]. Meanwhile, AI has 
been reported to improve the quality and efficiency of a large variety of 
tasks in radiation oncology, such as image enhancement, treatment 
planning, organ segmentation, quality assurance, and treatment 
response prediction, as shown in many publications including ours 
[14–19]. Convolutional neural network (CNN) has been extensively 
studied and shown to improve prediction performance using large 
amounts of pre-labeled data [20]. AI is transforming many fields of 
medicine and has the potential to address many of the challenges faced 
in radiation therapy and thereby improve the availability and quality of 
cancer care worldwide. Although novel innovations in AI have enabled 
the comprehensive analysis of diverse observations such as clinical, 
imaging, genomics, and treatment features [21], most AI-based appli-
cations in medicine focus on diagnosis or treatment optimization, and 
few are involved with treatment decision making [22]. Clinical decision- 
making in oncology is often complicated, lacks consensus, and contains 
uncertainties [23]. Back in 2014, IBM’s artificial intelligence platform, 
known as IBM Watson, was developed to perform CDM in diagnosis and 
treatment. Watson aimed to learn from the vast amount of literature, 
clinical guidelines, treatment records, and outcome data to try to come 
up with clinical decisions that can even outperform physicians, which is 
overly ambitious and unrealistic at present due to the limitation of 
current AI models and various practical challenges in using the medical 
literature and patient records [24]. Besides, the Watson models ignored 
the clinical practice variations when training and testing the models in 
quite different clinical practices in different countries, leading to un-
satisfactory performance [25]. To date, it remains challenging and 
impractical to build an effective universal CDM model that can account 
for all the variations across different clinical practices. 

We propose to take a more practical approach to tackle this issue by 
developing AI to solely follow the thought process of physicians to 
mimic their CDM. The goal is to develop a model to reproduce physician 
CDM as closely as possible. Instead of training the model from literature, 
we propose to train the model based on the actual treatment records 
with the incorporation of physicians’ logical decision process in the 
model. Moreover, the model is trained to be institution-specific using the 
dataset from a specific institution, removing impact from practice 

variations across institutions. These practical designs make it more 
realistic to build an effective model for CDM. In this study, we used dose 
prescription in radiotherapy as an example to demonstrate the feasibility 
of such an approach. SRS dose prescription has evolved since RTOG 90- 
05, which was a dose escalation trial prescribing single fraction radio-
surgery for recurrent previously irradiated solitary brain tumors, 
establishing dose prescriptions based on size. [26] Larger tumors have a 
higher risk of local failure and radio-necrosis, which led to fractionation 
for larger lesions to try and improve local control and reduce the risk of 
radio-necrosis. Dose fractionation is also considered for lesions adjacent 
to critical structures, such as the brainstem and optic apparatus, to 
minimize the toxicities. The scope of SRS and experience with SRS has 
also expanded with its use in the up-front setting and for multiple me-
tastases, while at the same time, advances in systemic therapy improved 
extracranial control of the disease. SRS dose prescription is a complex 
decision process involving balancing many factors, including the num-
ber of lesions, size of lesions, location of lesions, the total volume of 
disease, prior treatment, performance status, histology, etc. We devel-
oped a three-path three-dimensional CNN model to automatically pre-
scribe doses based on lesion and OARs from CT images and non-image 
clinical parameters. To our knowledge, this is the first time an AI model 
has been developed to predict dose prescription in CDM of radiotherapy. 
Such a CDM model can serve as a surrogate for the physicians it models 
from to address healthcare disparities by providing preliminary con-
sultations to patients in underdeveloped areas. It can also serve as a 
valuable QA tool representing a specific institution’s clinical practice for 
physicians to cross-check intra- and inter-institution practice variations. 

2. Materials and methods 

2.1. Patient data extraction 

The study included 152 patients with brain metastases treated with 
Stereotactic Radiosurgery (SRS) or Stereotactic Radiation Therapy 
(SRT) from 2017 to 2021. The study was approved by the institutional 
review board (IRB) to perform the human subject’s research. All 
methods to acquire image data were performed following the relevant 
guidelines and regulations. 

2.2. CT data processing 

3D CT images and radiation therapy (RT) structures, including target 
volume and organ at risk (OAR) structures, were extracted from the 
patient record in the treatment planning system. The target volume used 
for dose prescription can be a gross tumor target volume (GTV) or a 
planning target volume (PTV) with margins added to the GTV, 
depending on the location and size of the target and the preference of the 
physician. Brainstem structure was exported as the primary OAR 
structure since it’s the most commonly concerned OAR structure in SRS/ 
SRT dose prescription. In routine clinical practice, physicians typically 
evaluate the target volume’s size, shape, and location and the relative 
position between the target and OAR to decide the dose prescription. To 
mimic the physician’s thought process, we extracted the masks of the 
target volume and OAR to obtain the above information physicians used 
to decide on dose prescription and used them as inputs to the AI model. 
To differentiate the target and OAR masks in the model inputs, the mask 
values were set to 1 and 2 for OAR and target masks, respectively. 

2.3. Clinical parameter processing 

Clinical parameters are also important factors physicians consider 
when choosing dose prescriptions. Therefore, in this study, we also 
extracted clinical parameters and digitized them for use as inputs to the 
AI model. The list of non-image clinical parameters and their selections 
for the model inputs based on physicians’ consideration of their rele-
vance to dose prescription design are the following: Age (Y), Number of 
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lesions (Y), ECOG (Y), Primary cancer type (Y), Genetic (N), Re- 
treatment (Y), Adjuvant chemotherapy (N), Metastasis to other sites 
(Y), Presence of symptoms (Y), Pre/Post-surgery (Y), Current medica-
tion (N). The selected clinical parameters were digitized as follows based 
on the physician’s input: age (0 for <60 years; 1 for 60–75 years; 2 for 
>75 years old), number of lesions (0 for 1 lesion; 1 for 2–5 lesions; 2 for 
>5 lesions), ECOG (0 for fully active; 1 for restricted in physically 
strenuous activity; 2 for ambulatory and capable of all self-care but 
unable to carry out any work activity; 3 for capable of only limited self- 
care; 4 for completely disabled; 5 for death), primary cancer type (1 for 
melanoma and sarcoma cancer which will be given special consideration 
in dose prescription based on input from the physician; 0 for others.), re- 
treatment (0 for no re-treatment; 1 for the re-treatment in a different 
region; 2 for re-treatment in the same region), metastasis to other sites (0 
for no metastatis; 1 for metastasis to other sites), presence of symptoms 
(0 for no; 1 for yes), pre/post-surgery (0 for no surgery before or after 
RT; 1 for pre/post-surgery with RT). 

2.4. Network architecture 

As shown in Fig. 1, a 3D convolutional neural network (CNN) ar-
chitecture with three encoding paths was built to capture the image and 
non-image features based on the CT data and clinical parameters. Spe-
cifically, the first path was built to capture the target volume feature, 
including the size and location of the target; the second path was built to 
capture the relative spatial relationship between the target and brain-
stem; the third path was built to capture the patient clinical parameters. 
Both the first and second encoding paths have the same kernel with fixed 
filters to control the unique feature of each CT image input. Inside each 
of these two encoding paths, the corresponding kernel convolution is 
applied twice with a rectified linear unit (RELU), a dropout layer is 
included between the convolutions with a dropout rate of 0.4, and a 2 ×
2 × 2 max-pooling operation is used in each layer [20]. The number of 
feature channels doubles after the max-pooling operation. Inside the 
third encoding path for clinical parameters, a dense layer is applied to 
increase the weighting of the sparse clinical parameters. After encoding, 
the three paths are processed by 3D convolutional layers for feature 
extraction and then connected to three fully connected layers. Dropout 
layers with a rate of 0.4 are applied after each fully connected layer. In 
the final step, the output from the last fully connected layer feeds a 
SoftMax, which maps the feature vector to the final classification of dose 
prescriptions. Four classes of dose prescriptions were used in our study, 
including 1 × 20-22 Gy, 1 × 24Gy, 3 × 9Gy, and 5 × 6Gy. Note that 
20–22 Gy dose prescriptions were combined into one class in this initial 

study due to their similarity in clinical considerations. Categorical cross- 
entropy was applied as a loss function. Glorot (Xavier) normal initializer 
was used for this symmetric CNN based on CT images [27], which drew 
samples from a truncated normal distribution centered on zero with 
stdev = sqrt (2/(fanin + fanout)), where fanin and fanout were the numbers 
of input and output units, respectively, in the weight tensor. Adam 
optimizer was applied to train this model [28]. The learning rates 
ranging from 1 × 10− 6 to 1 × 10− 4 were tested and a learning rate of 2 ×
10− 5 with 1000 epochs was selected based on the model convergence. 

The 3 Paths model above will be called 3P model in the following 
sections. We also created two other models for comparison: (1). 1 Path 
(1P) model: one-path three-dimensional CNN model that only uses the 
second path of the 3P model to capture the target and brainstem infor-
mation for the input; (2). 2 Path (2P) model: a two-path three-dimen-
sional CNN model that uses the first two paths of the 3P model as input 
to use only image information without clinical parameters for dose 
prediction. 

2.5. Model training, validation, and testing 

Target size and target-to-OAR distance have a major impact on the 
dose prescription. A high fractional dose is typically given to patients 
with a small target and large target-to-OAR distance, while a low frac-
tional dose is given to the contrary. Dose prescription for patients with 
medium target size and target-to-OAR distance is the most challenging 
to learn for AI models since it’s in the grey areas transitioning from high 
to low fractional dose. Thus, more training data from these medium 
cases are needed to train the AI model to handle these challenging sit-
uations. To address this need, we selected 24 patients (out of the 152) 
with medium target size and target-to-OAR distances and performed 
data augmentation by rotating the images by 90, 180, and 270 degrees. 
The final model performance was assessed by 19-fold cross-validation, 
in which each fold consisted of randomly selected 128 training, 16 
validation, and 8 testing subjects. Note that the augmented images were 
only used when the patient was selected for the training data. 

2.6. Model performance evaluation and statistical analysis 

The performance of the dose prediction model was evaluated using 
the following quantitative metrics: accuracy, sensitivity, specificity, 
receiver-operating characteristic (ROC) curve analysis, and the area 
under the curve (AUC). A confusion matrix was used to compare the 
predicted prescription with the actual prescription extracted from the 
patient record [29]. 

Fig. 1. The architecture of the three-path three-dimensional CNN model. Each blue cuboid corresponds to a feature map. The number of channels is denoted on the 
top of the cuboid. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3. Result 

3.1. Patient characteristics 

A total of 152 patients with dose prescriptions 1 × 20–22 Gy, 1 × 24 
Gy, 3 × 9 Gy, 5 × 6 Gy were evaluated. Of these patients, 48 (31.5 %) 
were dose prescription 1 × 20–22 Gy, 48 (31.5 %) were dose prescrip-
tion 1 × 24 Gy, 32 (21.0 %) were dose prescription 3 × 9 Gy, and 24 
(16.0 %) were dose prescription 5 × 6 Gy. The clinical parameters of the 
patient population are shown in Table 1, including age, numbers of le-
sions, performance status (ECOG), symptomatic, surgery arrangement, 
re-treatment, primary cancer type, and metastasis to other sites. Fig. 2a 
shows the scatter plots for the target volume vs target-to-brainstem 
distances for all patient cases treated with different dose prescriptions. 
Although Fig. 2a shows a general trend of decreasing target-to- 
brainstem distances and increasing target volumes from high frac-
tional such as 1 × 24Gy to low fractional doses such as 3 × 9Gy or 5 ×
6Gy, there are also “grey zones” where cases with different dose pre-
scriptions are mixed. This scatters plot demonstrates the challenge of 
predicting dose prescriptions, especially for cases in the grey zone, and 
the need to incorporate non-image clinical parameters for these pre-
dictions. Fig. 2b further shows two example patients with similar target- 
to-brainstem distances and different tumor sizes. Based on the images, 
patient 1 had a smaller tumor size and thus should receive a higher 
fractional dose than patient 2, which is contrary to the actual prescrip-
tion doses. These examples further demonstrates the need for non-image 
clinical parameters for dose prescription prediction. 

3.2. Dose prescription prediction accuracy for different models 

To investigate the impact of different model inputs on the prediction 
accuracy, we evaluated the three models explained in the section 2.4: 
(1). 1P model: 88 (58 %) patients were predicted correctly, and 64 (42 

%) were misclassified based on the contour tumor and OARs in the CT 
images. (2). 2P model: 102 (67 %) dose prescriptions were predicted 
correctly, and 50 (33 %) were misclassified. (3). 3P model: 124 (82 %) 
dose prescriptions were predicted correctly, and 28 (18 %) were mis-
classified, showing the benefit of adding clinical parameters. The mis-
classified dose prescriptions for the 3P model include 4 (1 × 24 Gy), 12 
(1 × 21 Gy), 7 (3 × 9 Gy), and 5 (5 × 6 Gy). Table 2 shows the detailed 
model validation results. As indicated by the green numbers, the 3P 
model outperformed other models for all dose prescription categories. 
We further asked a designated physician to retrospectively review and 
prescribe dose to the 28 failed cases by the 3P model. Results showed 
prescriptions for 14 cases were changed by the physician compared to 
the treatment record and matched with the AI prediction. This pre-
liminary analysis indicates practice variations across individual physi-
cians can be a cause of failed cases in the model prediction. 

Fig. 3a shows the three trained models’ receiver operating charac-
teristic curves for all the patients tested. The proposed three-path three- 
dimensional CNN achieved the best classification performance among 
all three models from Fig. 3a. The mean area under the curve (AUC) 
values were 0.84 (1P), 0.88 (2P), and 0.94 (3P), respectively. Fig. 3b 
shows the average loss function convergence for the training data, 
respectively. 

3.3. Impact of including clinical parameters on the model performance 

Results in Table 2 showed that including clinical parameters in the 
3P model achieved the total accurate dose predictions for 124 patients 
compared to the 102 patients achieved by the 2P model without clinical 
parameters, indicating an increase of 20 % in prediction accuracy. The 
3P model maintained accurate predictions for patients that were pre-
dicted correctly by the 2P model and corrected the wrong predictions by 
the 2P model for 22 patients. These 22 improved patient predictions 
based on clinical parameters included 10 patients for 1 × 24 Gy, 5 pa-
tients for 1 × 21 Gy, 5 patients for 3 × 9 Gy, and 2 patients for 5 × 6 Gy. 
The most prediction improvements were seen in the highest dose pre-
scription category of 1 × 24 Gy, showing the important role of using 
clinical parameters. As shown in Table 1, patients in this dose pre-
scription group (1 × 24 Gy) had the best clinical performance status 
represented by ECOG, which became a vital factor for physicians to 
consider prescribing high fractional doses. Therefore, including these 
clinical parameters was crucial for increasing the model’s prediction 
accuracy. Fig. 4a shows an example of a patient with head and neck 
primary cancer and metastases to the lung and brain, who received the 
SRS to 4 brain lesions two months ago. This patient had the following 
characteristics: age (53), ECOG (1), number of lesions (1), volume (0.87 
cc), and a small amount of edema surrounding the lesion. 2P model 
predicted the dose to be 1 × 24 Gy just based on the image since this is a 
small tumor far away from OAR. However, 3P model predicted the dose 
to be 1 × 20–22 Gy based on both image and non-image clinical infor-
mation. The lower dose prescription by 3P model was due to consider-
ation of poor patient prognosis and retreatment recorded in the clinical 
information. This patient was indeed treated by 1 × 21 Gy according to 
the record. 

3.4. Model interpretability 

To interpret the performance of our three-path three-dimensional 
CNN model, we studied a representative patient with a dose prescription 
of 3 × 9 Gy, a target volume of 1.89 cc, a target to brainstem distance of 
1.74 cm, ECOG (1), number of lesions (1), age (47), primary cancer type 
(lung), re-treatment (Yes), metastasis to other sites (Yes), presence of 
symptoms (No), Pre/Post-surgery (No). This patient’s dose prescription 
was successfully predicted to be 3 × 9 Gy by our 3P model. To analyze 
and understand how the model made the prediction based on the various 
input factors, we did simulation studies to investigate the impact of 
individual input on the final prediction. To study the impact of the 

Table 1 
Summary of patient characteristics and treatment parameters.  

Parameters Patients 
who 
received 
dose 1 ×
24 Gy 

Patients 
who 
received 
dose 1 ×
20–22 Gy 

Patients who 
received dose 
3 × 9 Gy 

Patients who 
received dose 
5 × 6 Gy 

Total Patient 
Number 

48 48 32 24 

Age (y) 
Median 63 66 64 65 
Range 35—84 36—84 27—90 36—85 

ECOG 
0 21 (44 %) 6 (13 %) 10 (31 %) 1 (4 %) 
1,2 26 (54 %) 41 (85 %) 22 (69 %) 19 (79 %) 
3 1 (2 %) 1 (2 %) 0 (0 %) 4 (17 %) 

Number of metastases 
Single 25 (52 %) 21 (44 %) 20 (62 %) 13 (54 %) 
Multiple 23 (48 %) 27 (56 %) 12 (38 %) 11 (46 %) 

Presence of symptoms 
Yes 10 (21 %) 18 (38 %) 10 (31 %) 12 (50 %) 
No 38 (79 %) 30 (62 %) 22 (69 %) 12 (50 %) 

Primary Cancer type 
Lung 28 (58 %) 24 (50 %) 17 (53 %) 16 (67 %) 
Breast 9 (19 %) 7 (15 %) 4 (13 %) 2 (8 %) 
Melanoma 1 (2 %) 4 (8 %) 0 (0 %) 1 (4 %) 
others 10 (21 %) 13 (27 %) 11 (34 %) 5 (21 %) 

Re-treatment 
Yes 4 (8 %) 22 (46 %) 2 (6 %) 9 (38 %) 
No 44 (92 %) 26 (54 %) 30 (94 %) 15 (62 %) 

Pre/Post surgery 
Yes 2 (4 %) 12 (25 %) 12 (38 %) 10 (42 %) 
No 46 (96 %) 36 (75 %) 20 (62 %) 14 (58 %) 

Metastasis to other sites 
Yes 8 (17 %) 25 (52 %) 14 (44 %) 12 (50 %) 
No 40 (83 %) 23 (48 %) 18 (56 %) 12 (50 %)  
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target-to-brainstem distance, we changed the target-to-brainstem dis-
tances from 1.74 cm to 0.50 cm and 3.05 cm while maintaining the 
target volume and re-tested the model with these new cases (Fig. 4b A- 

C). The model predicted 5 × 6 Gy and 1 × 21 Gy for the cases with 
distances of 0.50 cm and 3.05 cm, respectively, showing it learned to 
reduce the fractional dose for shorter distances. To study the impact of 

Fig. 2. A. scatter plots of the target volume vs target-to-brainstem distance for all patients treated with different dose prescriptions.. b. Two representative patients. 
Patient 1 (top) lesion size (2.05 cc), distance from the brainstem (3.03 cm), treated with 3 × 9 Gy. Patient 2 lesion size (2.00 cc), distance from the brainstem (3.00 
cm), treated with 1 × 24 Gy. 

Table 2 
Summary of dose prediction performance using different networks. (Green and Red colors highlight the correct and wrong predictions, respectively).  

Dose prescription 1 × 24 Gy 
in record (48) 

1 × 20–22 Gy 
in record (48) 

3 × 9 Gy 
In record (32) 

5 × 6 Gy 
In record (24) 

Model Type (CNN) 1P 2P 3P 1P 2P 3P 1P 2P 3P 1P 2P 3P 

Predicted 1 × 24 Gy 29 34 44 12 10  7 2 0 0 2 0 0 

Predicted 1 × 20–22 Gy 12 12 2 27 32 36 4 3 1 2 1 1 
Predicted 3 × 9 Gy 3 2 2 6 6 3 16 19 25 6 6 4 
Predicted 5 × 6 Gy 4 0 0 3 2 2 8 10 6 16 17 19  

Model type Accuracy 
mean (range) 

Sensitivity 
mean (range) 

Specificity 
mean (range) 

AUC 

1P 0.79 (0.74–0.85) 0.58 (0.50–0.67) 0.86 (0.83–0.88) 0.84 
2P 0.84 (0.79–0.88) 0.67 (0.59–0.71) 0.89 (0.85–0.91) 0.88 
3P 0.91 (0.88–0.93) 0.81 (0.75–0.92) 0.94 (0.91–0.96) 0.94  
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target size, we increased the target volume from 1.89 cc to 3.48 cc, 5.65 
cc, and 8.44 cc while maintaining the target-to-brainstem minimal dis-
tance (Fig. 4c D-F), and re-tested the model with these three new cases. 
The probability of dose prescription of 5 × 6 Gy of these three volumes 
was 0.6, 0.8, and 1.0, respectively, showing the model learned to reduce 
the fractional dose when tumor size increases. To study the impact of 
clinical parameters, we changed all the clinical parameters (ECOG, age, 
primary cancer type, number of lesions, presence of symptoms, Pre/ 
Post-surgery) to the worst situation. The probability of dose prescrip-
tion of 5 × 6 Gy increased from 0.1 to 0.6 for the target volume of 1.89 cc 
when the clinical parameters deteriorated. This shows the model is able 
to reduce the fractional dose for patients with poor conditions, which is 
consistent with our clinical practice. Moreover, we increased the target 
volume from 1.89 cc to 3.48 cc and kept the clinical parameters in the 
worst situation, the probability of dose prescription of 5 × 6 Gy 
increased from 0.6 to 0.96, showing it learned to reduce the fractional 
dose for worse clinical parameters. These results demonstrated the 
model’s capability to learn the physicians’ general rules of prescribing 
higher fractional doses for smaller tumors or tumors far away from the 
brainstem and lower fractional doses for larger tumors or tumors close to 
the brainstem. 

4. Discussion 

The study is innovative on several levels. To our best knowledge, this 

is the first study to demonstrate the feasibility of AI in predicting dose 
prescription in CDM in radiation therapy. Different from previous 
methods, we developed the model based on the actual treatment records 
with the incorporation of physicians’ logical decision process to repro-
duce physicians’ CDM. Our development of a multi-path approach to 
incorporate both image information and non-image clinical parameters 
for CDM prediction is novel and effective in improving prediction ac-
curacy. It also provides the potential to elucidate the impact of each 
factor in decision-making. Note that combining the imaging and non- 
imaging features is not trivial. Adding the non-imaging features to the 
model directly will not be effective because the number of clinical pa-
rameters is much less than that of the image features, making clinical 
parameters easily outweighed by other inputs in the model prediction. 
Therefore, a technical contribution of the current study is the use of a 
novel clinical parameters design, where a dense layer allows optimiza-
tion of the weighting between clinical parameters and CT images. Re-
sults showed that our 3P model was able to assign the correct dose 
prescription to 82 % of patients without considering the practice vari-
ations across individual physicians. 

Comparison studies showed that the 3P model consistently out-
performed the 1P and 2P models in predicting all dose prescription 
categories. The 1P model only uses one path to capture the information 
of the target and OAR altogether, and therefore it may not allocate 
enough attention to the target size, shape, and location, which is crucial 
for determining the dose prescription. As a result, the 1P model achieved 

Fig. 3. A. roc curves from the three models, including one-path three-dimensional cnn (1p3d-cnn), two-path three-dimensional cnn (2p3d-cnn), and three-path three- 
dimensional cnn (3p3d-cnn). b. the objective loss function along with the epoch for the three cnn models. 
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worse performance among all models. The 2P model alleviates the 
problem in the 1P model by adding a second path using the target image 
as the input to force the model to learn more from the target information 
that is vital for dose prescription prediction. Thus, the 2P model ach-
ieved superior performance to the 1P model. However, as the 2P model 
doesn’t use any non-image clinical parameters as input, it can’t predict 
dose prescriptions correctly for cases where clinical parameters play a 
major role in the dose prescription selection. The 3P model addressed 
the limitations of 1P and 2P models by incorporating both image and 
non-image clinical information for the model prediction and achieved 
the best performance in terms of prediction accuracy, sensitivity, spec-
ificity, and AUC, as shown in Table 3. Furthermore, the model inter-
pretability study demonstrated that the 3P model was able to predict the 
dose prescription by considering the changes in the target size and 
target-to-OAR distances, mimicking the physician’s thought process. To 
validate the efficacy of the proposed CNN model against benchmark 
machine learning models, a random forest model was constructed to use 
CT image features (volume, distance from the brainstem), and eight 
clinical features to predict dose prescription. The random forest model 
misclassified 60 (39 %) patients, indicating the superiority of the pro-
posed CNN model (misclassification of 18 % in the 3P model) [30]. 

There are several limitations to this study. First, our study is limited 
by the sample size of 152 patients. As a result, our study used 19-fold 
validation for model training and testing. In future work, we will 
accrue more patient data to further train and validate our model’s per-
formance in different situations. Second, the current study hasn’t 
considered practice variations across individual physicians, which can 
impact the dose prescription as shown in the preliminary analysis of the 
failed cases in the 3P model in section 3.2. To address this limitation, the 
physician-specific model will be explored to model individual physi-
cian’s practices in the future. Moreover, the prediction accuracy would 

be improved by training a physician-specific model since clinical prac-
tice can vary across physicians due to variations in physicians’ knowl-
edge, experiences, preferences, etc. Third, in this study, we only used the 
brainstem as the OAR for dose prescription because the brainstem is the 
most important and commonly concerned structure when determining 
dose prescription. Another important constraint is V12 (volume 
receiving 12 Gy or higher) of the whole brain excluding GTV. This 
constraint is inherently considered when the CT images with tumor 
masks were input into the model since V12 is very much dependent on 
the tumor size and location. OARs that haven’t been considered include 
optic nerves, chiasms, and cochlea. These structures can be important 
when the target is close to them. However, such scenarios account for 
only a small portion of the patient cases and therefore weren’t included 
in our study due to the lack of sufficient cases to train the model. We will 
include these OARs in future model training when sufficient cases are 
accrued. 

This study demonstrated the feasibility of building an AI model to 
mimic the physician’s decision process for dose prescription. The 
development will serve as a stepping stone for further expanding the 
network to model other decision processes in the radiation therapy 
workflow, eventually building a suite of AI agents for end-to-end CDM 
support in radiotherapy. Such institution- or physician-specific AI tools 
can provide preliminary initial or secondary opinion consultations for 
patients to efficiently and cost-effectively survey the potential treatment 
options from different institutions/physicians so they can choose and 
pursue further consultations with the selected physicians afterward. It 
can also serve as a QA tool for physicians to cross-check practice vari-
ations or as a training tool for junior physicians or medical residents. 

Fig. 4. A. example patient showing the benefit of including clinical parameters for prediction. b. c. simulated cases to interpret the model prediction.  
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5. Conclusion 

A three-dimensional CNN model with three encoding paths from CT 
images and non-image clinical parameters was successfully developed to 
predict dose prescription for brain metastases patients treated by 
radiotherapy. To our best knowledge, this is the first study to demon-
strate the feasibility of AI in predicting dose prescription in CDM. Such 
CDM models can serve as vital tools to address healthcare disparities by 
providing preliminary initial or secondary opinion consultations to pa-
tients in underdeveloped areas or as a valuable QA tool for physicians to 
cross-check intra- and inter-institution practice variations. 
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