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Smoking and stress cooccur in different stages of a nicotine addiction cycle, affecting brain function and showing additive impact on
different physiological responses. Resting-state functional connectivity has shown potential in identifying these alterations.
Nicotine addiction has been associated with detrimental effects on functional integrity of the central nervous system, including
the organization of resting-state networks. Prolonged stress may result in enhanced activation of the default mode network
(DMN). Considering that biofeedback has shown promise in alleviating physiological manifestations of stress, we aimed to
explore the possible neuroplastic effects of biofeedback training on smokers. Clinical, behavioral, and neurophysiological
(resting-state EEG) data were collected from twenty-seven subjects before and after five sessions of skin temperature training.
DMN functional cortical connectivity was investigated. While clinical status remained unaltered, the degree of nicotine
dependence and psychiatric symptoms were significantly improved. Significant changes in DMN organization and network
properties were not observed, except for a significant increase of information flow from the right ventrolateral prefrontal cortex
and right temporal pole cortex towards other DMN components. Biofeedback aiming at stress alleviation in smokers could play
a protective role against maladaptive plasticity of connectivity. Multiple sessions, individualized interventions and more suitable
methods to promote brain plasticity, such as neurofeedback training, should be considered.

1. Introduction

Resting-state brain activity involves the recruitment and
activation of a number of subcomponents of the brain,
such as the visual (VN), salience (SN), ventral and dorsal
attention (VAN and DAN), sensorimotor (SMN), frontopar-
ietal control (FPCN), and cinguloopercular control networks
(COCN) [1, 2]. Among those networks that have been

identified, the default mode network (DMN) has drawn
attention as a state of organized baseline brain function [3].
It has been suggested to be involved in self-awareness and
self-referential thought processes and episodic memory [4].
The exact definition of DMN nodes shows some variation
between studies. Nonetheless, a number of important DMN
nodes can be safely identified with the posterior cingulate cor-
tex (PCC), precuneus (PCU), medial and lateral prefrontal
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cortices (mPFC, dlPFC, and vlPFC), inferior parietal cortex
(IPC), and areas of the temporal lobe, including the lateral
temporal cortex (LTC), the temporal pole (TPC), and middle
temporal lobe (mTL) [3–5].

A chronic smoking habit has been associated with nega-
tive functional and structural effects on the central nervous
system. These effects include decreased neurocognitive
capacity, as well as the atrophy of grey and white matter of
the brain in frontal, prefrontal, cingulate, temporal, and
frontoparietal sites, among others [6]. Functional brain
connectivity has also been shown to be affected in smoking,
characterized by a disorganization of efficiency-related
resting-state network topological properties. Heavy smokers
showed lower global efficiency of both whole-brain network
and DMN, as well as increased clustering and greater path
lengths [7]. Moreover, these changes were associated with
the severity and duration of smoking-habit abuse. Resting-
state connectivity of prefrontal areas, involved in the facilita-
tion of drug response- and reward-related mechanisms, has
been shown to be enhanced in smokers and such findings
have been suggested as biomarkers of addiction [8]. In gen-
eral, DMN connectivity appears to show some impairment
and decrease in smokers [4, 5, 9] but other functional brain
networks, especially those involved in executive functions
and cognition, are also affected by the addiction [9, 10].

Moreover, stress that is present in different stages of the
nicotine addiction cycle seems [11, 12] to affect the organiza-
tion of DMN [13, 14]. In a recent study by Soares et al. [13],
prolonged stress was found to lead to greater activation of
resting-state networks including the DMN, DAN, VAN,
SM, and VN networks. Focusing on DMN, they found that
stress resulted in the augmented activation of DMN, mainly
in the inferior parietal cortex, medial prefrontal cortex, and
medial orbitofrontal, precuneus, and posterior cingulate cor-
tex. Increased activation of anterior DMN components could
suggest an increase in self-subjective thoughts and a dynamic
interplay between regions associated with emotional process-
ing and cognitive functions. Moreover, the enhanced activa-
tion of inferolateral parietal lobes, along with the precuneus,
could be linked to episodic memory retrieval and longer
emotional stimuli processing. Similar findings of DMN acti-
vation were shown in another recent study investigating the
role of social stress in resting-state networks, using the cyber-
ball task [14]. Although the salience network (SN) and exec-
utive control network (ECN) remained stable, following a
cyberball task DMN increased its connectivity with hubs of
SN, high-order visual areas, and sensorimotor areas shifting
the brain towards a more vigilant and attentive state.

Although smokers commonly report that smoking con-
stitutes a technique to relieve negative emotions and cope
with stressful conditions, it seems that stress is an aggravating
factor that is present in every stage of the nicotine addiction
cycle, forming “Nesbitt’s paradox” [12, 15–18]. Modulating
Flay’s stage model of smoking [19], stress seems to be appar-
ent at the preparatory stage of smoking, as individuals char-
acterized by higher stress levels seem to be at high risk of
adopting a smoking habit [20]. Furthermore, acute chronic
stressors [21], perceived stress [22, 23], childhood adverse
experiences [24], and negative life events [23, 25] have been

found to increase the risk for smoking uptake and therefore
for smoking initiation and experimentation. Smoking status
was found to vary with diverse stress indices [26–29], and
stressful conditions were found to lead to an increase of
smoking urge [30], amount [31, 32], and intensity [33–35].
Moreover, a causal link between stress and smoking seems
to be well-established during the maintenance phase [12].
Increased stress was also observed when comparing stress
levels at different time conditions, resulting in relapse (prior
to quitting and 1month, 3months, and 6months of absti-
nence). However, stress levels were differentiated depending
on the outcome of abstinence. In more detail, smokers who
remained abstinent experienced a steady decrease in stress
over time, while those who failed to quit smoking or were
abstinent for only a brief period were consistently character-
ized by relatively high stress levels [36]. Moreover, the associ-
ation between stress and relapse was shown to be robust, as
35% to 100% of smokers reported that lapses occurred while
experiencing stress-related situations or negative affective
states [37–40] and thosewho relapsed due to stress progressed
very quickly to another lapse episode [41].

Considering that smoking and stress are shown to have
additive impact on different physiological responses such as
heart rate, blood pressure, and cortisol output [30, 42–44],
they could also affect DMN connectivity and/or DMN net-
work properties in a combined way. In this framework, our
research protocol was introduced in order to objectively mea-
sure the impact of neuromodulation in DMN connectivity.
Biofeedback (BF) has been established as a promising inter-
vention for anxiety or stress-related conditions [45]. It allows
the subjects to voluntarily influence their sympathetic activ-
ity providing real-time feedback of a physiologic measure
such as skin temperature, heart rate, or electrodermal activity
(EDA) [46, 47]. Recently, Critchley et al. [47] explored the
mechanisms of sympathetic tone modulation using EDA
training. They revealed a specific activation in the right ante-
rior cingulate/ventromedial prefrontal cortex, left anterior
cingulate, and left cerebellar vermis on intentional relaxation
through BF training. Another reliable marker of stress lies
with skin temperature [48], which seems to be affected by
smoking along with vascular resistance in fingers, volumetric
blood flow through tissues, and arterial perfusion [49–51].
Thus, skin temperature BF training could be beneficial for
smokers to deal with stress.

To the best of our knowledge, this the first study that
aims to investigate the possible impact of BF on DMN of
active smokers through mediating stress. Furthermore,
effects of BF training on smoking status were also explored
using clinical data and behavioral evaluation.

2. Materials and Methods

2.1. Participants. We recruited twenty-seven smokers
(male : female, 9 : 18) with a mean age of 50.52 years (range:
24–75, standard deviation (SD): 12.364). The participants
were recruited in the context of the SmokeFreeBrain project
[52] following the inclusion and exclusion criteria of the neu-
rofeedback clinical study protocol (https://clinicaltrials.gov/
ct2/show/NCT02991781). All subjects signed an informed
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consent form, prior to their inclusion, in compliance with the
Code of Ethics of theWorldMedical Association (Declaration
of Helsinki). Inclusion criteria were the following: (1) active
smokers (more than ten cigarettes per day), (2a) either being
unemployed for at least three months and between eighteen
to thirty-five years old, or (2b) being diagnosed with asthma
or chronic obstructive pulmonary disease (COPD) with an
age greater than thirty years old. Exclusion criteria included
diagnosis of neurological, mental or psychiatric illness and
drug-resistant epilepsy. Three (3) out of 27 participants were
young and unemployed adults, sixteen (16) out of 27 were
asthma patients, and eight (8) out of 27 were COPD patients.
The study (design, methodology, and experimental protocol)
was approved by the Bioethics Committee of the Medical
School of the Aristotle University of Thessaloniki.

2.2. Experimental Design. Each participant went through a
detailed clinical examination, which is a prerequisite for the
SmokeFreeBrain (SFB) project (http://smokefreebrain.eu/).
Specifically, each participant, after checking for eligibility
criteria, underwent a baseline clinical evaluation (session 1,
Figure 1) prior to which eligibility criteria were tested.
Session 1 took place either at the private practice of a
collaborator physician or at the Respiratory Failure Unit of
“G. Papanikolaou” General Hospital. If a participant was
eligible, demographic, medical, and behavioral data were
collected. Demographics included age, years of education,
gender, body mass index (BMI), number of cigarettes per
day, and cigarette dependence in months.

Clinical evaluation included pulmonary function tests
such as spirometry with parameters of forced expiratory flow
in 1 second (FEV1), forced vital capacity (FVC), expiratory
ratio (%FEV1/FVC), forced expiratory flow at the middle
half of the FVC (FEF25–75%), and measurement of exhaled
carbon monoxide levels (CO), as well as a blood sampling
for the evaluation of total oxidative stress/total oxidative
capacity (TOS/TOC), and vitamin E. In the current study,

we just analyzed TOS/TOC scores both before and after
the intervention.

Behavioral assessment was performed by administrating
a battery of behavioral tests and questionnaires validated or
adapted for the Greek population. These were the following:
Fagerström Test for Nicotine Dependence [53], Motivation
[54], The Contemplation Ladder [55], Minnesota Nicotine
Withdrawal Scale [56], Beck Depression Inventory [57],
State-Trait Anxiety Inventory [58], General Health Test
[59], Rosenberg Self-Esteem Scale [60], and World Health
Organization Quality of Life Instrument—Brief [61]. In addi-
tion, the COPD patients completed the COPD Assessment
Test score [62] and the COPD and Asthma Sleep Impact
Scale [63], while asthma patients answered the Asthma
Control Test [64].

In session 2 (Figure 1), a baseline neuropsychological eval-
uation was performed administrating the Stroop Test [65],
Trail-Making Test A and B [66], and Digit Span Test [67],
along with an electrophysiological assessment through
electroencephalographic recordings (EEG) in different condi-
tions. EEG recordings were performed with a Nihon Kohden
128-channel EEG recording system and an active electrode
cap (actiCAP 128Ch, Brain Products) according to the
high-resolution EEG 10-5 international electrode system
[68]. Recordings took place inside the electromagnetically
shielded and sound-attenuated room of the Medical Physics
Laboratory, before and after the biofeedback training. They
were performed at a sampling rate of 1000Hz, while elec-
trode impedances of the brain signal, ground electrode,
and references were kept lower than 10 kΩ. EEG was
recorded during four different conditions, including eyes
open (EO) (5minutes), eyes fixated in a smoking-related
image (EF) (1minute), eyes closed (EC) (5minutes), and a
multifeature auditory mismatch negativity measurement
according to the guidelines of Näätänen et al. [69] (15min
in duration). In the current manuscript, eyes-closed data
were analyzed following the suggestions by Raichle et al.

Session 1 Session 2 Intervention

Biofeedback
training

(5 sessions)

Session 3 Session 4

Baseline evaluation Posttraining evaluation

Figure 1: The different phases of the experimental protocol included two preintervention and two postintervention sessions with the
participants, undergoing clinical, behavioral, and electrophysiological evaluation. The intervention phase included five biofeedback
training sessions.
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[3], where resting-state is defined as a task-free state in
which the individuals rest quietly awake with eyes closed.

The intervention phase (Figure 1) consisted of five
30-minute sessions of skin temperature training. Each train-
ing session included, at the start, an introduction to stress-
coping techniques of 15-minute length and a one-minute
baseline peripheral temperature recording. These were
followed by 30minutes of skin temperature training as
suggested by Peniston and Kulkosky [70]. Participants sat
comfortably on a reclined chair across a computer monitor
resting their nondominant hand on the lap or a pillow. A sen-
sitive thermistor was placed in the middle fingertip of their
nondominant hand. The training goal at each session was to
achieve temperature enhancement while receiving an audio-
visual feedback. When the temperature exceeded an autoad-
justed threshold, a puzzle was being formed accompanied
by a pleasant auditory stimulus as described in [71]. In the
posttraining phase (sessions 3 and 4), the followed proce-
dures were identical to the baseline. Additionally, in the post-
training clinical evaluation, urine samples were collected to
assess cotinine levels in our participants apart from the
procedures already described for the baseline screening.

In later phases of the intervention, as part of the Smoke-
FreeBrain project, multiple sessions of alpha-theta neuro-
feedback training are introduced, but this is not discussed
in the current study.

2.3. Total Oxidative Capacity/Total Oxidative Stress (TOC/
TOS). After blood draw, blood samples were centrifuged for
10min at 2000g and 4°C, and serum samples (1ml), divided
in two or three microcentrifuge tubes, were stored at −80°C.
The average time lapse between sample collection and
freezing was 90 minutes. Determination of the peroxides
was performed by the reaction of a peroxidase with peroxides
in the sample followed by the conversion of tetramethyl
benzidine to a colored product. After the addition of a stop
solution, the samples were measured at 450nm in a microli-
ter plate reader. The quantification was performed by the
delivered calibrator.

2.4. Data Preprocessing and Resting-State Connectivity. The
Brain Electrical Source Analysis software (BESA research,
version 6.0, Megis Software, Heidelberg, Germany) was used
for the preprocessing of the EEG data in EC condition. Data
were visually inspected to detect bad channels. Bad channels
detected along with ground and reference electrodes (AFz
and FCz, resp.) were interpolated via an interpolation
algorithm of the BESA software. A high-pass filter with a cut-
off frequency at 1Hz was chosen to remove low-frequency
signals along with a low-pass filter with a cutoff frequency
at 30Hz removing high-frequency signals. Furthermore, a
notch filter was used at 50Hz in order to eliminate the indus-
trial noise. Independent component analysis (ICA) decom-
position was performed in the current screen of the EEG
data (60 seconds) using the principal component analysis
(PCA) technique. In more detail, the method underlying
the ICA analysis is the extended ICA algorithm [72]. The
dimensionality of data was reduced by PCA before ICA
by ignoring all PCA components that explain less than 1%

of the variance. Linear drifts, heart modulation, muscle con-
tamination, artifacts induced by the participant’s move-
ments, and high-frequency noise were characterized as
artifactual sources and removed. After reconstructing the
whole dataset excluding noisy ICA components, data were
visually inspected.

Ten random epochs of equal length (4 seconds) were
extracted using ten random triggers and exporting an inter-
val of 4000ms around the triggers (−2000ms to +2000ms).
An equal number of epochs (epochs = 10) was exported for
both baseline and posttraining EEG recordings (EC).

Afterwards, the lead field matrix was obtained by the
eConnectome toolbox relating 2054 scalp triangles to 7850
cortical dipoles [73, 74]. The lead field matrix is provided
by means of a three-layer BEM model based on the Colin27
MNI brain [75]. The dipoles were restricted to the gray mat-
ter with perpendicular orientations towards the local cortical
surface. Minimum norm estimate (MNE) was performed to
solve the inverse problem by minimizing the source space
energy given that the source dipoles’ power is constrained
by the cortex physiology [76]. Tikhonov regularization was
applied through the Regularization Toolbox [77] to find the
MNE solution. Additionally, we created eighteen custom-
defined ROIs representing important nodes of the default
mode network (DMN) at the surface of the cortex cortical
model, in order to proceed to the computation of connectiv-
ity (Figure 2). The ROI time series signal was computed by
averaging the signal of all included cortical current dipoles.
ROI time series were computed for each node at each of the
ten 4-second epochs for each subject.

The functional cortical connectivity between the 18
custom-defined nodes of DMN was evaluated by means of
the directed transfer function (DTF) metric [78] with signif-
icance testing using surrogate data. DTF is a Granger causal-
ity measure [79] that uses the multivariate autoregressive
model (MVAR) and describes the information flow between
the node j and the node i at frequency f, producing weighted
directed graphs. The order of the MVAR model was set to
ten, based on SBC and FPE criteria as computed by the
eConnectome software. For our analysis, DTF networks were
computed at the frequency band of alpha rhythm at 8–12Hz
as alpha rhythm is the dominant brain rhythm at idling rest
[80, 81]. DTF was computed between ROI time series of the
network nodes at each of the ten 4-second epochs for each
subject, producing 27∗10∗2 adjacency matrices (for the pre-
and posttime conditions). The DTF adjacency matrices, cor-
responding to resting-state connectivity networks, were then
compared between pre- and posttime conditions, in order to
identify significantly altered connections. For this, we tested
by false discovery rate (FDR) with 5000 permutations, using
the NBS toolbox [82]. Following the aforementioned analysis
design, we further explored possible differences in resting-
state networks depending on gender.

2.5. Network Analysis.Network analysis was performed using
the Brain Connectivity Toolbox (BCT) [83] for alpha band
networks. The topological properties of the connectivity
adjacency matrices were calculated using graph network
analysis at each epoch for each subject. The topological
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properties were then averaged across epochs for each subject,
producing two average values of each property (detailed
below) for the resting-state network of each subject, one at
the pre- and one at the posttime condition. Characteristic
path length (CPL), mean clustering coefficient (CC), and
density (D), as well as the small-world (SW) measures
were computed [84, 85]. Moreover, the in- and out-
strengths values for each of the 18 nodes of the network
were also calculated.

Characteristic path length (CPL) is the average shortest
distance between node i and all other nodes, and it is consid-
ered as measure of integration [86, 87]. Mean clustering
coefficient (CC), a measure of segregation, indicates the
graph nodes’ tendency to be organized in triangles [88, 89].
Density (D) is the number of actual connections among net-
work nodes divided by the maximum possible connections.
Small-world (SW) networks (small-world scalar is defined
in [90, 91]) are characterized by a short path length that is

indicative of communication efficiency along with a high
clustering coefficient which represents a high suborganiza-
tion [92, 93]. In our study, the comparison of CPL and CC
in the SW metric was made against 10,000 random networks
with the same number of connections and density to connec-
tivity networks. The in-strength metric for each node (IS)
was defined as the sum of the weights of all incoming connec-
tions to that node. The out-strength metric for each node
(OS) was calculated by adding the weights of outgoing
connections from that node [83, 85].

2.6. Statistical Analysis. All statistical analyses were per-
formed using the IBM SPSS (version 23) and the level at
which the null hypothesis is rejected was set as 5 out of 100
(a = 0 05).

2.6.1. Demographic Data. Demographic data were tested for
normality assumption by visual inspection of histograms,
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Figure 2: Defined regions of interest (ROIs) of the default mode network (DMN) on the Colin27 brain model. 1 and 2: medial prefrontal
cortex (mPFC), 3 and 4: dorsolateral prefrontal cortex (dlPFC), 5 and 6: ventrolateral prefrontal cortex (vlPFC), 7 and 8: posterior
cingulate cortex (PCC), 9 and 10: precuneus (PCU), 11 and 12: inferior parietal cortex (IPC), 13 and 14: medial temporal lobe (mTL), 15
and 16: temporal pole cortex (TPC), and 17 and 18: lateral temporal cortex (LTC). Even numbers correspond to the left hemisphere and
odd numbers to the right hemisphere.
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normal Q-Q plots, and boxplots, checking skewness and
kurtosis parameters [94–96], and using formal normality tests
(Shapiro-Wilk test and Kolmogorov-Smirnov test) [97, 98] in
order to calculate the appropriate measures of centrality and
variation. As the variables age, education years, BMI index,
and smoking dependence in months were approximately
normally distributed, mean and standard deviation were cal-
culated while median and interquartile range were calculated
for the number of daily cigarettes. Moreover, we investigated
gender differences in demographic data. Normality assump-
tion was tested for demographics between male and female
participants. Depending on the normality assumption, either
t-test for independent samples or the Mann–Whitney U test
was performed.

2.6.2. Clinical Data. Total oxidative stress/total oxidative
capacity (TOS/TOC) was analyzed at the two time conditions
in the twenty-two participants out of twenty-seven as the rest
of the samples were not available. Differences in oxidative
stress were initially explored using paired t-test, as they were
continuous variables and approximately normally distrib-
uted. Exhaled CO levels were also compared both before and
after biofeedback training using paired t-test. Additionally,
we explored gender differences in clinical data. Using repeated
measures analysis of variance, with gender as a covariate fac-
tor, could be an analysis of choice, but this was not followed
because normality assumption was not met in every cell of
the analysis. Thus, within-group changes in TOS and CO
levels, respectively, were explored using the Wilcoxon Signed
Ranks test or paired t-test after grouping by gender. Between-
group differences of clinical data at the two time points were
compared between male and female cohorts using the
Mann–Whitney U test or independent samples t-test.

2.6.3. Behavioral Data. Total scores collected by neuropsy-
chological tests and questionnaires such as the Fagerström
Test, Minnesota Nicotine Withdrawal Scale, Beck Depres-
sion Inventory II (BDI II), State-Trait Anxiety Inventory I
(STAI I) and II (STAI II), General Health Test, Rosenberg
Self-Esteem Scale, and Motivation test were analyzed in
this study. More precisely, score differences both before
and after biofeedback training were calculated for each test
or questionnaire. Score differences were tested for normal-
ity assumption using the aforementioned methodology
(Section 2.6.1). Depending on normality assumption, dif-
ferent analyses were planned (paired t-tests or Wilcoxon
Signed Ranks tests). However, total scores of Fagerström
Test at the two time points were also converted into ordi-
nal variables using the following formula: (a) scores from
0 to 3 were coded as low dependent, (b) scores from 4
to 6 were coded as medium dependent, and (c) scores
from 7 to 10 were coded as high dependent [53]. In this
case, differences between different levels of dependence at
the two time points were investigated performing the
McNemar-Bowker Test. In the case where differences
between different levels of dependence reached statistical sig-
nificance (p values< 0.05), McNemar tests were performed
by two. In this case, p values were corrected for multiple
comparisons using Bonferroni correction.

Gender differences were further explored in behavioral
data. As data did not fit in the assumptions of repeated-
measures ANOVA with a covariate, an alternative design
was preferred. Score differences in neuropsychological tests
and questionnaires were calculated and then tested for
normality assumption between male and female partici-
pants. Depending on the normality assumption of score
differences, within-group comparisons were performed
using either paired t-test or the Wilcoxon Signed Ranks
test after grouping data by gender. Independent samples t-
test or the Mann–Whitney U tests were run for between-
group comparisons.

2.6.4. Network Properties. Network properties such as CPL,
mean CC, D, and SW, as well as IS and OS were calculated
for each participant at the two time points. Differences
(posttraining values−pretraining values) were computed
for each property at the two time conditions and then tested
for normality assumption. Different analyses were per-
formed, either paired t-tests or the Wilcoxon Signed Ranks
tests, at each network property depending on normality
assumption. Possible within- and between-group differences
depending on gender were explored using the same method-
ology as the one used in clinical and behavioral data.

3. Results

3.1. Demographic Data. The participants (male : female,
9 : 18) had a mean age of 50.52 years (range: 24–75, standard
deviation (SD): 12.364), 15.04 mean education years (range:
3–27; SD: 4.743), and a mean BMI index of 26.31 (SD:
4.899). The median number of cigarettes smoked per day
was 20 (range: 12.50–60.00 (cigarettes); IQR: 20.0–40.0)
and mean smoking dependence was 358.50 months (range:
48–650 (months), SD: 152.95). Comparisons of demo-
graphics between male and female participants did not reveal
any significant differences (education: U = 44 00; p = 0 059;
BMI: t = 1 356; df = 25; p = 0 187; number of cigarettes per
day: U = 59 00; p = 0 241; smoking dependence in months:
t = 1 477; df = 25; p = 0 152) apart from age (U = 40 00;
p = 0 035). More precisely, male participants were older than
female participants (age—male: 58.00 (46.50, 70.00); female:
49.50 (41.00, 55.50)).

3.2. Clinical Data. Total oxidative stress seems to be nonsig-
nificantly reduced after five sessions of BF training compared
to the pretraining phase (TOS pretraining: 281.395; TOS
posttraining: 222.506; t = 1 014; df = 21; p = 0 322). However,
13 out of 22 participants (59.09%) showed a TOS decrease at
the posttraining phase evaluation. Exhaled CO levels were
unaffected by the intervention as a nonsignificant increase
was observed (exhaled CO levels pretraining (mean): 16.11;
exhaled CO levels posttraining (mean): 16.89; t = −0 496;
df = 26; p = 0 624). Although, the smoking status of the group
does not seem to be significantly affected, 5 out of 27 partic-
ipants (18.52%) showed exhaled CO levels lower than 8ppm.
A CO cutoff value of 8 ppm has been proposed to be able to
discriminate smokers from nonsmokers [99, 100]. Exploring
within-group changes and gender differences in TOS and
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exhaled CO levels, respectively, we did not find significant
results (within-group CO: female: W = −1 403; p = 0 161;
male: W = −0 491; p = 0 623; TOS: female: t = −0 145;
df = 13; p = 0 887; male: t = −1 261; df = 7; p = 0 248;
between-group TOS: t = 1 143; df = 20; p = 0 267; exhaled
CO levels: U = 71 00; p = 0 606).

3.3. Behavioral Data. Analyzing behavioral data at the
two time points, significant findings were observed in the
Fagerström Test (W = −2 404; p = 0 016) and in the General
Health Test (W = −2 003; p = 0 045). More precisely, scores
in both tests were found to be decreased at the posttraining
phase (Fagerström pretraining (median): 6.0; Fagerström
posttraining (median): 5.0; General Health Test pretraining

(median): 5.0; and General Health Test posttraining
(median): 3.0) (Figure 3).

When Fagerström scores at the two time points were
recoded into ordinal data according to the test guide-
lines, differences nearly reached significance (χ2 = 5 80;
df = 3; p = 0 055; see below Table 1). Performing post
hoc tests, no significant results between different levels
of nicotine dependence were found (all p values> 0.05,
Bonferroni corrected). As displayed in Figure 4, the
number of participants with low-nicotine dependence
increased (from 5 to 9 participants) whereas the number
of participants with moderate- and high-nicotine depen-
dence decreased (from 11 to 10 and from 11 to 8 partici-
pants, resp.).

Fagerstorm (pre) Fagerstorm (post) General health test (pre) General health test (post)

0

20

15

10

5

Figure 3: Boxplots of scores in Fagerström and General Health Tests at the two time points (pretraining, posttraining).

Table 1: A contingency table of participants regarding their nicotine dependence category at pretraining and posttraining phases.

Nicotine dependence in participants (pretraining)
Nicotine dependence in participants (posttraining)

TotalLow-nicotine
dependent

Moderate-nicotine
dependent

High-nicotine
dependent

Low-nicotine dependent 5 0 0 5

Moderate-nicotine dependent 4 6 1 11

High-nicotine dependent 0 4 7 11

Total 9 10 8 27
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In more detail, subjects who were characterized as low-
nicotine dependent preserved their level of dependence
whereas four moderate dependent participants turned to
low-nicotine dependence level. Six participants remained
at the moderate dependence level, as were initially charac-
terized, while only one increased the level of dependence
to high-nicotine dependence. Furthermore, four highly
nicotine-dependent participantsmoved to the level of moder-
ate dependence while at the same time seven preserved their
level of nicotine dependence (Table 1).

Additionally, participants scored lower in the General
Health Test which is considered as an overall screening tool
for detecting psychiatric disorders [101] (W = −2 003;
p = 0 045; General Health Test pretraining (median): 5.0;
General Health Test posttraining (median): 3.0; see Figure 3).

Furthermore, participants seem to nonsignificantly
decrease their withdrawal symptoms along with depressive
and anxiety symptomatology as scores at Minnesota Nicotine
Withdrawal Scale, BDI II, STAI I, and STAI II were observed
to be decreased when comparing the two time conditions
(Minnesota Nicotine Withdrawal Scale pretraining (mean):
28.185; Minnesota Nicotine Withdrawal Scale posttraining
(mean): 24.815; BDI II pretraining (median): 16.0; BDI II
posttraining (median): 14.0; STAI I pretraining (median):
40.50; STAI I posttraining (median): 38.50; STAI II pretrain-
ing (median): 50.0; and STAI II posttraining (median): 46.0).
Subjective self-esteem was found to be slightly increased
(Rosenberg pretraining (median): 20.0; Rosenberg posttrain-
ing (median): 20.136) after five sessions of skin temperature
training while motivation scores were reduced (Motivation

pretraining (mean): 32.444; Motivation posttraining (mean):
30.889). However, changes observed in the aforementioned
tests when comparing the participants’ scores at the two time
conditions did not reach statistical significance (BDI II:
W = −0 243; p = 0 808; STAI I: W = −0 241; p = 0 809;
STAI II: W = −1 590; p = 0 112; Rosenberg: W = −0 607;
p = 0 544; Motivation: t = 1 129; df = 26, p = 0 269). Addi-
tionally, planned comparisons in behavioral data between
male and female participants did not result in significant
gender differences (Minnesota Nicotine Withdrawal Scale:
U = 69 00; p = 0 536; Fagerström Nicotine Dependence:
U = 44 00; p = 0 051; BDI: t = 0 704; df = 23; p = 0 488;
STAI I: t = 0 764; df = 24; p = 0 452; STAI II: U = 58 00,
p = 0 426; General Health Test: U = 63 50; p = 0 360;
Rosenberg: U = 66 50; p = 0 450; Motivation: t = 1 654;
df = 9.975; p = 0 129). Female smokers did not show
significant changes in any behavioral aspect tested (all
p values> 0.05) while male smokers showed a significantly
reduced degree of nicotine dependence (before training:
6.00, (5.50, 8.50); after training: 5.00, (3.00, 6.50); W = −
2 254; p = 0 024) and scores at theGeneralHealth Test (before
training: 7.00, (1.00, 15.50); after training: 3.00, (0.00, 10.00);
W = −2 154; p = 0 031).

3.4. Resting-State Functional Connectivity Networks. The
comparison of resting-state functional connectivity networks
(27∗10∗2, where 27 is the number of participants, 10 is the
number of epochs per subject, and 2 is the time conditions
(pretraining, posttraining)) using the aforementioned NBS
methodology (false discovery rate) did not produce any

5
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Low-nicotine dependent

Moderate-nicotine dependent

High-nicotine dependent

Post
Pre

Figure 4: Number of participants in different nicotine dependence levels at the two time points of training.
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significant results. Moreover, comparisons of resting-state
functional connectivity networks depending on gender did
not result in any significant changes. For visualization pur-
poses, the resting-state functional connectivity networks
were averaged by time condition (across all epochs and all
subjects for pre- and posttime conditions). The grand aver-
ages for each time condition were depicted both as adjacency
matrices (Figure 5) and as connectivity maps (Figure 6) using
the BrainNet Viewer toolbox [102]. The mTL nodes bilater-
ally were identified as the most important hubs of informa-
tion transfer, driving connections to almost every other
node of the network at both time conditions (Figure 6). Con-
nections originating from the left mTL, which were also
above 50% of max information transfer, were also observed
to be denser and presented greater information transfer than
those from the right mTL. No node was disconnected from
the resting-state network. Also, a cluster of nodes driving
connections among themselves and to frontal area nodes
was also identified involving the PCC and PCU nodes bilater-
ally and especially at the left hemisphere. These findings were
relatively constant at both time conditions. With regards to
total outgoing connection strengths (outflow) by network
node, visualization was made using the eConnectome graph-
ical tool (Figure 7). The nodes that contributed the most out-
going information flow to the resting-state network were the
left and right mTL, left PCC, right PCU, left dlPFC, and right
mPFC (Figure 7), both at pre and posttime conditions.

3.5. Network Properties. Exploring network properties
(CC,CPL,D, and SW) at the two time conditions, we observed
a slight increase in the network’s density (D pretraining
(mean): 0.432; D posttraining (mean): 0.444) whereas mini-
mal decreases were found in other network properties such
as mean CC (mean CC pretraining (mean): 0.068; mean CC
posttraining (mean): 0.064), CPL (CPL pretraining (mean):
3.950; CPLposttraining (mean): 3.834) and SW(SWpretrain-
ing (median): 1.176; SW posttraining (median): 1.160). How-
ever, differences in the network’s properties at the two time

conditions did not reach statistical significance (mean
CC: t = 0 786; df = 26; p = 0 439; CPL: t = 0 889; df = 26;
p = 0 382; D: t = −0 776; df = 26; p = 0 445, SW: W = −0 048;
p = 0 962). Similar findings were revealed when comparing
network property changes at the two time points between
male and female smokers (CPL: t = 0 595; df = 25; p = 0 557;
CC: t = −0 987; df = 25; p = 0 333; D: t = 0 435; df = 25;
p = 0 667; SW: U = 69 00; p = 0 537). Additionally, within-
group comparisons did not reveal any significant change
in network properties at both male and female partici-
pants (CPL—female: t = −0 362; df = 17; p = 0 722; male:
t = −1 063; df = 8; p = 0 319; CC—female: t = −1 084;
df = 17; p = 0 293; male: t = 0 512; df = 8; p = 0 622;
D—female: t = 0 830; df = 17; p = 0 418; male: t = 0 098;
df = 8; p = 0 924; SW—female: W = −0 370; p = 0 711; male:
W = −0 415; p = 0 678).

The outflow of two nodes, as measured by out-strength,
right vlPFC (Figure 8), and right TPC (Figure 9) was margin-
ally significantly higher in the posttraining resting-state
networks (right vlPFC pretraining (median): 0.0202;
right vlPFC posttraining (median): 0.0728; right vlPFC:
W = −1 844, p = 0 065; right TPC pretraining (median):
0.0242; right TPC posttraining (median): 0.0434; right TPC:
W = −1 890, p = 0 059). Both nodes contributed connections
to every other network node and to each other. Neither node
was among the top contributors to network outflows in either
time condition.

By exploring gender differences in inflow and outflow
change, respectively, significant differences between male
and female participants were found only in the outflow of
the left mPFC (t = −2 551; df = 24.594; p = 0 017) and left
PCU (t = −2 780; df = 24.982; p = 0 010). In more detail,
networks of male smokers showed a greater change of out-
flow of these two nodes from pre- to posttraining compared
to the female smokers (outflow change in left mPFC (mean
(SD))—male smokers: 0.32 (0.24); female smokers: −0.07
(0.56); outflow change in left PCU (mean (SD))—male
smokers: 0.32 (0.26); female smokers: −0.10 (0.54)).
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Figure 5: Adjacency matrices (average of all subjects across all epochs) of the resting-state network at prebiofeedback and postbiofeedback
time conditions. Adjacency rows and columns correspond to the ROI labels defined in Figure 2.
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Within-group comparisons at the two time conditions
revealed a significant increase in female participants’ network
inflow of right TPC (W = −2 199; p = 0 028; before training:
0.018 (0.005, 0.037); after training: 0.054 (0.017, 0.105)). In
addition, a significant increase in male participants’ network
outflow out of the left mPFC (t = 4 088; df = 8; p = 0 003;
before training: 1.07 (0.24); after training: 1.39 (0.43)) and
left PCU (t = 3 785; df = 8; p = 0 005; before training: 1.28
(0.37); after training: 1.60 (0.39)) was also revealed.

4. Discussion

The main aim of the current study is to assess the impact of
skin temperature biofeedback on cortical connectivity during
resting state in a group of active smokers. Both stress and
smoking induce changes in the connectivity between the

main hubs of the resting-state networks of the cortex [103].
Hence, the goal of the present study was to investigate
whether a biofeedback intervention that aims to alleviate
the stress induced during a smoking-cessation attempt might
play a protective role, affecting the reorganization of the
resting-state cortical networks. A schematic representation
of the research area explored is displayed in Figure 10. To this
aim, we used a multimodal approach investigating clinical,
behavioral, and neurophysiological (EEG) indices before
and after the application of 5 sessions of skin temperature
biofeedback. Stress seems to be involved at every stage of
the nicotine dependence cycle, as we have already mentioned,
from preparation to initiation of smoking up to episodes
of relapse (Figure 10(b)). Individuals characterized by
higher stress levels can be considered at high risk of
adopting a smoking habit [20]. Various stress characteristics

0.16

0.35
DTF

Pre

Post

L R
F

F RL

L R
F

F RL

mTLmTL

mTLmTL

Figure 6: Connectivity maps of the resting-state network at pre- and posttime conditions (averaged for all subjects, across all epochs), only
depicting connections above 50% of the max information flow. No statistically significant differences were computed for the whole network
connectivity by NBS-FDR. The network is mainly driven at both conditions by the bilateral mTL nodes that both reach almost every network
node and each other.
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and indices have been associated with different stages of the
cycle [21–29, 31–35]. Although a causal link between stress
and smoking appears well established, it has not been clari-
fied whether and how intervening to alleviate stress can also
meaningfully impact the behavioral aspects of a smoking
habit. If such an effect can be identified, the mechanisms
could be explored along the lines of covarying effects on dif-
ferent levels of brain function, the organization of resting-
state self-referential networks, such as the DMN, being an
obvious target. In this case, a protective role of biofeedback
on the organization of cortical networks and stress reduction
could present a meaningful connection that needs to be
further investigated.

Regarding the physiological mechanisms of smoking-
induced stress, multiple compounds of cigarette smoke,
many of them being prooxidant and oxidant, are capable of
increasing free radicals and enhancing oxidative stress in
the organism [104, 105]. Free radicals are responsible for oxi-
dative damage on multiple cellular tissues’ constituents such
as membrane protein lipids and DNA [106]. Additionally,
the imbalance between the increased production of free rad-
icals and decreased capacity of antioxidants leads to compli-
cated pathological responses including an inflammatory
immune response [107]. Results indicated that the total oxi-
dative stress showed a nonsignificant decrease in the post-,
compared to the preintervention measurement, implying
that at a clinical level, 5 sessions of skin temperature biofeed-
back did not cause a significant decrease of stress-related
clinical indices. Nonetheless, 13 out of 22 participants

achieved a TOS decrease. Similarly, exhaled CO levels did
not show significant change, indicating that the participants’
smoking status [100, 108] was preserved. Although many
factors could affect the exhaled CO levels, smoking consti-
tutes the most likely cause [108]. Multiple studies have
explored the optimal cutoff to discriminate smokers to non-
smokers, suggesting CO cutoffs of 6 ppm [108, 109], 8 ppm
[99, 100], or 10 ppm [110, 111]. Even if our results did not
suggest a significant change in the smoking status of the
group, 5 participants to the total group of 27 showed exhaled
CO levels lower than 8ppm.

The behavioral data show an inconsistent result: while
depressive and anxiety symptomatology was not significantly
reduced, significant results were reached regarding the degree
of nicotine dependence and the psychiatric symptomatology
of the subjects, both of which appeared improved. Cortical
functional connectivity between the 18 custom-defined
nodes of DMN was evaluated by means of the DTF [78].
Importantly, the cortical network analysis revealed that bio-
feedback intervention did not cause a complete reorganiza-
tion of the functional connectivity of the 18 nodes of DMN.
Nonetheless, the analysis of the network properties of the
resting-state network before and after the intervention
revealed that there was a significant difference in the outflow
of two nodes: the right vlPFC and the right TPC that both
showed significantly greater out-strength in the postinter-
vention resting-state networks compared to the preinter-
vention measurement. This variation of results may be
interpreted as an indication that biofeedback interventions,
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aiming at reducing stress in active smokers, could play a
protective role against the addiction-related dysfunction
of the resting-state functional connectivity [112]. Nonethe-
less, limitations of the intervention as applied in the current
study may have reduced the corresponding effect size, hence
limiting the effectiveness of the intervention.

The exploration of the properties of the pre- and postin-
tervention networks revealed that the out-strength of the
right vlPFC showed a significant increase in the postinterven-
tion compared to the preintervention measurement. vlPFC is
a cortical region which is correlated to response inhibition
and shows great involvement in addictive behaviors [113],
while it is hypothesized to account for the declined cognition
associated with addiction [114]. It shows anatomical connec-
tivity with subcortical structures, such as the striatum and
putamen [115] and temporal areas [116], supporting its role
in emotional and working memory circuits. Based on the fact
that vlPFC is strongly involved in working memory [117], its

increased connectivity with the resting-state network could
show a heightened attention involvement during the resting
state [103] which may be related to smoking abstinence, as
previous research shows [114]. Abnormal connectivity
between medial PFC and lateral PFC in smokers has also
been found in a previous resting-state fMRI study [118],
highlighting the role of this region in nicotine addiction. A
prominent theory regarding vlPFC is that it acts as a “circuit
breaker” of ongoing cognitive processes when motivationally
salient stimuli appear [119]. Its connections to the major
nodes of the DMN imply a stronger coupling of large-scale
resting networks, including the salience, default, and execu-
tive control networks in nicotine addiction. This finding is
also in line with previous research in the field [112]. Impor-
tantly, the increase of its outgoing functional connectivity
to the prominent DMN nodes indicates a positive reorgani-
zation of the network, minimizing negative affective states
as well as deficits in cognitive abilities related with nicotine
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addiction. This is an interpretation which may be supported
by the recent three-network model of addiction proposed by
Sutherland et al. [120]. The fact that the increase of out-
strength of this region compared to the rest of the network
does not cause reorganization of the overall network, as
shown in the corresponding analysis, is probably due to the
fact that this node was not among the top contributors to
the network outflows in either time condition.

Similarly to the network properties of vlPFC, the TPC
also reveals a significant increase in its out-strength connec-
tivity to the rest of the DMN nodes in the post- compared
to the preintervention measurement. This region has been
implicated in autobiographical memory in normal subjects
[121]; it participates in various high-order cognitive func-
tions including emotional processing [122], and it is highly
associated with the DMN. A recent fMRI study also associ-
ates this region with nicotine dependence severity [123],
while the reduced functional connectivity of this region is
associated with emotional dysfunction [124]. Hence, the

increase of TPC functional connectivity outflow could be
indicative that the biofeedback intervention may have con-
tributed to a protective reorganization in the DMN. A possi-
ble mechanism can be explored along the enhancement of
network components that are related to positive emotional
and autobiographical processing. The TPC has been associ-
ated with the integration of information from diverse modal-
ities and has been shown to strengthen its coupling to the
areas it modulates through emotional music [125]. Our BF
paradigm incorporates pleasant relaxing audio and video,
that is played on when the subject succeeds in the tempera-
ture increase task, suggesting a possible mechanism for the
observed enhancement of TPC connectivity. Furthermore,
female participants also significantly increased inflow to this
area, something that could be explored along the lines of gen-
der differences, since females have been shown to be more
responsive to emotional stimuli [126]. In accordance to the
vlPFC results, the significant out-strength or in-strength
increases of TPC did not reorganize the overall DMN. This
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may be grounded to the fact that TPC was not a strong con-
tributor in the outflow of the overall DMN. Nonetheless, the
increase of its out-flow is significant, supporting the interpre-
tation of protective neuroplastic resting-state connectivity
changes induced by the biofeedback intervention.

Significant increases were also indeed found in male par-
ticipants’ network outflow out of the left mPFC and left PCU
after BF training, both being core nodes of the DMN.
Although these nodes presented in general higher outflow
than right vlPFC and right TPC, they still did not count
among the top outflow contributors of the network either
before or after training and, thus, they also did not cause
overall network reorganization. It has been proposed that
mPFC is involved in learning associations of multimodal
information and corresponding emotional responses [127],
while PCU is involved in episodic memory retrieval and
emotional stimuli processing. In the meantime, as already
mentioned, a number of studies have reported neurocogni-
tive dysfunction in stress and smoking, associated with
addiction, award-related mechanisms, and emotional associ-
ation, as portrayed in enhanced connectivity of prefrontal
areas and the precuneus [6–14]. BF training, through its
own award-related mechanism, could be activating the
affected areas in a similar way, thus suggesting an improve-
ment of the person’s capability to learn a positive neurocog-
nitive response, previously affected by addiction and stress. It
is unclear whether this response can be explained in terms of
gender differences; its sustainability in time remains to be
investigated as well.

As we already discussed, despite some promising indica-
tions, a number of limitations should be identified. A limited
number of sessions were only performed in the current study
limiting the possible effectiveness of the intervention. How-
ever, the number of training sessions was chosen close to that

suggested by Peniston and Kulkosky [70]. Also, the sessions
were more than those used in Hartwell et al. [128]. To the
best of our knowledge, guidelines for optimal skin tempera-
ture training intensity in adult smokers have not been estab-
lished yet. Additionally, planned comparisons depending on
gender revealed a significant difference in age between male
and female smokers included in this study. Male smokers
were older than female smokers as most of them were COPD
patients. As repeated-measures analysis of variance with
covariates could not be performed due to deviations from
analysis assumptions, the age effect could not be controlled,
consisting a limitation of our analysis. Moreover when con-
sidering the effect of neuromodulation, it can be argued that
neurofeedback is a more direct and more appropriate
method to promote plasticity of functional connectivity
networks and should be incorporated into an intervention
designed to take advantage of an existing causal link of stress
and smoking with regards to brain connectivity. This is also
the case with the SmokeFreeBrain project, where multiple
sessions of neurofeedback are also introduced in later phases
of the intervention. In our future work, we aim to longitudi-
nally investigate the effects of both methods in the resting-
state networks of smokers. Along that line, approaches
tailored to individual needs could also be considered. Finally,
a more detailed approach to resting-state network connectiv-
ity could explore the effects of neuromodulation, as an inter-
vention for stress and smoking, on resting-state network
interdependencies, among the DMN and the networks
tasked with salience, attention, and executive functions.

5. Conclusions

The clinical status of active smokers was not significantly
modified after five sessions of biofeedback training. The
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behavioral data showed mixed results; while depressive and
anxiety symptomatology were not significantly reduced, sig-
nificant improvement was observed in the degree of nicotine
dependence and the psychiatric symptomatology of the sub-
jects. The cortical network analysis revealed that this type of
short-term biofeedback training did not lead to a complete
reorganization of the functional connectivity of the DMN
nodes. However, marginally significant differences in the
information outflow of two nodes, the right vlPFC and the
right TPC, towards the other DMN nodes were indeed found.
These information outflow enhancements from both nodes
to the prominent DMN nodes may indicate a positive reorga-
nization of the network, minimizing negative affective states.
However, these increases in information outflow were not
sufficient to reorganize the overall DMN connectivity as the
nodes implicated were not among the top contributors in
the outflow of the overall DMN. Our results could be inter-
preted as an indication that short-term biofeedback training,
focusing on stress alleviation in active smokers, may play a
protective role against the addiction-related dysfunction of
resting-state functional connectivity, thereby preparing the
grounds for extended neurofeedback training.
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