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1. Introduction
Heterocycles are important compounds and have gathered much attention due to their biological properties, and many 
synthetic drugs contain heterocyclic scaffolds [1,2]. Piperazine is considered a privileged scaffold in medicinal chemistry 
[3], and there are many biological activity studies in the literature for piperazine-bearing compounds such as antibacterial 
[4], anticonvulsant [5], antituberculosis [6], antiviral [7], anticancer [8], and acetylcholinesterase inhibition [9,10]. 
Piperazinecan be found in active drug ingredients such as imatinib [11], sildenafil [12], indinavir [13], and gatifloxacin[14]. 
In addition, there have been anticonvulsant activity [15], monacylglyserine lipase inhibition [16], antimicrobial [17], 
and antiinflammatory activity studies [18]for cinnamylpiperazines and antimycobacterial [19], antiischemic [20], and 
antiparasitic activity studies [21] for acrylamide piperazine derivatives. 

Dihydrofurans have gathered much attention due to their biological activities and have great potential as building blocks 
for pharmaceutical agents. Sarcophytoxide [22], clerodin [23], fercoprolone [24], and austocystin [25] are natural bioactive 
compounds that carry dihydrofuran moieties. Dihydrofurans can be obtained via transition metal salts which are capable of 
transferring single electrons (Mn3+, Ce4+, Co3+, etc.) to active methylene compounds to form α-carbon radicals. The addition 
of these radicals to unsaturated systems is used to generate new C-C bonds [26–28]. Manganese (III) acetate [29–33] and 
cerium(IV) ammonium nitrate (CAN) [34–38] are widely used in these reactions. Our research group has reported radical 
addition and cyclization reactions with CAN [39–42] and radical cyclization reactions of 1,3-dicarbonyl derivatives with 
various unsaturated systems, such as conjugated amide derivatives [43–47]and heteroaromatic conjugated alkenes [48–51].

In this work we report new dihydrofuran-containing piperazine compounds (3a-n) viaMn(OAc)3 mediated radical 
cyclization in medium to high yields. All new compounds were characterized by 1HNMR, 13C NMR, HRMS, and FTIR 
spectroscopy.

2. Results and discussion
In our previous work [52] diacyl and alkyl-acylpiperazine derivatives were obtained; in this work these compounds (1a-h) 
were used as starting reagents to synthesize piperazine-containing dihydrofuran molecules.

Novel piperazine–dihydrofuran compounds (3a-n) were synthesized via Mn(OAc)3 mediated oxidative radical 
cyclization reactions of unsaturated diacyl (1a-d) and alkyl-acyl (1e-h) piperazine derivatives ,as well as 1,3-dicarbonyl 
compounds such as dimedone (2a), acetylacetone (2b), and ethylacetoacetate (2c). All radical cyclizations were carried out 
at 1.2:1:2 molar ratios [piperazine derivative:1,3-dicarbonyl:Mn(OAc)3].
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The results of the reactions of 1a-d with 2a-care given in Table 1. The treatment of 1a-c with dimedone (2a) gave 
dihydrofurans3a (81%), 3b (50%), and 3c (64%), respectively, in moderate-to-good yields. Although compounds 1a and 
1b are similar, there is a significant difference in product yields obtained from them (3aand 3b, respectively). The steric 
hindrance originated through methyl substitution on alkene moiety of 1b caused the relatively low yield of 3b. Compounds 
3d (73%), 3e (52%), and 3f (31%) were obtained as a result of reactions between 1a, 1c, and 1d with 2b in moderate-to-
good yields, respectively. Through the reaction of 1a with 2c, compound 3g was isolated at a 60% yield. All cyclizations 
occurred at the aromatic-ring–carrying sides of the piperazines. This is because radical intermediates formed adjacent to 
aromatic rings have greater stability than those formed adjacent to methacryloyl alpha carbons on carbon atoms (Figure, 
Intermediate C and F). 

The results of the reactions of 1e-hwith 2a are given in Table 2. From the reactions of ally piperazine derivatives (1e-g) 
with 2a, dihydrofurans 3h (30%), 3i (32%), and 3j (20%) were obtained in low yields. By comparing the yields of 3a (81%) 
with 3i (32%) and yields of 3c (64%) with 3j (20%) it can be deduced that yields of methacryloyl-piperazine–substituted 
dihydrofurans are higher than yields of allyl-piperazine–substituted dihydrofurans. Additionally, reactions of 1e-g with 2c 
formed 3k (25%), 3l (40%), and 3m (20%) in low yields, respectively. Reactions of ally-methacryloyl piperazine (1h) with 
2c formed 3n (20%) in low yields. 

Radical cyclizations of unsaturated diacyl and allyl-acyl piperazine compounds (except 1h) occurred regioselectively 
through 3-arylpropenoyl moiety. However, no cyclization product that formed over ally or methacryloyl moiety was 
isolated (except 3n). This is due to the fact that radical intermediates formed adjacent to the aromatic rings are much 
more stable than those formed on allyl or methacryloyl moieties. Similarly, since the radical intermediates formed on 
methacrylic moiety are much more stable than those formed on the ally group, radical cyclization of 1h and 2c occurred 
through methacryloyl group to form dihydrofuran-piperazine (3n). The 1H NMR spectra of obtained compounds 3a, 3c-e, 
and 3g-m show that vicinal dihydrofuran couplings are Jtrans = 5.2–7.6 Hz (in the literature Jtrans = 2.5–7.6 Hz and Jcis = 8–11 
Hz) [45,46,48,49,53–56], thus it was determined that these molecules are trans compounds.

The proposed mechanism for the formation of dihydrofuransis is explained in Figure. According to this mechanism, 
the enol form of dimedone (A) reacts with Mn(OAc)3, and an alpha carbon radical B is formed, while Mn3+ reduces to 
Mn2+. There are two possible pathways for this alpha carbon radical to attach to 1a. Radical intermediate C can be formed 
by following pathway-i, and radical intermediate F can be formed by following pathway-ii. On pathway-i, oxidation of 
C to carbocation D with Mn(OAc)3 and intramolecular cyclization of D forms the product E. Similarly, by following 
pathway-ii, product H is formed. However, on the 1H-NMR spectra of the obtained products, the chemical shifts of two 
terminal alkene peaks of methacryl group were observed in the range of 5.25–5.00 ppm. Additionally, two vicinal proton 
peaks of dihydrofurans around 6.00 and 4.51 ppm (Jtrans= 5.2–6.4 Hz) were observed. According to this information, it was 
determined that the radical cyclization of 1a-d with 2a-c followed the pathway-i, and products 3a-g formed; however, the 
other possible products (H) were not isolated.

Summarily, reactions of methacryloyl- and 3-arylacryloyl–substituted piperazines (1a-d) with 1,3-dicarbonyls (2a-c) 
occurs on 3-arylacryloyl sides, regioselectively. However, in reactions of allyl- and acryloyl-substituted (methacryloyl or 
3-arylacryloyl) piperazines (1e-h)with 2a or 2c, cyclization occurs at acryloyl moiety, regioselectively, and thus, relevant 
dihydrofurans (3h-n) were formed. No cyclization occurred on allyl moiety at any reaction.

3. Experimental design
3.1. Chemicals and equipment
Melting points were determined on a Gallenkamp capillary melting point apparatus (Gallenkamp & Co., London, UK) 
and IR spectra (ATR, PerkinElmer, Inc. Waltham, MA, USA) were obtained with a Bruker Tensor27 spectrophotometer 
(Bruker Optics GmbH, Ettlingen, Germany) in the 400–4000 cm–1 range with 2 cm–1 resolutions. The 1H NMR and 13C 
NMR spectra were recorded on a Varian Mercury-400 high-performance digital FT-NMR and Varian Oxford NMR300 
spectrometers (Varian Medical Systems, Inc., Palo Alto, CA, USA). High resolution mass time-of-flight spectra (TOF) were 
measured on an Agilent 1200/6210 LC/MS spectrophotometer (AgilentTechnologies, Inc., SantaClara, CA, USA). Thin 
layer chromatography (TLC) was performed on Merck aluminum-packed silica gel plates (Merck&Co., Inc., Kenilworth, 
NJ, USA). Purification of products was by column chromatography on silica gel (Merck silica gel 60, 40–60 mm), and 
preparative TLC was on silica gel from Merck (PF254-366nm) (Kenilworth, NJ, USA). All reagents, 1,3-dicarbonyl compounds, 
and solvents were commercially purchased. Radical oxidant Mn(OAc)3 was synthesized by electrochemical method 
[57]. Please note that 1H NMR, 13C NMR, and HRMS spectra for all novel compounds can be found as supplementary 
information.
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Table 1. Radical cyclizations of 1a-d with 2a-c.

a) Isolated yield based on 1,3-dicarbonyl compounds.

Table 1. Radical cyclizations of 1a-d with 2a-c. 
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a) Isolated yield based on 1,3-dicarbonyl compounds. 
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3.2. General synthesis procedure and spectroscopic data of diacyl (3a-g) piperazine-dihydrofuran compounds
A solution of Mn(OAc)3 (2mmol, 0.53 g) in 15 mL of glacial acetic acid was heated to 80 °C until dissolved. Then, the 
solution temperature was set to 65 °C. A solution of the corresponding 1,3-dicarbonyl compound (2a-c) (1mmol) and 
suitable unsaturated piperazine compound (1a-d)(1.2 mmol) in 2 mL of acetic acid was added to Mn(OAc)3 solution. 
The mixture was stirred, and the disappearance of the dark brown color indicated that the reaction was finished (15–60 
min). Water was added, and the crude product was extracted with chloroform (20×3 mL). Combined organic phases were 
neutralized with saturated NaHCO3 solution, dried over anhydrous Na2SO4, and evaporated. The residue was purified 
with column chromatography (silica gel 60, 40–60 mm) using chloroform–acetone (85:15) as eluent. All compounds were 
further purified by preparative TLC (PF254-366nm) before spectroscopic analyses.

Figure. Proposed mechanism of Mn(OAc)3 mediated radical cyclization.
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Table 2. Radical cyclizations of 1e-h with 2a and 2c.

Table 2. Radical cyclizations of 1e-h with 2a and 2c. 
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a) Isolated yield based on 1,3-dicarbonyl compounds. 

a) Isolated yield based on 1,3-dicarbonyl compounds.
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Trans-3-(4-Methacr yloylpiperazine-1-carbonyl)-6,6-dimethyl-2-(5-methylfuran-2-yl)-3,5,6,7-
tetrahydrobenzofuran-4(2H)-one (3a)

It was obtained as a yellow oil; yield: 81% (0.345 g); IR (ATR) υmax 3000, 2957, 2926, 1720 (C=O), 1618 (C=O), 1606 
(C=C), 1197, 1022, 748 (arom. CH) cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 6.30 (1H, d, J = 3.2 Hz, arom. CH), 6.00 
(1H, d, J = 5.6 Hz, H-2), 5.96 (1H, d, J = 3.2 Hz, arom. CH), 5.21 (1H, s, Holef.), 5.04 (1H, s, Holef.), 4.51 (1H, d, J = 5.6 Hz, 
H-3), 4.07-3.27 (8H, m), 2.43 (1H, d, J = 17.6 Hz), 2.33 (1H, d, J = 17.6 Hz), 2.33 (1H, d, J = 16.4 Hz), 2.28 (3H, s, -CH3), 2.19 
(1H, d, J = 16.4 Hz), 1.95 (3H, s, -CH3), 1.13 (3H, s, -CH3), 1.11 (3H, s, -CH3);13C NMR(100 MHz, CDCl3) d (ppm):193.9 
(C=O), 177.3 (C=C, C-7a), 171.3 (C=O), 169.9 (C=O), 154.0, 148.6, 140.0 (C=C), 115.9 (C=C), 112.3, 111.1,106.7(C=C, 
C-3a), 83.6 (C-2), 51.1, 46.6, 45.0 (C-3), 42.2, 37.9, 34.4, 28.9 (-CH3), 28.2 (-CH3), 20.4 (-CH3), 13.6 (-CH3);HRMS (ESI)
(m/z) Calcd for C24H30N2O5427.22275 found 427.22472 (M+H)+.

3 - ( 4 - Me t h a c r y l oy lpip er a z i n e - 1 - c ar b ony l ) - 2 , 6 , 6 - tr i m e t hy l - 2 - ( 5 - m e t hy l f u r an - 2 - y l ) - 3 , 5 , 6 , 7 -
tetrahydrobenzofuran-4(2H)-one (3b)

It was obtained as a yellow oil; yield: 50% (0.220 g); IR (ATR) υmax3093, 2956, 2925, 1721 (C=O), 1635 (C=O), 1610 
(C=C), 1194, 1020, 728 (arom. CH) cm–1; 1H NMR (400 MHz, CDCl3) d (ppm):6.24 (1H, d, J = 3.2Hz, arom. CH), 5.94 
(1H, d, J = 3.2 Hz), 5.22 (1H, s, Holef), 5.03 (1H, s, Holef), 4.58 (1H, s, H-3), 3.79-3.52 (8H, m), 2.40 (1H, d, J = 17.6 Hz), 2.35 
(1H, d, J = 17.6 Hz), 2.32 (1H, d, J = 16.0 Hz), 2.20 (1H, d , J = 16.0 Hz), 2.30 (3H, s, -CH3), 1.94 (3H, s, -CH3), 1.68 (3H, 
s, -CH3), 1.20 (3H, s, -CH3), 1.11 (3H, s, -CH3);13C NMR(100 MHz, CDCl3) d (ppm): 194.1 (C=O), 175.4 (C=C, C-7a), 
171.3 (C=O), 167.8 (C=O), 153.2, 152.8, 139.8 (C=C), 116.1 (C=C), 112.9, 112.5, 106.5 (C=C, C-3a), 88.1 (C-2), 50.7, 
49.0 (C-3), 45.9, 42.5, 37.8, 34.6, 28.6 (-CH3), 28.5 (-CH3), 21.1 (-CH3), 20.4 (-CH3), 13.6 (-CH3);HRMS (ESI)(m/z) Calcd 
forC25H32N2O5441.23840 found 441.23896 (M+H)+.

Trans-3-(4-Methacryloylpiperazine-1-carbonyl)-6,6-dimethyl-2-(thiophen-2-yl)-3,5,6,7-tetrahydrobenzofuran-
4(2H)-one (3c)

It was obtained as a yellow oil; yield: 64% (0.274 g); IR (ATR) υmax3085, 2956, 2930, 1732 (C=O), 1639 (C=O), 1615 
(C=C), 1197, 1026, 726 (arom. CH)cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 7.34 (1H, d, J = 5.2 Hz, arom. CH), 7.06 
(1H, d, J = 3.6 Hz, arom. CH), 7.00 (1H, dd, J = 5.2, 3.6 Hz, arom. CH), 6.32 (1H, d, J = 5.2 Hz, H-2), 5.21 (1H, s, Holef), 
5.04 (1H, s, Holef), 4.36 (1H, d, J = 5.2 Hz, H-3), 4.03-3.28 (8H, m), 2.47 (1H, d, J = 17.6 Hz), 2.35 (1H, d, J = 17.6 Hz), 2.32 
(1H, d, J = 16.4 Hz), 2.20 (1H, d, J = 16.4 Hz), 1.94 (3H, s, -CH3), 1.14 (3H, s, -CH3), 1.12 (3H, s, -CH3);13C NMR(100 MHz, 
CDCl3) d (ppm): 193.9 (C=O), 177.0 (C=C, C-7a), 171.2 (C=O), 169.8 (C=O), 141.9, 140.0 (C=C), 115.9 (C=C), 127.1, 
126.6, 126.3, 111.9 (C=C, C-3a), 86.1 (C-2), 51.1, 50.0 (C-3), 46.5, 42.2, 37.9, 34.4, 28.9 (-CH3), 28.1 (-CH3), 20.4 (-CH3); 
HRMS (ESI) (m/z) Calcd for C23H28N2O4S429.18425 found 429.18588 (M + H)+.

Trans-1-(4-(4-Acetyl-5,5’-dimethyl-2,3-dihydro-[2,2’-bifuran]-3-carbonyl)piperazin-1-yl)-2-methylprop-2-en-1-
one (3d)

It was obtained as a yellow oil; yield: 73% (0.282 g); IR (ATR) υmax3009, 2956, 2930, 1732 (C=O), 1652 (C=O), 1612 
(C=C), 1193, 1020, 746 (arom. CH)cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 6.29 (1H, d, J= 3.2 Hz, arom. CH), 5.95 
(1H, d, J= 3.2 Hz, arom. CH), 5.52 (1H, d, J = 6.4 Hz, H-2), 5.20 (1H, s, Holef), 5.02 (1H, s, Holef), 4.69 (1H, d, J = 6.4 Hz, 
H-3), 3.80-3.66 (8H, m), 2.31 (3H, s, -CH3), 2.30 (3H, s, -CH3), 2.29 (3H, s, -CH3), 1.93 (3H, s, -CH3);13C NMR(100 
MHz, CDCl3) d (ppm): 192.8 (C=O), 171.3 (C=C, C-7a), 171.2 (C=O), 167.6 (C=O), 155.5, 153.8, 140.0 (C=C), 116.7 
(C=C), 115.9, 110.9, 106.7 (C=C, C-3a), 79.9 (C-2), 49.1 (C-3), 46.2, 42.7, 28.8 (-CH3), 20.4 (-CH3), 15.6 (-CH3), 13.6 
(-CH3);HRMS (ESI)(m/z) Calcd for C21H26N2O5387.19145 found 387.19223 (M+H)+.

Trans-1-(4-(4-Acetyl-5-methyl-2-(thiophen-2-yl)-2,3-dihydrofuran-3-carbonyl)piperazin-1-yl)-2-methylprop-2-
en-1-one (3e)

It was obtained as a yellow oil; yield: 52% (0.202g); IR (ATR) υmax3085, 2998, 2917, 1714 (C=O), 1639 (C=O), 1610 
(C=C), 1194, 1020, 724 (arom. CH)cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 7.33 (1H, d, J= 5.2 Hz, arom. CH), 7.05 
(1H, d, J= 3.6 Hz, arom. CH), 7.00 (1H, dd, J= 5.2, 3.6 Hz, arom. CH), 5.86 (1H, d, J = 6.4 Hz, H-2), 5.20 (1H, s, Holef), 
5.02 (1H, s, Holef), 4.54 (1H, d, J = 6.4 Hz, H-3), 3.81-3.39 (8H, m), 2.34 (3H, s, -CH3), 2.33 (3H, s, -CH3), 1.93 (3H, s, 
-CH3);13C NMR(100 MHz, CDCl3) d (ppm): 192.8 (C=O), 171.3 (C=C, C-7a), 171.1 (C=O), 167.6 (C=O), 144.6, 140.0 
(C=C), 127.1, 126.4, 126.1, 116.6 (C=C), 115.9 (C=C, C-3a), 82.6 (C-2), 53.5 (C-3), 46.5, 42.4, 28.9 (-CH3), 20.4 (-CH3), 
15.6 (-CH3)192.9HRMS (ESI)(m/z) Calcd for C20H24N2O4S389.15295found 389.15460 (M+H)+.

1-(4-(4-Acetyl-2,5-dimethyl-2-(thiophen-2-yl)-2,3-dihydrofuran-3-carbonyl)piperazin-1-yl)-2-methylprop-2-
en-1-one (3f)

It was obtained as a yellow oil; yield: 31% (0.125 g); IR (ATR) υmax3117, 2953, 2918, 1734 (C=O), 1648 (C=O), 1615 
(C=C), 1191, 1022, 724 (arom. CH)cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 7.27 (1H, d, J= 6.4 Hz, arom. CH), 6.97-
6.95 (2H, m, arom. CH), 5.22 (1H, s, Holef), 5.04 (1H, s, Holef), 4.54 (1H, s, H-3), 3.68-3.32 (8H, m), 2.35 (3H,s, -CH3), 2.30 
(3H,s, -CH3), 1.94 (3H,s, -CH3), 1.74 (3H,s, -CH3);13C NMR(100 MHz, CDCl3) d (ppm): 192.9 (C=O), 171.3 (C=C, C-7a), 
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168.9 (C=O), 166.5 (C=C, C-3a), 149.6, 139.9 (C=C), 126.9, 125.0, 123.0, 116.3 (C=C), 116.0 (C=C, C-3a), 86.4 (C-2), 56.6 
(C-3), 46.3, 42.6, 28.7 (-CH3), 24.0 (-CH3), 20.4 (-CH3), 15.4 (-CH3);HRMS (ESI)(m/z) Calcd for C21H26N2O4S403.16860 
found 403.16968 (M+H)+.

Trans-Ethyl 3-(4-methacryloylpiperazine-1-carbonyl)-5,5’-dimethyl-2,3-dihydro-[2,2’-bifuran]-4-carboxylate 
(3g)

It was obtained as a yellow oil; yield: 60% (0.250 g); IR (ATR) υmax3080, 2980, 2922, 1701 (C=O), 1641 (C=O), 1619 
(C=C), 1194, 1020, 730 (arom. CH)cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 6.30 (1H, d, J = 3.2 Hz, arom. CH), 5.95 
(1H, d, J = 3.2 Hz, arom. CH), 5.55 (1H, d, J = 5.6 Hz, H-2), 5.21 (1H, s, Holef), 5.02 (1H, s, Holef), 4.67 (1H, d, J = 5.6 Hz, 
H-3),4.16 (2H, q, J = 7.2 Hz, -OCH2CH3), 3.57-3.40 (8H, m), 2.30 (3H, s, -CH3), 2.25 (3H, s, -CH3), 1.93 (3H, s, -CH3), 1.27 
(3H, t, J = 7.2 Hz, -OCH2CH3);13C NMR(100 MHz, CDCl3) d (ppm): 171.3 (C=O), 171.2 (C=C, C-7a), 168.8 (C=O), 165.0 
(C=O), 153.7, 148.6, 139.9 (C=C), 116.0 (C=C), 110.8, 106.7, 103.8 (C=C, C-3a), 80.2 (C-2), 59.9, 48.7 (C-3), 46.4, 42.6, 
20.4 (-CH3), 14.5 (-CH3), 14.4 (-CH3), 13.6 (-CH3);HRMS (ESI)(m/z) Calcd for C22H28N2O6417.20201 found 417.20397 
(M+H)+.
3.3. General synthesis procedure and spectroscopic data of alkyl-acyl (3h-n) piperazines–dihydrofuran compounds
A solution of Mn(OAc)3 (2mmol, 0.53 g ) in 15 mL of glacial acetic acid was heated to 80 °C until dissolved. Then, the 
solution temperature was set to 65 °C. A solution of the corresponding 1,3-dicarbonyl compound (2a or 2c) (1mmol) and 
the suitable unsaturated piperazine compound (1e-h) (1.2 mmol) in 2 mL of acetic acid was added to Mn(OAc)3solution. 
The mixture was stirred, and the disappearance of the dark brown color indicated that the reaction was finished (15–60 
min). Water was added, and the crude product was extracted with chloroform (20 × 3 mL). Combined organic phases 
were neutralized with saturated NaHCO3 solution, dried over anhydrous Na2SO4, and evaporated. The residue was purified 
with column chromatography (silica gel 60, 40–60 mm) using chloroform–acetone (85:15) as eluent. All compounds were 
further purified by preparative TLC (PF254-366nm) before spectroscopic analyses.

Trans-3-(4-Allylpiperazine-1-carbonyl)-6,6-dimethyl-2-phenyl-3,5,6,7-tetrahydrobenzofuran-4(2H)-one (3h)
It was obtained as a yellow oil; yield: 30% (0.118 g); IR (ATR) υmax3067, 2961, 2868, 1730 (C=O), 1632 (C=O), 1612 

(C=C), 1197, 1020, 754, 701 (arom. CH)cm–1; 1H NMR (400 MHz, CDCl3) d (ppm):7.39-7.31 (3H, m, arom. CH), 7.24-
7.22 (2H, m, arom. CH), 6.04 (1H, d, J = 5.6 Hz, H-2), 5.83 (1H, ddt, J = 16.8, 10, 6.4 Hz, Holef.), 5.18 (1H, dd, J = 16.8, 1.2 
Hz, Holef.), 5.14 (1H, dd, J = 10.0, 1.2 Hz, Holef.), 4.23 (1H, d, J = 5.6 Hz, H-3), 3.96-3.84 (2H, m), 3.50-3.39 (2H, m), 3.00 
(2H, d, J = 6.4 Hz), 2.56-2.44 (4H, m), 2.31 (2H, d, J = 16.0 Hz), 2.18 (2H, d, J = 16.0 Hz), 1.27 (3H, s, -CH3), 1.16 (3H, 
s, -CH3);13C NMR(100 MHz, CDCl3) d (ppm):193.7(C=O), 177.4 (C=C, C-7a), 169.9 (C=O), 139.9, 134.3 (C=C), 129.0, 
128.8, 125.5, 118.5 (C=C), 112.2 (C=C, C-3a), 90.5 (C-2), 61.4,53.1, 52.6, 51.1, 49.7, 46.2, 42.4 (C-3), 34.3, 28.9 (-CH3), 
28.2(-CH3);HRMS (ESI)(m/z) Calcd for C24H30N2O3395.23292 found 395.23361 (M+H)+.

Trans-3-(4-Allylpiperazine-1-carbonyl)-6,6-dimethyl-2-(5-methylfuran-2-yl)-3,5,6,7-tetrahydrobenzofuran-
4(2H)-one (3i)

It was obtained as a yellow oil; yield: 32% (0.127 g); IR (ATR) υmax30171, 2961, 2930, 1732 (C=O), 1641 (C=O), 1617 
(C=C), 1197, 1002, 734 (arom. CH)cm–1; 1H NMR (400 MHz, CDCl3) d (ppm):6.28 (1H, d, J = 3.2 Hz, arom. CH), 5.94 
(1H, d, J = 6.0 Hz, H-2), 5.93 (1H, d, J = 3.2 Hz, arom. CH), 5.83 (1H, ddt, J = 16.8, 10, 6.8 Hz, Holef), 5.18 (1H, dd, J = 16.8, 
1.6 Hz, Holef), 5.14 (1H, dd, J = 10.0, 1.6 Hz, Holef), 4.49 (1H, d, J = 6.0 Hz, H-3), 3.99-3.89 (2H, m), 3.49-3.37 (2H, m), 2.99 
(2H, d, J = 6.8 Hz), 2.59-2.49 (4H, m), 2.40 (1H, d, J = 17.6 Hz), 2.30 (1H, d, J = 17.6 Hz), 2.29 (1H, d, J = 16.0 Hz), 2.26 
(3H, s, -CH3), 2.17 (1H, d, J = 16.0 Hz), 1.12 (3H, s, -CH3), 1.08 (3H, s, -CH3);13C NMR(100 MHz, CDCl3) d (ppm):193.8 
(C=O), 176.8 (C=C, C-7a), 169.5 (C=O), 153.8, 148.9, 134.3 (C=C), 118.5 (C=C), 112.5, 110.8, 106.6 (C=C, C-3a), 83.5 
(C-2), 61.4, 53.0, 52.5, 51.1, 46.2, 45.5, 42.3 (C-3), 37.8, 34.4, 28.9(-CH3), 28.1(-CH3), 13.6(-CH3);HRMS (ESI)(m/z) Calcd 
for C23H30N2O4399.22783 found 399.22924 (M+H)+.

Trans-3-(4-Allylpiperazine-1-carbonyl)-6,6-dimethyl-2-(thiophen-2-yl)-3,5,6,7-tetrahydrobenzofuran-4(2H)-
one (3j)

It was obtained as a yellow oil; yield: 20% (0.080 g); IR (ATR) υmax3076, 2955, 2924, 1731 (C=O), 1628 (C=O), 1617 
(C=C), 1137, 1000, 750 (arom. CH)cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 7.32 (1H, d, J = 5.2 Hz, arom. CH), 7.06 
(1H, d, J = 3.6 Hz, arom. CH), 6.99 (1H, dd, J = 5.2, 3.6 Hz, arom. CH), 6.28 (1H, d, J = 5.2 Hz, H-2), 5.85 (1H,ddt, J=16.8, 
10.0,6.8 Hz, Holef), 5.20 (1H, dd, J = 16.8, 1.6 Hz, Holef), 5.18 (1H, dd, J = 10.0, 1.6 Hz, Holef), 4.37(1H,d, J=5.2 Hz, H-3), 
4.00-3.96 (2H,m), 3.54-3.42 (2H, m), 3.04 (2H,d, J=6.8 Hz), 2.58 (4H, s), 2.46 (1H, d, J = 17.6 Hz), 2.33 (1H, d, J = 17.6 
Hz), 2.32 (1H, d, J = 16.0 Hz), 2.20 (1H, d, J = 16.0 Hz), 1.14 (3H, s, -CH3), 1.11 (3H, s, -CH3);13C NMR(100 MHz, CDCl3) 
d (ppm):193.8 (C=O), 176.7 (C=C, C-7a), 169.3 (C=O), 143.7, 133.9 (C=C), 128.4, 127.0, 126.4, 116.6 (C=C), 112.1 (C=C, 
C-3a), 86.1 (C-2), 61.3, 53.0, 52.5, 51.1, 49.8, 46.1, 42.2 (C-3), 37.9, 34.4, 28.9 (-CH3), 28.1 (-CH3);HRMS (ESI)(m/z) Calcd 
for C22H28N2O3S400.23319 found 401.1894 (M+H)+.
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Trans-Ethyl 4-(4-allylpiperazine-1-carbonyl)-2-methyl-5-phenyl-4,5-dihydrofuran-3-carboxylate (3k)
It was obtained as a yellow oil; yield: 25% (0.096g); IR (ATR) υmax3080, 2978, 2930, 1701 (C=O), 1659 (C=O), 1619 

(C=C), 1203, 969, 730, 692 (arom. CH) cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 7.40-7.27 (5H, m, arom. CH), 5.81 
(1H, ddt, J=17.2, 10.4, 6.4 Hz, Holef), 5.61 (1H, d, J = 7.2 Hz, H-2), 5.17 (1H, dd, J = 16.8, 1.6 Hz, Holef), 5.15 (1H, dd, J = 
10.4, 1.6 Hz, Holef), 4.33 (1H, d, J = 7.2 Hz, H-3), 4.13 (2H, q, J = 7.2 Hz, -OCH2CH3), 3.84-3.79 (1H, m), 3.64-3.58 (1H, m), 
3.48-3.34(2H, m), 2.97 (2H, d, J = 6.8 Hz), 2.53-2.36 (4H, m), 2.35 (3H, s, -CH3), 1.24 (3H, t, J = 7.2 Hz, -OCH2CH3);13C 
NMR(100 MHz, CDCl3) d (ppm):171.2 (C=O), 169.6 (C=C, C-7a), 164.9 (C=O), 140.3, 134.4 (C=C), 128.9, 128.6, 125.4, 
118.4 (C=C), 103.6 (C=C, C-3a), 87.3 (C-2), 61.4, 59.7, 53.1, 52.9, 52.8, 42.4 (C-3), 14.4 (-CH3), 14.3 (-CH3);HRMS (ESI)
(m/z) Calcd for C22H28N2O4385.21218 found 385.21370 (M+H)+.

Trans-Ethyl 3-(4-allylpiperazine-1-carbonyl)-5,5’-dimethyl-2,3-dihydro-[2,2’-bifuran]-4-carboxylate (3l)
It was obtained as a yellow oil; yield: 40% (0.155 g); IR (ATR) υmax3067, 2982, 2907, 1708 (C=O), 1663 (C=O), 1626 

(C=C), 1199, 1100, 732 (arom. CH) cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 6.26 (1H, d, J = 3.2 Hz, arom. CH), 5.92 
(1H, d, J = 3.2 Hz, arom. CH), 5.80 (1H, ddt, J = 16.8, 10.0, 6.4 Hz, Holef), 5.48 (1H, d, J = 7.6 Hz, H-2), 5.14 (1H, dd, J = 
16.8, 1.6 Hz, Holef), 5.13 (1H, dd, J = 10.0, 1.6 Hz, Holef), 4.62 (1H, d, J = 7.6 Hz, H-3), 4.12 (2H, q,J = 7.2 Hz, -OCH2CH3), 
3.76-3.71 (1H, m), 3.58-3.49 (2H, m), 3.45-3.40 (1H, m), 2.94 (2H, d, J = 6.4 Hz), 2.49-2.13 (4H, m), 2.27 (3H, s, -CH3), 
2.23 (3H, s, -CH3), 1.22 (3H, t, J = 7.2 Hz, -OCH2CH3);13C NMR(100 MHz, CDCl3) d (ppm):170.7 (C=O), 168.7 (C=C, 
C-7a), 164.9 (C=O), 153.5, 148.9, 134.4 (C=C), 118.4 (C=C), 110.5, 106.5, 103.8 (C=C, C-3a), 80.2 (C-2), 61.4, 59.7, 53.0, 
52.6, 48.6, 46.0, 42.3 (C-3), 14.4(-CH3), 14.3(-CH3), 13.6(-CH3);HRMS (ESI)(m/z) Calcd for C21H28N2O5389.20710 found 
389.20877 (M+H)+.

Trans-Ethyl 4-(4-allylpiperazine-1-carbonyl)-2-methyl-5-(thiophen-2-yl)-4,5-dihydrofuran-3-carboxylate (3m)
It was obtained as a yellow oil; yield: 20% (0.078 g); IR (ATR) υmax3075, 2978, 2923, 1701 (C=O), 1652 (C=O), 1628 

(C=C), 1197, 1040, 728 (arom. CH) cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 7.32 (1H, dd, J = 5.2 Hz, arom. CH), 7.05 
(1H, d, J = 3.2 Hz, arom. CH), 6.98 (1H, dd, J = 5.2, 3.2 Hz, arom. CH), 5.84 (1H, d, J = 6.8 Hz, H-2), 5.81 (1H, ddt, J = 16.8, 
10.0, 6.4 Hz, Holef), 5.18 (1H, dd, J = 16.8, 1.6 Hz, Holef), 5.15 (1H, dd, J = 10.0, 1.6 Hz, Holef), 4.48 (1H,d, J = 6.8 Hz, H-3), 
4.15 (2H, q, J = 7.2 Hz, -OCH2CH3), 3.83-3.45 (4H, m), 2.98 (2H, d, J = 6.4 Hz), 2.52-2.18 (4H, m), 2.29 (3H, s, -CH3), 1.25 
(3H, t, J = 7.2 Hz, -OCH2CH3);13C NMR(100 MHz, CDCl3) d (ppm):170.6 (C=O), 168.9 (C=C, C-7a), 164.8 (C=O), 142.5, 
134.3 (C=C), 126.9, 126.1, 125.8, 118.5 (C=C), 103.7 (C=C, C-3a), 82.9 (C-2), 61.4, 59.8, 53.1, 53.0, 52.7, 46.1, 42.4 (C-3), 
14.5 (-CH3), 14.4 (-CH3);HRMS (ESI)(m/z) Calcd for C20H26N2O4S391.16860 found 391.16985 (M+H)+.

Ethyl 5-(4-allylpiperazine-1-carbonyl)-2,5-dimethyl-4,5-dihydrofuran-3-carboxylate(3n)
It was obtained as a yellow oil; yield: 20% (0.065 g); IR (ATR) υmax3076, 2983, 2930, 1701 (C=O), 1657 (C=O), 1630 

(C=C), 1190, 1040cm–1; 1H NMR (400 MHz, CDCl3) d (ppm): 5.84 (1H, ddt, J = 16.8, 10, 6.8 Hz, Holef), 5.20 (1H, dd, J= 
16.8, 1.6 Hz, Holef), 5.17 (1H, dd, J = 10.0, 1.6 Hz, Holef), 4.15 (2H, q, J = 7.2 Hz, -OCH2CH3), 3.81-3.62 (4H, m), 3.58 (1H, 
d, J = 15.2 Hz, Ha-3), 3.00 (2H, d, J = 6.8 Hz), 2.70 (1H, d, J = 15.2 Hz, Hb-3), 2.44 (4H, m), 2.18 (3H, s, -CH3), 1.55 (3H, 
s, -CH3), 1.26 (3H, t, J = 7.2 Hz, -OCH2CH3);13C NMR(100 MHz, CDCl3) d (ppm):170.1 (C=O), 165.7 (C=C, C-7a), 164.8 
(C=O), 134.3 (C=C), 118.5 (C=C), 102.1 (C=C, C-3a), 88.4 (C-2), 61.5, 59.6, 53.1, 52.8, 46.2, 43.2, 41.1 (C-3), 26.0(-CH3), 
14.3(-CH3), 14.1(-CH3);HRMS (ESI)(m/z) Calcd for C17H26N2O4323.19653 found 323.19805 (M+H)+.

4. Conclusion
Summarily, novel piperazines containing dihydrofuran compounds (3a-n) were synthesized by the Mn(OAc)3 mediated 
radical cyclization from unsaturated diacyl (1a-d) and alkyl-acyl (1e-h) piperazine compounds with 1,3-dicarbonyls (2a-
c) in low to high yields for the first time. All compounds were characterized by 1HNMR, 13C NMR, HRMS, and FTIR 
spectroscopy.
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