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Abstract

Original Article

Background: Determining mitotic index by counting mitotic figures (MFs) microscopically from tumor areas with most abundant 
MF (hotspots [HS]) produces a prognostically useful tumor grading biomarker. However, interobserver concordance identifying MF and HS 
can be poorly reproducible. Immunolabeling MF, coupled with computer‑automated counting by image analysis, can improve reproducibility. 
A computational system for obtaining MF values across digitized whole‑slide images (WSIs) was sought that would minimize impact of 
artifacts, generate values clinically relatable to counting ten high‑power microscopic fields of view typical in conventional microscopy, and 
that would reproducibly map HS topography. Materials and Methods: Relatively low‑resolution WSI scans (0.50 µm/pixel) were imported 
in grid‑tile format for feature‑based MF segmentation, from naturally occurring canine melanomas providing a wide range of proliferative 
activity. MF feature extraction conformed to anti‑phospho‑histone H3‑immunolabeled mitotic (M) phase cells. Computer vision image 
processing was established to subtract key artifacts, obtain MF counts, and employ rotationally invariant feature extraction to map MF 
topography. Results: The automated topometric HS (TMHS) algorithm identified mitotic HS and mapped select tissue tiles with greatest 
MF counts back onto WSI thumbnail images to plot HS topographically. Influence of dye, pigment, and extraneous structure artifacts was 
minimized. TMHS diagnostic decision support included image overlay graphics of HS topography, as well as a spreadsheet and plot of 
tile‑based MF count values. TMHS performance was validated examining both mitotic HS counting and mapping functions. Significantly 
correlated TMHS MF mapping and metrics were demonstrated using repeat analysis with WSI in different orientation (R2 = 0.9916) and by 
agreement with a pathologist (R2 = 0.8605) as well as through assessment of counting function using an independently tuned object counting 
algorithm (OCA) (R2 = 0.9482). Limits of agreement analysis support method interchangeability. MF counts obtained led to accurate patient 
survival prediction in all (n = 30) except one case. By contrast, more variable performance was documented when several pathologists 
examined similar cases using microscopy (pair‑wise correlations, rho range = 0.7597–0.9286). Conclusions: Automated TMHS MF 
segmentation and feature engineering performance were interchangeable with both observer and OCA in digital mode. Moreover, enhanced 
HS location accuracy and superior method reproducibility were achieved using the automated TMHS algorithm compared to the current 
practice employing clinical microscopy.
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IntroductIon

The proliferative capacity of tumors contributes to their growth 
and metastasis. Identification and enumeration of mitotic 
figures (MFs) in cancer biopsy tissue sections microscopically 
is a surrogate for proliferative activity for many tumor 
types.[1‑10] Enumeration of MF can be an independent clinically 
prognostic biomarker relevant for tumor grading. Counting MF 
on hematoxylin and eosin (H&E)‑stained tissue sections, which 
is not a mitotic‑specific stain, is a challenging exercise in MF 
recognition that requires experience. The strategy can involve 
selecting tumor areas with the greatest number of MFs, known 
as mitotic hotspots (HSs). The tedious and time‑consuming 
nature of this error‑prone task has been documented in 
studies examining the reproducibility of MF counting.[7,11‑16] 
The variation in obtaining tumor mitotic count values can be 
attributed to issues such as varying recognition accuracy. For 
example, agreement about what is a MF and its differentiation 
from other nuclear structures is not unanimous, and choice 
of tumor tissue area for evaluation can also play a role in 
designation of grade.[7,12] Other limitations such as cellular level 
variations in color, intensity, and morphological shape/size can 
contribute to counting errors. These circumstances can result 
in poor reproducibility and discordant inter‑ and intra‑reader 
mitotic count values.

Approaches such as antibody immunolabeling of MF and 
the automation of MF counting through computer‑assisted 
image analysis offer the opportunity to minimize variability 
and increase reproducibility in assessing tumor proliferative 
activity in tissue biopsies at the time of diagnosis.[11,13,17] 
Molecular markers of mitosis, such as phosphorylated histone 
H3 (pHH3) and MKI67 (Ki‑67), improve prognostic utility of 
counting MF compared to routine H&E tissue stains.[2,7,15,17‑19] 
Active development of computer‑assisted image analysis 
indicates promise for improving reproducibility and 
accuracy.[11,13‑15,17,20‑25] The ability to specifically identify 
and segment the proliferating cells in digitized whole‑slide 
images (WSIs) using computer‑assisted diagnosis (CAD) can 
be complex, however. The potential to miscategorize MF based 
on morphological characteristics can become amplified once 
biopsies are optically scanned for image analysis.

Certain challenges in assessing proliferative activity using 
computer‑assisted decision support have been described, and 
a limited number of automated approaches for detecting MF in 
tissue sections have been published.[14,15,18‑21] Some shortcomings 
in image processing performance persist, nevertheless. Chief 
among these includes insufficient locating clinically meaningful 
mitotic HS regions topographically, substantial minimization of 
common confounding tissue artifacts, generation of MF counts 
that are clinically relatable to the MF count values currently 
produced using conventional microscopy, and the ability for 
pathologists to quality assure algorithm performance on a 
patient by patient basis. Development of an automated system 
improving upon these features to benefit tumor grading based 
on mitotic activity was a primary objective.

In this study, the automated topometric HS (TMHS) algorithm 
addresses these needed analytics, providing topographic 
information on mitotic HS location in the tissue context, while 
yielding MF metrics as surrogate for the tumor proliferative 
activity. We developed a feature‑based computational approach 
built upon processing WSI as rendered image grid tiles for 
extracting immunolabeled MF and incorporated filters capable 
of subtracting several common tissue artifacts. Performance of 
the automated image processing characteristics was validated 
in 30 naturally occurring canine mucosal melanoma tissue 
biopsies. Naturally occurring canine mucosal melanoma 
serves as a valuable preclinical model for human mucosal 
and other triple wild‑type melanomas.[22‑24] Repeat analysis 
of these clinical specimens using the automated TMHS 
mapping algorithm provided significant evidence of method 
interchangeability with a pathologist or a second algorithm, 
based on counting MF at the automated TMHS identified 
HS. Automated TMHS provides needed enhancements for 
clinically actionable mitotic HS mapping, the prognostic 
utility of which was significantly correlated with the standard 
of care.

MaterIals and Methods

Specimens
Formalin‑fixed and paraffin‑embedded biopsy tissue 
samples from 30 dogs with naturally occurring mucosal 
melanoma (manuscript in preparation) were used to evaluate 
the automated TMHS mitotic mapping application. The biopsy 
specimens were surgically obtained from dogs in the course 
of veterinary patient care. The pathological characteristics 
of human melanoma were shared among these canine 
melanomas.[22] Patients selected for analysis had follow‑up 
survival data available.

Immunohistochemistry
Five‑micrometer‑thick paraffin‑embedded tissue sections 
that ranged in area from 30.32 to 396.83 mm2 were placed 
on   silanated  slides for immunohistochemistry (IHC). 
Slides were deparaffinized and rehydrated. Following 
rehydration, slides were bleached in 3% hydrogen peroxide 
in phosphate‑buffered saline (pH 7.2) at 60°C for 30 min to 
remove melanin. Heat‑induced epitope retrieval was performed 
using citrate solution (S1699, pH 6.0, Agilent Dako, Santa 
Clara, CA) for 15 min in a steam bath (Black & Decker, 
Beachwood, OH, USA) and allowed to cool an additional 
15 min on the bench at room temperature. Subsequent 
immunolabeling steps using anti‑pHH3, an antibody targeting 
a mediator of chromatin condensation during cell replication, 
were performed using an autostainer (Agilent Dako, Santa 
Clara, CA, USA) at room temperature with an alkaline 
phosphatase immunoenzyme polymer‑linked detection 
system and permanent red chromogen (K535511‑2, Agilent 
Dako, Santa Clara, CA, USA). Incubation steps included 
endogenous enzyme block for 10 min, protein block for 
20 min, primary antibody (rabbit monoclonal anti‑pHH3, 
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ab32107 (clone E173), Abcam, Cambridge, MA, USA) 
diluted at 1:50 (Dako Antibody Diluent) and incubated for 1 
h, followed by polymer‑conjugated secondary antibodies as 
prepared in the kit for 30 min, alkaline phosphatase enzyme 
with enhancer for 30 min, and permanent red chromogen 
for 20 min. Slides were then removed from the autostainer, 
counterstained with hematoxylin, dehydrated, cleared, and 
coverslipped. Melanomas were processed along with tissue 
sections of canine intestines, including crypt epithelia, as a 
positive control tissue. Tissue areas of tumor‑adjacent normal 
and intestinal strata superficial to glandular mucosae served 
as negative control tissue.

Whole‑slide image scanning
Anti‑pHH3‑immunolabeled slides were scanned at ×20 
using an Aperio AT2 digital slide scanner (Leica Biosystems, 
Buffalo Grove, IL, USA) to create WSI data files at 0.50 
µm/pixel resolution. Image files were stored in spectrum 
image management system and viewed and annotated using 
Aperio ImageScope Software (Leica Biosystems, Buffalo 
Grove, IL, USA).

Computational framework for topometric mapping of 
mitotic hotspots
The computational pipeline is devised and developed 
in MATLAB image processing and computer vision 
toolbox (MathWorks, version R2017a, Natick, MA, USA) 
for WSI of tissue sections. Detection and mapping of MF 
in cells undergoing mitotic (M) phase is broadly based on 
color, morphology (shape), and texture (surface roughness) 
features. Image processing algorithms, including color‑based 
segmentation, color‑to‑gray conversion, gray‑to‑binary 
conversion, counting binary dots, and mapping local features, 
are used to implement the developed workflow [Figure 1]. 
Unique coding loops for batch processing image grid tiles and 
for integrating different building blocks contribute operational 

sequences. Methods include design of a custom graphical 
user interface (GUI) to enable downstream unsupervised 
execution [Supplemental Figure S1].

Image analysis execution encompassed the entire image region 
using a rendered grid subdivided into 3000 × 3000 pixel 
tiles, which coincided to image analysis at approximately ×4 
magnification, relative to an image viewed using standard 
light microscopy [Figure 2a]. Each grid tile corresponded to 
1.514 mm × 1.514 mm (2.292 mm2) tissue area/tile, which 
were then segregated into tiles containing tissue images and 
those lacking tissue. To segment and extract MF in images, 
a red, green, and blue (RGB) color space was established for 
pHH3‑immunolabeled MF, which enabled detection of the 
red chromogenic signal developed for the IHC. During MF 
segmentation, additional color‑based segmentation filters, as 
well as morphology and thresholding filters, were processed 
to segment MF from the tissue image and to digitally subtract 
common individual or combinations of shape‑ and color‑based 
tissue and stain‑related artifacts that could confound MF object 
counting function [Supplemental Figure S2]. Approximately 
7% of the 3356 image tiles eventually analyzed were used in 
training.

Extracted MFs were converted to gray values based on 
their respective features. RGB‑to‑gray function parameters 
were established to process the true RGB color image to the 
grayscale intensity image. Segmented MFs were converted to 
a binary image mask using clustering‑based Otsu’s method to 
choose the threshold value for minimizing intraclass variance 
of the black and white pixels.[25] In succeeding steps, counting 
algorithms were used to count MF per tile of grid‑based 
image partitioning. MF count data were autoexported to 
a spreadsheet along with corresponding image tile spatial 
information. To topographically localize the greatest MF 
activity areas from the counts generated back onto the tissue, an 

Figure 1: Three phases of the analytic workflow for detecting, quantifying, and mapping proliferative cell nuclei (mitotic figure) in tissue whole‑slide 
images. Initial phase involves creating grid tile regions of interest covering the entire tissue and extracting the necessary features to detect and segment 
phosphorylated histone H3‑immunolabeled nuclei, a marker of proliferating cells in mitosis (M phase). In Phase II, the mitotic figure objects of interest 
are counted, and each grid tile tally is exported to a spreadsheet and rank ordered according to total counts. In the final conceptual Phase III, selected 
tiles (with greatest counts) are analyzed to obtain local features which can be mapped back to the whole slide image for display
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algorithm (speeded‑up robust features [SURF]) was employed 
to invariantly match local features of maximum count tiles 
(top five HS regions of interest (ROIs), designated h1–h5) to 
the corresponding location of those tiles in WSI tissue area.[26] 
The uppermost five HSs (based on MF counts) were selected 
to display a survey of mitotic activity heterogeneity; however, 
a different number of tiles could be chosen for exhibition. 
The novel workflow and steps for the automated TMHS  are 
illustrated [Figure 1].

Validation studies
Independent of TMHS algorithm image analysis, the 30 cases 
were evaluated by pathologists. A pathologist (CHH) examined 
and annotated digital images using Aperio ImageScope and 
digital display monitor to demarcate areas of the greatest 

mitotic activity within specimens. The annotation consisted 
of a circular ROI corresponding to 2.37 mm2 area (R1) or 
approximately ten high‑power fields of view (FOVs) in 
standard clinical microscopes with ocular lens eyepiece field 
number 22 (manuscript in preparation). A pathologist (HAA) 
counted immunolabeled MF visually and recorded counts 
electronically (manuscript in preparation). In addition to 
producing MF counts in the independently designated R1 HS, 
this pathologist also counted MF in the TMHS‑designated h1 
HS. The MF count values generated within h1 and R1 HS 
by the TMHS algorithm and the pathologist, respectively, 
were compared to counts obtained independently using a 
second machine algorithm established for cell‑object counting 
algorithm (OCA) (HALO v2.1.1637, Cytonuclear Algorithm 
v1.4, Indica Labs, Corrales, NM, USA). The OCA algorithm 

Figure 2: Pictorial depiction of computational workflow for topometric proliferative hotspot detection and mapping for tumor tissue. (a) Input whole‑slide 
image is overlain with a grid of tiles corresponding to 3000 × 3000 pixels each or approximately ×4 magnification. The processing includes a series of 
steps to reduce the confounding effects of tissue and staining artifacts [Supplemental Figure S2]. Specific color and shape object features corresponding 
to red chromogen‑immunolabeled proliferating cell nuclei within the image are segmented and quantified according to filters established. (b) Mitotic 
figure extracted features are binarized, counted, and exported to a spreadsheet, as a rank order set of tiles, based on count magnitude. These mitotic 
figure values are represented in a slope plot for the specimen for up to the first 100 tiles containing the most mitotic figure. (c) Local tissue invariant 
feature extraction methods are used to obtain the proper orientation of selected identifying features within grid tiles of interest, for those tiles with the 
largest counts, tiles h1–h5. These are then marked by a bounding box and displayed on the thumbnail image of the input tissue image

a

b

c
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does not include an automated topographic tissue mapping 
function. The degree to which MF R1 HS identified by the 
pathologist coregistered with the TMHS algorithm‑designated 
HS (h1–h5) was assessed visually in overlay images.

Further performance appraisal was provided by a group 
of six pathologists who obtained MF counts as part of a 
larger concurrent study devoted to comparing pathologist 
performance agreement between conventional microscopy and 
digital display of WSI (in preparation). For this comparison, 
35 anti‑pHH3‑immunolabeled canine melanomas were 
read by pathologists in their individual diagnostic sign‑out 
environments using conventional microscopy. The pathologists 
independently identified their preferred mitotic HS for 
evaluation and used the ×40 objective lens for counting MF in 
ten contiguous nonoverlapping microscopic FOVs. Pair‑wise 
interobserver correlation analyses among pathologists provided 
contrast with automated TMHS method reproducibility.

Statistical analysis
MF count values acquired from TMHS, independent 
pathologist, and OCA were analyzed for methods comparisons 
by Passing and Bablok linear regression agreement analysis 
using log10‑transformed data.[27] Bland and Altman analysis of 
MF values derived by the various modalities was performed 
to gauge the limits of agreement between methods using 
log10‑transformed data.[28] These difference versus average 
plots included analyses of the following three comparisons:
1. Pathologist R1 – TMHS h1 versus (TMHS h1 + pathologist 

R1)/2
2. Pathologist h1 – TMHS h1 versus (TMHS h1 + pathologist 

h1)/2
3. OCA h1 – TMHS h1 versus (TMHS h1 + OCA h1)/2.

Analyses were performed to understand the correlation 
of MF counts with melanoma patient survival data using 
Kaplan–Meier survival analysis and the log‑rank test. Pair‑wise 
correlation of MF counts among pathologists obtained by 
conventional microscopy was analyzed using Spearman’s (rho) 
correlation analysis of log10‑transformed data. Statistical 
significance of tests is claimed for P < 0.05.

results

Automated quantification and mapping of proliferative 
activity
The automated TMHS computational process quantified and 
mapped mitotic activity HS in digital image files of tumor 
tissue. During the initial steps (Phase I) [Figure 1], image tiles 
were segregated into groups that either included tissue or tiles 
that lacked tissue (glass only). Tiles that contained both tissue 
and glass (tissue edges) were treated as tissue tiles. Each 
tissue‑containing tile was automatically assigned a unique 
identification number and exported for feature extraction. MF 
feature extraction employed a combination of color, size, and 
shape filters to detect MF features corresponding to the red 
chromogen of pHH3‑immunolabeled mitotically active cells 

developed during IHC [Figure 2a]. This step also compensated 
for a range of confounding artifacts commonly associated 
with tissue processing and staining, based on color, size, and 
shape to permit subtraction of elements such as pigments, 
dyes, and extraneous objects [Supplemental Figure S2]. 
Segmentation and extraction filters employed in Phase I 
were able to identify anti‑pHH3‑labeled mitotic cells with 
notable specificity while eliminating background noise due to 
common artifacts occurring during slide preparation, labeling, 
and staining. This was confirmed by visually comparing the 
postprocessed h1 HS tile binary images with the corresponding 
bright‑field micrograph tile images for all cases [Figure 2]. 
With background subtraction leaving only MF objects in the 
segmentation stage, image tiles were recorded in separate 
folders and moved to the second phase [Figure 1].

In Phase II [Figure 1], tiles were converted to grayscale to 
enable subsequent object binarization, and thresholding 
filters permitted MF counting as binary objects, per tile 
area. MF count data were exported to a spreadsheet, and 
values were rank‑ordered according to the highest to lowest 
tile count [Figure 2b]. Analysis of this series of canine 
melanoma tumor tissues included a wide range of proliferative 
activity, from 2 to 793 MF in the h1 HS tile, and assessment 
of up to 100 tissue‑containing image grid tiles generally 
included the scope of MF counts. A total of 3356 image 
tiles (mean tissue‑containing tiles per specimen = 111.9 
[range 29–210]) were processed.

Phase III of the automated TMHS tool function mapped the five 
tiles with greatest MF counts back to the WSI thumbnail, to 
plot mitotic activity topographically [Figure 1]. These five tiles, 
designated HS h1–h5 corresponding to the ordered magnitude 
of the top five MF ROIs, were matched by tile address back 
to the RGB color tile tissue folder. Mapping employed SURF, 
a local tissue rotation invariant feature extraction computer 
vision algorithm [Figure 2c]. Local features extracted for 
this function included distinctive structures, objects, and 
edges occurring in images. Once maximum confidence in 
the strongest features matching to the WSI for the maximum 
count tiles was achieved, a bounding box corresponding 
to the magnitude of count HS tiles h1–h5 was displayed 
automatically [Figures 2c and 3a].

The automated TMHS algorithm provides diagnostic 
decision support and tumor grading functions for review 
by the pathologist. These outputs include graphics of tumor 
image and overlay tiles depicting the MF HS locations 
topographically [Figure 3a]; a MF counts slope plot for up to 
100 grid tile count values across each tissue image [Figure 3b], 
as well as a corresponding spreadsheet of MF count values. 
Due to the established grid tile metrics, the MF values are 
scaled based on a standard area in diagnostic surgical pathology 
equal to ten high‑power FOVs, for each tissue‑containing 
tile [Supplemental Table 1]. The automated TMHS diagnostic 
support algorithm function was executed through a GUI 
controller [Supplemental Figure S1].
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Automated topometric hotspot performance validation
Automated TMHS functionality was validated further in a 
representative clinical application using the series of 30 canine 
melanoma biopsies immunolabeled with anti‑pHH3 IHC for 
proliferating cells. Tumor mitotic activity was ascertained, 
and counts were obtained and mapped. Several measures 
were compared for evidence of correlation, reproducibility, 
and method interchangeability. For these comparisons, 
the automated TMHS machine performance output was 
correlated with the pathologists who independently identified, 
mapped, and counted tumor mitotic HS (R1) in the case 
series. Additional appraisal of the TMHS performance was 
made by comparing the automated TMHS‑generated h1 MF 
counts with counts made visually by the pathologist from 

the identical TMHS‑designated h1 HS. A third comparison 
was made between the TMHS algorithm count values and 
those obtained by quantifying the immunolabeled MF within 
the TMHS‑designated h1 HS using a second machine OCA. 
This OCA was independently established using the same 
immunolabeled MF objects of interest in the WSI; however, 
the OCA algorithm does not include a mapping function. In 
addition, mitotic counts generated by the pathologist and from 
the TMHS algorithm were tested for prognostic utility by 
attempting to stratify patient survival intervals.

Mitotic counts are a prognostic indicator of survival/prognosis 
in canine melanoma,[29] similar to the clinical utility of 
determining MF frequency in several human tumor types, 
including melanoma.[5‑10] Therefore, an examination predicting 
longer versus shorter survival time risk, based on MF values 
from HS, was undertaken analogous to how the automated 
TMHS tool would be applied clinically. A MF cut score 
value of 110 immunolabeled MF was determined for dogs 
in this study through a process of serially testing candidate 
MF count values to segregate patient populations based on 
survival postdiagnosis. Kaplan–Meier plot and log‑rank 
analysis demonstrate a difference in survival, with a cut point 
of 110 pHH3‑positive cells [Supplemental Figure S3, for 
TMHS, P = 0.0034; and for manual evaluation, P = 0.0013]. 
The median survival of the poor prognostic group was 45 or 
38 days and for the more favorable prognostic group, 197.5 
or 197 days, based on TMHS and pathologist, respectively.

The extent of topographic agreement between the automated 
TMHS algorithm‑mapped HSs (h1–h5) and the R1 HS 
manually identified by the pathologist was evaluated using 
image overlays of these two independent approaches to HS 
identification [Supplemental Figure S4]. Topographically, the 
manual primary HS (R1) partially or more substantially coincided 
with one or more of the automated mitotic HS (h1–h5) in the 
majority of cases (23 of 30 [76.7%]) [Supplemental Table 1]. 
In one of the seven cases that lacked co‑registration, the 
survival prognosis based on mitotic activity was misjudged 
by the pathologist. Another discrepancy revealed a distinct HS 
focus that the pathologist identified, which shared a MF count 
similar to the TMHS‑designated h5 HS. This latter discrepancy 
may not be clinically meaningful, whereas the former one in 
which the mitotic HS is not aligned with the representative 
tumor mitotic activity represents a variance that risks leading 
to diagnostic error.

The agreement among MF count values obtained by the 
automated TMHS mapping algorithm, OCA machine analyses, 
and by pathologist visual inspection was also considered 
through nonparametric Passing and Bablok linear regression 
for method comparison. Examining MF count correlation in 
this manner allows for measurement error (imprecision) in the 
approaches compared, does not require the measurement error 
to be normally distributed, and is insensitive to outliers.[27] 
This analysis provided strong evidence of agreement among 
the various approaches [Figure 4 a, b and c, P < 0.0001]. The 

Figure 3: Diagnostic decision support graphics provide topography and 
count metrics for tissue hotspots. Automated mapping of the tissue 
grid tiles having the most numerous mitotic figure counts across the 
entire tissue section image is illustrated in the context of the image 
processing tile grid. Each tile area (2.29 mm2) is commensurate with 
ten high‑power (×40) fields of view on standard clinical microscopes 
(2.37 mm2 area). (a) Square tiles h1–h5, assigned by the automated 
topometric mitotic hot spot tool, represent the five tiles with the highest 
mitotic figure count. In context of the grid regions of interest, the hot 
spot tiles reveal the topographic heterogeneity of the proliferative activity 
in this example tumor. The square (red box) depicts the h1 tile with the 
highest mitotic figure count. (b) Mitotic figure count values are plotted for 
up to 100 tiles having the greatest counts, providing an indication of the 
proliferative characteristics across a tissue section. The graphic depicts 
plots for 30 biopsies. The inset graphic depicts the relative differences in 
proliferative characteristics within the 50 highest count tiles of 27 tumor 
specimens. The three most proliferatively active melanoma cases were 
excluded for illustration purposes

a
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degree of correlation was greater when precisely the same area 
was assessed (h1 compared to h1, in contrast to R1 compared 
to h1), with stronger parallel observed between OCA and 
TMHS in most of the cases, compared to visual counts of 
MF by the pathologist. Two data points deviating most from 
the regression line were noted [Figure 4c]. Both cases were 
influenced by a varying and regionally weak IHC chromogenic 
signal development [lower point, ID 3043, upper point, ID 
4583, Supplemental Table 1]. Both algorithms were impacted, 
resulting in undercounts, while the pathologist appears to have 
compensated in these instances [Supplemental Table 1].

Similarly, paired assessments of MF HS were depicted in a 
series of difference versus average plots [Figure 5]. Bland and 
Altman analysis estimates the degree to which two methods 
differ in quantitative measurement (limits of agreement) and 
can thereby aid in deciding if one method can be substituted 
for another.[28] The limits of agreement analyses indicate that 
methods were interchangeable [Figure 5].

The reproducibility of the automated TMHS algorithm HS 
mapping and counting functions was further assessed on the 

identical image files following 90° in‑plane image rotation, 
to create an alternative input orientation. The resulting h1 
HS topographic location and the respective MF counts 
substantially reproduced the initial output when the tissue 
image was reprocessed by the automated TMHS algorithm in 
a different orientation [Supplemental Table 1 and Figure 6a, b]. 
The automated TMHS h1 HS was registered to within a few 
hundred microns of its original tissue location in all but 
five specimens [Supplemental Table 1]. In four of the five 
cases, the new h1 HS in the rotated image overlapped or 
was adjacent to the original h2 HS, the ROI with the second 
highest mitotic count. In two of these four cases for which 
the newly mapped h1 HS was aligned with the original h2 
HS after image rotation, the counts were within 3 MF of 
the initial h1 mitotic count values and not >9 MF among 
the remaining two [Supplemental Table 1]. Repeating the 
automated TMHS MF count values using images in a second 
orientation provided evidence of excellent correlation for the 
mapping and counting functions (R2 = 0.9916) [Figure 6c]. This 
degree of reproducibility contrasts with a range of relatively 
less well‑correlated MF values evident when assessing MF 

Figure 4: Performance fit comparisons between the automated topometric mitotic figure hotspot tool (TMHS) and mitotic figure quantification by expert 
visual assessment or a second machine object counting algorithm (OCA). Regression scatter plots of paired mitotic figure count observations (log10) from 
the TMHS h1 hot spot, with (a) counts independently obtained by pathologist (R1 hotspot), (b) counts of the automated h1‑selected topometric hotspot 
obtained by the pathologist, or (c) counts from the automated h1‑selected topometric hotspot obtained by object counting algorithm counting. Two data 
points deviating from the regression line were noted in particular. One of these cases displayed in c was influenced by a weaker immunohistochemistry 
signal development (lower point, ID 3043). In the second case (upper point, ID 4583), repeat counts obtained by the pathologist ranged from 14 to 
16 for both h1 and R1 hotspots, which were regions of interest completely overlapping topographically. Blue‑shaded areas represent 95% confidence 
intervals. R2 values and regression equations are indicated on the figure. All comparisons represented significant correlations

a b

c
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agreement among a group of pathologists [Figure 6d]. The 
latter data were obtained evaluating anti‑pHH3‑labeled mitotic 
activity in a series of melanomas by microscopy, under typical 
case sign‑out circumstances. This operational discordance 
when pathologists perform this task remains a concern, and 
the functional reproducibility of the automated TMHS method 
is a strong characteristic of the tool and represents a distinct 
advantage.

dIscussIon

Assessment of proliferative capacity is an important component 
of tumor grading and treatment planning for several types of 
malignancies, including breast, adrenal gland, meningiomas, 
neuroendocrine carcinomas, soft‑tissue sarcomas, and 
melanoma.[1,2,4,5,9,10,12,14,30] Yet, during routine visual inspection 
of H&E‑stained biopsies, pathologists frequently fail to agree 
on which structures represent MF. In a recent study, only 21 
of 92 MF in H&E‑stained tumor biopsies were unanimously 
identified as MF by all five participating pathologists examining 
the same 40 FOVs (https://nciphub.org/groups/eedapstudies/
wiki/Presentation: AReaderStudyona14headMicroscope 
December 3, 2018). Selection bias, sample size, and tumor 
heterogeneity can all contribute to disparities.[2] The use of 

immunohistochemical methods to label cell proliferation 
markers has been shown to improve MF detection and 
quantitation for prognostic purposes.[2,13,17,31,32] The approach 
demonstrated here takes advantage of the differential contrast 
and target probe enhancement of mitotic (M) phase cells, 
through pHH3 immunolabeling. These characteristics are 
commonly shared among tumor types and even across species. 
While prognostic grading can be accomplished using MF 
counts from H&E‑stained tissues and mitotic immunolabeled 
tissues, the absolute values for the prognostic cut points differ 
between cancer types and mitotic counts obtained by evaluation 
of H&E stains and pHH3 IHC.

Furthermore, quantifying MF from tumor HS using 
automated computer assistance stands to improve the 
interobserver variability inherent in clinical MF assessment. 
The automated TMHS algorithm uses an unsupervised 
tile‑based ROI approach, executed through a GUI, 
fully processing each image pixel in subdivided static 
images at approximately ×4 magnification (size ≈ KB). 
Computationally, this helps to simplify processing 
requirements manifest in some other systems. For example, 
the automated selection of hotspot (ASH) tool, applied in the 
detection of HS in melanomas and adrenocortical tumors, 

Figure 5: Limits of agreement. The difference in measurements made in paired analyses was plotted against the average of two methods compared 
(all data log10 transformed). General agreement between methods is evident with minimal variance (limits of agreement, shaded area). Bland–Altman 
scatter plots of paired count observations (a) obtained by pathologist‑independent visual assessment of R1 minus automated h1‑selected topometric 
hotspot, (b) pathologist counts by visual inspection from the h1‑selected topometric hotspot minus counts generated from the automated h1‑selected 
topometric hotspot, or (c) mitotic figure counts obtained from the h1‑selected hotspot using a second machine object counting algorithm (OCA) minus 
the automated h1‑selected topometric hotspot counts

a b

c
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differs from TMHS by the block size, and ASH image tiles 
number in the thousands (size ≈ GB), which together would 
appear to add substantially to processing requirements.[19] 
By contrast, the automated TMHS approach permitted HS 
detection from the first 100 tissue tiles. TMHS analysis 
indicated that MFs were concentrated within ≤80–100 
tiles, approximating a tissue surface area of ≤240 mm2. 
In addition, TMHS operates with lower resolution input 
images from ×20 magnification optical scans, which can 
be more rapidly acquired, providing further advantageous 
image processing distinctions from other methods.[18,21,30] 
Consequently, these TMHS design characteristics afford 
relative computational efficiency for handling the large 
size of WSI data files.

Clinical practice typically includes assessment of MF density 
for areas of tumor mitotic HS. Customarily, counts are made 

beginning in an area of the tumor with the most plentiful 
MF, i.e., the mitotic HS. Many MF cut points used for 
tumor grading are based on this approach.[1,2,12] Prognostic 
assessment of proliferative activity by microscopy usually 
involves examination of ten high‑power magnification 
FOVs (×40 objective lens).[1,2,12,32,33] Significant differences 
in the predictive value of MF counts assessed from mitotic 
HS, in contrast to MF counts obtained from either randomly 
selected FOV, or the tumor area more globally, have been 
documented.[16,33] While counts obtained from mitotic HS 
are clearly the preferred practice, the visual determination of 
HS location is subjective, time‑consuming, error prone, and 
thereby influences the prognostic values represented.[14,34] In 
general, results obtained can be poorly reproducible, which can 
be attributed to factors such as tissue areas chosen, structures 
identified, and counts acquired by different pathologists. 
In our study, TMHS‑designated HS locations co‑registered 

Figure 6: Performance fit comparisons between repeated automated TMHS analyses and among a group of pathologists examining anti‑phosphorylated 
histone H3‑immunolabeled melanomas by conventional microscopy. (a) For TMHS, an original input image, with grid tile overlay, includes the computed 
TMHS h1 hotspot indicated by red box tile, which is illustrated in relation to the R1 hotspot selected by the pathologist (circle). (b) Identical image as 
in a, after 90° in‑plane rotation, is processed in TMHS to demonstrate the computed h1 hotspot within the same tissue region as the original. The R1 
hotspot, selected by the pathologist and shown as an image overlay, has the same tissue coordinates as in a. Bar = 1.514 mm. (c) Regression scatter 
plot of paired mitotic figure count values in the two image orientations among the 30 cases, from automated TMHS mapping tool (log10 transformed). 
Blue‑shaded area represents 95% confidence interval. R2 value and regression equation are indicated on the figure. Measurements from the two image 
orientations were highly significantly correlated (P < 0.0001). (d) Pair‑wise, interobserver agreement of mitotic figure assessment by each pathologist 
using conventional microscopy on anti‑phosphorylated histone H3‑immunolabeled melanomas (n = 35). Each cell in the heat map represents the 
Spearman correlation coefficient (rho values, bar graph) between each pair of pathologists (A, B, F, J, K, and L), using the total mitotic figure count 
in ten high‑power microscope fields of view

a b

c d
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topographically with mitotic HS manually selected by the 
pathologist, overlapping in approximately 77% of cases. This 
level of intermodality agreement between pathologist and 
TMHS machine was principally reinforced by the analysis of 
survival prognosis of the 30 dogs with melanoma. MF count 
values produced with the automated TMHS method, and 
independently by the pathologist, both resulted in the ability 
to predict patient survival differences, although intermodal 
discrepancy resulted in different prognostic grading for one 
case. By contrast, analysis of cutaneous melanoma revealed 
that pathologist manual versus automated HS topographies 
were less commonly co‑registered (67%) than for the 
automated TMHS analysis (77%), even though skin biopsy 
tissue areas (range: 0.020–50 mm2) were significantly smaller 
than mucosal melanomas overall.[15] Furthermore, in cutaneous 
melanoma,[15] the clinical utility of the automated HS‑acquired 
pHH3‑immunolabeled MF counts was judged prognostically 
inferior to the manually derived values, a less optimal 
distinction compared to the TMHS algorithm performance 
shown here. In part, this is likely due to improvements in MF 
object segmentation and feature extraction made using the 
automated TMHS tool, contributing therefore to enhanced 
precision.

Low MF counts can also be prognostically informative and 
the automated TMHS global analysis approach provides such 
insight when limited proliferative capacity is manifest in 
biopsies. The quantifying and mapping features of some MF 
detection systems appear to be more constrained than TMHS. 
For example, testing of all tissue locations is not always 
completely inclusive,[21] and sparse small clusters of MF may 
be excluded, or counts are not yielded in each case, as further 
improvements in nuclear segmentation are required.[20]

The image analysis process must reproducibly distinguish 
mitotic cells from a variety of potentially confounding 
structures and artifacts in tissues. Addressing tissue artifacts, 
while assuring the quality of MF recognition, segmentation, and 
counting, remain key challenges. The automated TMHS tool 
confronts these issues, and essential functional reproducibility 
is demonstrated. Feature extraction and quantitation of 
pHH3‑immunolabeled MF using automated TMHS were 
highly correlated with a second independently established 
OCA although it is noteworthy that the OCA does not map HS 
localization topography. Likewise, automated TMHS function 
was significantly correlated with the pathologist, an outcome 
requiring both MF segmentation and HS mapping precision. 
Together, these findings provide substantial confidence for the 
nuclear segmentation function and the avoidance of noise in 
the form of artifacts. Additional assurance was provided by 
qualitative review of the MF feature segmentation markup 
by the pathologist for all algorithms on all specimens, using 
the computer display. This important decision support feature 
is not a universal element in other HS detection methods.[14]

Tissue‑ and stain‑related artifacts inherent in biopsy tissue 
sections must be addressed for proper performance. We 

encountered a range of artifacts that could not be filtered out 
by selecting a single approach; therefore, a series of filters 
were designed to deal with a number of common artifacts. 
TMHS development addressed typical artifacts hampering 
previous algorithms primarily incorporating commercially 
available CAD or other open source tools.[15,19] For example, 
TMHS was able to circumvent melanin, hemosiderin, and other 
pigments, in contrast to previous tools.[15,19] Red chromogenic 
signal development likely contributed to this. In addition, 
automated TMHS processing otherwise eliminated a need for 
supplemental postprocessing required to address false‑positive 
HS due to sporadic off‑target labeling, and the necessity to 
exclude tissue folds and necrosis by employing independent 
preprocessing steps was averted.[19,35] In distinction to other 
systems,[18,30] particular tissue artifacts that necessitated the 
exclusion of 8%–20% of cases altogether were not similarly 
problematic for TMHS mapping. Previously, artifact 
complications were reduced using a combination of Unser 
features and local binary pattern.[18] However, the tools were 
combined in a series of support vector machine applications 
of Gaussian kernel function that required machine learning. 
By contrast, automated TMHS proliferation quantification and 
HS mapping programming is a feature‑based algorithm that 
does not comprise machine learning.

A feature‑based approach requires specimens preserved 
and processed consistently. Tissue processing factors have 
the potential to impact the success of the automated TMHS 
algorithm and remain perennial issues across all types of tissue 
image analysis.[18] In the present study, there were two cases 
for which the analyses appeared to deviate and for which the 
level of agreement was less representative of the remaining 
samples [Figure 4c]. Anti‑pHH3‑immunolabeling signal 
appeared to be faint in some tissue areas in these two cases, 
which was apparent on the quality assurance review process. 
However, this circumstance resulted in undercount of some 
MFs, which were excluded by TMHS algorithm threshold 
settings established to subtract background off‑target noise. 
The efficiency of the automated TMHS system rests in part on 
proper probe recognition of MF and its signal generation. The 
clinical implementation of automated TMHS will necessitate 
adherence to standardized preanalytic control procedures 
to maximize specimen integrity in preparation for tissue 
processing, image acquisition, and computation. Successfully 
accomplishing unsupervised image processing for MF HS 
detection is reliant upon uniform reproducible tissue labeling 
and signal contrast generation for efficient computer vision 
function.

conclusIons

HS detection and mitotic counting plays a crucial role in 
proliferation assessment and tumor grading.[1‑10] In this paper, 
we established a method of HS location and mapping that does 
not rely upon machine learning but by contrast is tile‑based and 
computationally less complex in comparison to other methods 
which utilize algorithm processing power across an entire WSI. 
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Identification of tissue HS, assessments of mitotic activity, and 
the utility of the automated TMHS functions were all shown 
to be clinically relevant, prognostically predictive, and highly 
correlated with the pathologist tasked to directly challenge the 
machine. Limits of agreement correlation analyses indicated that 
the automated TMHS method was clinically interchangeable 
with the pathologist using digital display of WSI. Technical 
quality of MF immunolabeling and IHC chromogenic signal 
development could be a factor in our automated computational 
approaches, whereas pathologist compensation for varying 
and regionally weak IHC was apparent in at least two cases. 
Notwithstanding, the overarching goal of providing improved 
clinically actionable prognostic decision support free from the 
widely recognized interobserver variability prone to traditional 
MF assessments[7,11‑16] was achieved. The reproducibility of 
the automated TMHS algorithm proved superior compared to 
replicates among six pathologists using routine microscopy, 
which included identifying their own mitotic HSs as in a 
clinical practice setting. Utilizing the reproducible precision 
of the computer‑assisted TMHS diagnostic mapping function 
will enhance pathologist tumor prognostic grading efficiency 
across a range of malignancies with varying clinical MF count 
cut points.
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Supplemental Figure S1: Functional execution is made possible through a 
graphical user interface developed in MATLAB to implement the workflow. 
WSI: Whole‑slide image

Supplemental Figure S2: Example artifact filter series illustrates combination of color, shape, size, and thresholding filters for subtracting common 
tissue and stain‑related artifacts. Artifacts removed included: off‑target red‑chromogen labeling, green and black ink, hemosiderin, melanin, hair, tissue 
folds and tears, and tissue edge effects. Images, original capture magnification ×4 or ×5



Supplemental Figure S4: Automated TMHS hotspots (h1–h5) mapped to 
whole‑slide images thumbnail image including overlay image of the single 
annotated regions of interest independently identified and assessed by 
the pathologist (a 2.37 mm2 blue circular area, R1). In this representative 
sample, the R1 hotspot substantially corresponded to portions of h1 
and h2 hotspot, the area of maximum mitotic activity identified by the 
automated topometric method

Supplemental Figure S3: Kaplan–Meier survival analysis curve based on 
mitotic figure counts for melanoma patients assessed by automated TMHS 
algorithm (a) (P = 0.0034) and by pathologist (b) (P = 0.0013). Plots 
include subtle differences. Patients were treated by surgery with intent 
to cure and survival days were tracked from time of diagnosis (n = 30)

a

b
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Supplemental Table 1: Quantitative mitotic figure values for automated topometric mitotic hot spot mapping compared to 
counts by a pathologist expert and a second counting algorithm on 30 mucosal melanoma biopsies

Patient Analysis 
Region

TMHS 
counts

OCA 
counts

Pathologist 
Counts

Co‑registration of R1 to 
h1‑h5 HS

90º Rotated Image h1 HS (Counts) 
Compared to Original h1 TMHS

1284 h1 16 19 34 Substantial overlap with h1 Complete overlap with original h1
h2 12 12 (17)
h3 10 13
h4 10 13
h5 10 11
R1 35 49

1619 h1 42 53 29 Complete overlap with h3 Partial overlap with original h1
h2 30 32 minimal with h1 (adjacent) substantial overlap with original h4
h3 30 34 (h1 and h4 are contiguous)
h4 28 29 (40)
h5 27 42
R1 37 26

1964 h1 49 50 52 Substantial overlap with h1 Minimal overlap with original h1
h2 34 36 partial with h2 substantial overlap with original h2
h3 32 40 (h1 and h2 are contiguous)
h4 28 32 (42)
h5 25 26
R1 80 79

2501 h1 113 127 105 No overlap Substantial overlap with original h1
h2 108 113 separate tissue from h1 (100)
h3 99 112
h4 85 95
h5 83 87
R1 78 59

2594 h1 3 4 8 Partial overlap with h5 Complete overlap with original h1
h2 3 3 (3)
h3 2 3
h4 2 2
h5 2 3
R1 4 2

2633 h1 22 22 27 Substantial overlap with h2 Substantial overlap with original h1
h2 21 20 minimal with h1 substantial overlap with original h5
h3 21 22 (h1,2 are contiguous) (h1 and h5 are contiguous)
h4 19 20 (25)
h5 17 18
R1 26 20

2641 h1 22 22 24 No overlap Substantial overlap with original h1
h2 19 19 separate tissue substantial overlap with original h5
h3 16 16 (h1 and h5 are contiguous)
h4 12 12 (25)
h5 10 10
R1 2 12

2676 h1 75 92 93 Minimal overlap with h2 Complete overlap with original h1
h2 64 92 (68)
h3 61 70
h4 53 75
h5 49 79
R1 86 63

3043 h1 19 5 45 Substantial overlap with h2 Substantial overlap with original h1
h2 8 5 minimal with h1, h5 substantial overlap with original h2
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Supplemental Table 1: Contd...

Patient Analysis 
Region

TMHS 
counts

OCA 
counts

Pathologist 
Counts

Co‑registration of R1 to 
h1‑h5 HS

90º Rotated Image h1 HS (Counts) 
Compared to Original h1 TMHS

h3 5 4 (h1 and h2 are contiguous)
h4 4 4 (16)
h5 3 2
R1 4 37

3109 h1 414 445 457 Partial overlap with h5 Complete overlap with original h1
h2 354 359 (h5 is contiguous with h4) (389)
h3 313 362
h4 295 309
h5 275 289
R1 392 391

3676 h1 25 31 28 Partial overlap with h3 No overlap with original h1
h2 24 43 but adjacent to original h2
h3 24 27 (27)
h4 23 26
h5 22 24
R1 28 25

4479 h1 17 21 17 No overlap Complete overlap with original h1
h2 14 16 (16)
h3 14 13
h4 11 16
h5 11 12
R1 9 8

4583 h1 5 10 14 Substantial overlap with h1 Substantial overlap with original h1
h2 4 6 minimal with h2 partial overlap with original h2
h3 3 4  (h1 and h2 are contiguous) (h1 and h2 are contiguous)
h4 3 3 (6)
h5 3 7
R1 11 15

5223 h1 59 61 57 No overlap Complete overlap with original h1
h2 52 57 separate tissue (59)
h3 47 55
h4 44 54
h5 41 48
R1 39 38

5579 h1 136 151 112 Substantial overlap with h1 Substantial overlap with original h1
h2 120 133 minimal with h5 partial overlap with original h5
h3 106 123  (h1 and h5 are contiguous) (h1 and h5 are contiguous)
h4 92 102 (139)
h5 87 97
R1 123 93

5632 h1 19 15 18 Complete overlap with h4 No overlap with original h1
h2 17 18 substantial overlap with original h2 
h3 12 11 (16)
h4 10 10
h5 9 7
R1 10 14

5812 h1 100 102 109 Substantial overlap with h1 Substantial overlap with original h1
h2 71 83  minimal with h2, h5 partial overlap with original h5
h3 71 76 (h1‑h5 are contiguous) (h1 and h5 are contiguous)
h4 66 74 (90)
h5 39 43
R1 107 104
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Patient Analysis 
Region

TMHS 
counts

OCA 
counts

Pathologist 
Counts

Co‑registration of R1 to 
h1‑h5 HS

90º Rotated Image h1 HS (Counts) 
Compared to Original h1 TMHS

6534 h1 33 34 38 Substantial overlap with h3 No overlap with original h1
h2 26 27 substantial overlap with original h3
h3 25 26 partial overlap with original h4
h4 19 22 (h3 and h4 are contiguous)
h5 19 21 (26)
R1 27 29

6589 h1 21 17 20 Substantial overlap with h1 Substantial overlap with original h1
h2 20 15 (19)
h3 20 19
h4 13 12
h5 9 9
R1 17 22

6612 h1 47 55 38 Partial overlap with h2 Substantial overlap with original h1
h2 43 55 partial overlap with original h4
h3 42 55 (h1 and h4 are contiguous)
h4 39 52 (42)
h5 38 46
R1 48 49

7142 h1 2 2 2 Partial overlap with h2, h4 Substantial overlap with original h1
h2 2 2 (all tiles have same count value) minimal overlap with original h2
h3 2 2 (h1 and h2 are contiguous)
h4 2 2 (all tiles have same count value)
h5 2 2 (2)
R1 3 2

7204 h1 165 182 260 Substantial overlap with h1 Substantial overlap with original h1
h2 117 131 partial h2 , minimal h3 (156)
h3 104 128 (h1‑h4 contiguous)
h4 71 82
h5 70 77
R1 265 309

7870 h1 75 79 89 Partial overlap with h5 No overlap with original h1, separate 
tissue

h2 65 68 substantial overlap with original h2
h3 64 68 (70)
h4 57 59
h5 56 58
R1 48 44

8032 h1 793 867 678 No overlap Substantial overlap with original h1
h2 761 826 separate tissue (747)
h3 644 713
h4 621 676
h5 550 603
R1 320 348

8478 h1 280 315 285 Substantial overlap with h4 Substantial overlap with original h1
h2 185 208 minimal with h5 (313)
h3 174 199
h4 167 185
h5 163 181
R1 249 196

8489 h1 53 63 30 No overlap No overlap with original h1
h2 52 55 substantial overlap with original h2 
h3 49 62 (64)
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Patient Analysis 
Region

TMHS 
counts

OCA 
counts

Pathologist 
Counts

Co‑registration of R1 to 
h1‑h5 HS

90º Rotated Image h1 HS (Counts) 
Compared to Original h1 TMHS

h4 48 58
h5 48 55
R1 50 37

8615 h1 36 40 40 Partial overlap with h4 Complete overlap with original h1
h2 35 40  minimal with h1 (39)
h3 32 35 (h1 and h4 are contiguous)
h4 27 25
h5 24 49
R1 39 40

9352 h1 35 37 46 Substantial overlap with h2 Substantial overlap with original h1
h2 17 21 minimal with h1 (26)
h3 12 21
h4 7 13
h5 6 7
R1 33 28

9623 h1 99 113 105 Partial overlap with h5 Partial overlap with original h1
h2 92 170 (h5 adjacent to h1) (86)
h3 89 101
h4 87 102
h5 85 113
R1 144 124

9830 h1 81 96 56 No overlap Partial overlap with original h1
h2 77 93 (84)
h3 73 84
h4 69 90
h5 66 73
R1 79 73

h1 – h5 analysis regions=mitotic hot spots assigned by TMHS algorithm. R1 analysis region=mitotic hot spot assigned by pathologist. OCA=Object 
Counting Algorithm where counts were obtained by a second algorithm established to count MF in previously assigned regions, h1 – h5 and R1. 
Pathologist counts reflect a pathologist visually counting MF either in previously assigned regions (h1 – h5) or in pathologist designated R1 region. HS 
co‑registration agreement: Complete overlap ≥90% , Substantial overlap ≥50% and <90% , Partial overlap ≥10% and<50% ; Minimal overlap ≥1% and 
<10% ; No overlap; ROI located on separate piece of tissue. Rotated Image Analysis=Repeat Analysis by TMHS tool (see methods).


