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Introduction
The potent actions of adenine compounds were first described by 
Drury and Szent-Györgyi in 1929. Years later, adenosine 
5′-triphosphate (ATP) was proposed as the transmitter responsi-
ble for non-adrenergic, non-cholinergic transmission in the gut 
and bladder, and the term ‘purinergic’ was introduced by 
Burnstock in 1972. Early resistance to this concept was under-
standable since ATP was recognised first for its intracellular roles 
in many biochemical processes and the intuitive feeling was that 
such a ubiquitous and simple compound was unlikely to be uti-
lised as an extracellular messenger. However, enzymes involved 
in the breakdown of extracellular ATP had already been described 
by the mid-1990s (see Yegutkin, 2008).

The concept of purinergic neurotransmission and the potent 
actions of extracellular ATP on many different cell types implied 
that there were purinergic membrane receptors. Purinergic recep-
tors were described first in 1976 (Burnstock, 1976). Two years 
later, a basis for distinguishing two families of purinoceptors was 
proposed, identifying P1 and P2 receptors (for adenosine and ATP/
adenosine 5′-diphosphate (ADP), respectively; Burnstock, 1978). 
Soon after, two subtypes of the P1 (adenosine) receptor were rec-
ognised (Londos et al., 1980; Van Calker et al., 1979). In 1985, a 
pharmacological basis for distinguishing two subtypes of P2 recep-
tor (P2X and P2Y) was proposed (Burnstock and Kennedy, 1985). 
In the early 1990s, P1 (adenosine) receptors were cloned and char-
acterised, and four subtypes were recognised (see Fredholm et al., 
2001). In 1993, the first G protein-coupled P2Y receptors were 

cloned (Lustig et al., 1993; Webb et al., 1993) and a year later two 
P2X ligand-gated ion channel receptors (Brake et al., 1994; Valera 
et al., 1994). In 1994, it was proposed, on the basis of molecular 
structure and transduction mechanisms, that purinoceptors should 
belong to these two major families (Abbracchio and Burnstock, 
1994). Currently, seven P2X receptor subtypes and eight P2Y 
receptor subtypes are recognised, including receptors that are sen-
sitive to pyrimidines as well as purines (Abbracchio et al., 2006; 
North, 2002; Ralevic and Burnstock, 1998).

Purinergic signalling appears to be a primitive evolutionary 
system (see Verkhratsky and Burnstock, 2014). Many non- 
neuronal as well as neuronal mechanisms, including immune 
responses, exocrine and endocrine secretion, inflammation, pain, 
platelet aggregation and endothelial-mediated vasodilatation, 
involve purinergic signalling in mammals (Burnstock, 2006; 
Burnstock and Knight, 2004). Cell proliferation, differentiation 
and death that occur in development and regeneration are also 
mediated by purinergic receptors (Abbracchio and Burnstock, 
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1998; Burnstock and Verkhratsky, 2010). Reviews describe the 
history of the development of purinergic signalling and discuss 
future developments (Burnstock, 2012, 2014).

P1 receptors
Complementary DNAs encoding for two P1 receptor subtypes 
(A1 and A2) were isolated in 1989 (Libert et al., 1989). Soon after, 
the A3 subtype was identified (Zhou et al., 1992). Four different 
P1 receptor subtypes, A1, A2A, A2B and A3, were cloned and char-
acterised in the early 1990s (see Fredholm et  al., 2001). 
Polymorphisms have been observed in the A1 and the A2A recep-
tors (Kumral et  al., 2012). P1 receptors couple to adenylate 
cyclase; A1 and A3 are negatively coupled to adenylate cyclase, 
while A2A and A2B are positively coupled to adenylate cyclase 
(Reshkin et al., 2000). P1 subtype-selective agonists and antago-
nists have been identified (see Table 1). P1 receptor subtypes 
mediate diverse physiological effects, including modulation of 
cardiovascular, immune and central nervous system (CNS) activ-
ities (Ledent et al., 1997; Sun et al., 2001).

P2X receptors
P2X1-7 receptors show a subunit topology of intracellular N- and 
C- termini possessing consensus binding motifs for protein 
kinases and two transmembrane-spanning regions (TM1 and 
TM2). TM1 is involved with channel gating and TM2 lining the 
ion pore. There is a large extracellular loop, with 10 conserved 
cysteine residues (see Alves et al., 2014; North, 2002; Rokic and 
Stojilkovic, 2013). The stoichiometry of P2X1-7 receptors 
involves three subunits, which form a stretched trimer or a hex-
amer of conjoined trimers (Nicke et  al., 1998; North, 2002; 
Stelmashenko et al., 2012). Heteromultimers as well as homomul-
timers are involved in forming the trimer ion pore (Nicke et al., 
1998), including P2X2/3, P2X1/2, P2X1/5, P2X2/6, P2X4/6 and 
P2X1/4 receptors. Advances have been made by the use of 
knockout mice for P2X1, P2X2, P2X3, P2X4 and P2X7 recep-
tors and transgenic mice that overexpress the P2X1 receptor. The 
association of various diseases with P2X receptor polymor-
phisms has been described (see Caseley et al., 2014).

P2X receptor subtypes
A complementary DNA (cDNA) encoding the P2X1 receptor 
was made from rat vas deferens (Valera et al., 1994). The agonist 
actions of ATP by α,β-methylene ATP (α,β-meATP) distinguish 
P2X1 and P2X3 receptors from the other homomeric forms. 
Several antagonists have been recognised to be selective for 
P2X1 receptors (see Table 1). Adenoviral expression of a P2X1 
receptor-green fluorescent protein construct shows the receptor 
to be localised in clusters in vas deferens, with larger clusters 
apposing nerve varicosities (Burnstock, 2007).

Rat P2X2 receptor cDNA was isolated from PC12 cells 
(Brake et  al., 1994) and human receptor cDNA from pituitary 
gland (Lynch et al., 1999). No agonists are currently known at 
present that are selective for P2X2 receptors. However, protons 
and low concentrations of zinc and copper potentiate P2X2 
receptors. Antagonists for P2X2 receptors are shown in Table 1. 

The P2X2 receptor is non-desensitising, compared with the P2X1 
and P2X3 receptors.

P2X1/2 heteromultimer receptors have been described in de-
folliculated Xenopus oocytes (Brown et  al., 2002; Calvert and 
Evans, 2004). pH sensitivity is characteristic of heteromeric 
P2X1/2 ion channels.

P2X3 receptor subunit cDNAs were taken from rat dorsal root 
ganglion cDNA libraries (Chen et al., 1995; Lewis et al., 1995), 
from a human heart cDNA library (Garcia-Guzman et al., 1997) 
and a zebrafish library (Egan et al., 2000). The antagonist NF023 
is about 20 times less effective at P2X3 compared to P2X1 recep-
tors (see Table 1). P2X3 receptors are prominently expressed on 
sensory neurons, including nociceptive nerve endings (Burnstock, 
2003).

P2X2/3 heteromer receptors have been described (Lewis 
et al., 1995; Spelta et al., 2003). They exhibit a sustained current 
elicited by α,β-meATP. However, like homomeric P2X2 recep-
tors, they are potentiated by low pH and, in common with the 
homomeric P2X3 receptor, they are very sensitive to block by 
2′(3′)-O-(2,4,6-trinitrophenyl) ATP. P2X2/3 receptors are 
expressed by subpopulations of sensory neurons, sympathetic 
ganglion cells and brain neurons.

cDNAs for rat P2X4 receptors were isolated from both superior 
cervical ganglion (SCG) and brain (Bo et al., 1995; Buell et al., 
1996). cDNAs for human, mouse, chick and Xenopus have also 
been isolated. P2X4 receptors are activated by ATP, but not by α,β-
meATP. A useful distinguishing feature of ATP-evoked currents at 
P2X4 receptors is their potentiation by ivermectin. Unusual among 
the P2X receptors, the rat P2X4 receptor shows relative insensitiv-
ity to blockade by the conventional non-selective antagonists 
suramin and pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid 
(PPADS). Carbamazepine derivatives have been claimed to be 
potent P2X4 receptor antagonists (Tian et al., 2014; see Table 1). 
Currents evoked by ATP at the mouse P2X4 receptor are increased 
by PPADS and suramin, probably because they are also ectonucle-
otidase inhibitors (Burnstock, 2003).

P2X1/4 heteromeric receptors were shown to have kinetic 
properties resembling homomeric P2X4 receptors and a pharma-
cological profile similar to homomeric P2X1 receptors (Nicke 
et al., 2005). An important advance was made when the crystal 
structure of the P2X4 receptor was described (Kawate et  al., 
2009; Figure 1).

P2X5 receptor cDNA was first isolated from rat coeliac gan-
glion and heart (Burnstock, 2003; Garcia-Guzman et al., 1996). It 
was also cloned from embryonic chick skeletal muscle (Bo et al., 
2000) and a bullfrog P2X5 receptor from larval skin. Human 
P2X5 receptor cDNAs are missing exon 10 (hP2X5a) or exons 3 
and 10 (P2X5b) (Roberts et  al., 2006; Stojilkovic et  al., 2005). 
Currents elicited by ATP in cells expressing the rat P2X5 receptor 
are of small amplitude, compared with the currents observed with 
P2X1, P2X2, P2X3 or P2X4 receptors. P2X5 mRNA is highly 
expressed in developing skeletal muscle (Burnstock, 2003).

The P2X1/5 heteromer is characterised by a sustained current 
evoked by α,β-meATP, which does not occur for either of the 
homomers when expressed separately (Burnstock, 2007; 
Surprenant et  al., 2000). Cells expressing P2X1/5 receptors are 
more sensitive to ATP than those with homomeric receptors. 
P2X2/5 heteromeric receptors have also been recognised (Compan 
et al., 2012).
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The rat P2X6 receptor was cloned from SCG (Burnstock, 
2007) and rat brain (Soto et al., 1996). The human equivalent was 
isolated from peripheral lymphocytes and was abundantly 
expressed in human and mouse skeletal muscle. The P2X6 subu-
nit is only functionally expressed as a heteromultimer.

Heteromeric P2X2/6 receptors were expressed in HEK293 
cells (Torres et  al., 1999). The most convincing difference in 
oocytes expressing P2X2/6 receptors compared to those express-
ing only P2X2 receptors is that at pH 6.5 the inhibition of the 
current by suramin is biphasic (King et al., 2000). P2X2/6 recep-
tors are expressed particularly by respiratory neurons in the brain 
stem.

P2X4/6 heteromeric receptors were described in oocytes 
(Khakh et al., 1999). The P2X4/6 heteromer differs only in minor 
respects from that of P2X4 homomers. They are prominently 
expressed in adult trigeminal mesencephalic nucleus and in hip-
pocampal CA1 neurons (North, 2002).

A chimeric cDNA encoding the rat P2X7 receptor was first 
isolated from SCG and medial habenula. Full-length cDNAs 
were later isolated from a rat brain cDNA library (Surprenant 
et al., 1996). The unique feature of the P2X7 receptor is that in 
addition to the usual rapid opening of the cation-selective ion 
channel, with prolonged exposure to high concentrations of ATP 
it undergoes a channel to pore conversion to allow the passage of 

large dye molecules such as ethidium and YO-PRO-1. This often 
leads to apoptotic cell death. 2′,3′-O-(benzoyl-4-benzoyl)-ATP 
(BzATP) is a potent, although not selective, agonist at the P2X7 
receptor. After continuous application of BzATP (30 µM) for 
about 30 s, the plasma membrane develops large blebs. Blebs are 
usually preceded by the shedding of smaller vesicles (<1 µm 
diameter) that release inflammatory cytokines. A number of 
potent antagonists have been developed (see Table 1).

P2Y receptors
P2Y1 and P2Y2 receptors were cloned in 1993 (Lustig et  al., 
1993; Webb et al., 1993). Since then several other subtypes have 
been isolated by homology cloning. The Gi-coupled ADP recep-
tor (P2Y12) of platelets was isolated by expression cloning in 
2001 (Hollopeter et al., 2001). P2Y13 and P2Y14 receptors were 
characterised during a study of orphan receptors (Chambers 
et al., 2000; Communi et al., 2001a). At present, there are eight 
recognised human P2Y receptors: P2Y1, P2Y2, P2Y4, P2Y6, 
P2Y11, P2Y12, P2Y13 and P2Y14 (Abbracchio et al., 2003, 2006; 
see Table 1). The missing numbers represent either non-mamma-
lian orthologs or receptors which have no functional evidence of 
responsiveness to nucleotides. A p2y8 receptor was cloned from 
the frog embryo, which was shown to be involved in the develop-
ment of the neural plate (Bogdanov et  al., 1997). A P2Y-like 
receptor, GPR17, has been described (Parravicini et al., 2008). 
Two distinct P2Y receptor subgroups characterised by a rela-
tively high level of sequence divergence have been identified 
(Abbracchio et al., 2006). The first subgroup includes P2Y1,2,4,6,11 
and the second subgroup includes the P2Y12,13,14 subtypes (see 
Figure 2). For some of the P2Y receptor subtypes, potent and 
selective synthetic agonists and antagonists have been identified 
(see Table 1). Activation of several P2Y receptors is associated 
with the stimulation of mitogen-activated protein kinase (MAPK; 
Abbracchio et al., 2006). Ion channel couplings of P2Y receptors 
are primarily of importance in neurons, but they have been 
detected in various other tissues, including cardiac muscle cells 
(Abbracchio et  al., 2006; Vassort, 2001). Polymorphisms of 
P2Y1, P2Y2 and P2Y12 receptors have been identified associated 
with various diseases (Läer et  al., 2013; Lev et  al., 2007; 
Wesselius et  al., 2013). There is dimerisation involving P2Y 
receptors with non-P2Y receptors, for example, rat P2Y1 and 
adenosine A1 receptors in neurons, in rat cortex, hippocampus 
and cerebellum (Yoshioka et  al., 2002). Functional P2Y1 and 
P2Y2 receptors, co-localised at the neuromuscular junctions with 
nicotinic acetylcholine (ACh) receptors, have been reported in 
mammalian, chicken and amphibian muscles.

P2Y receptor subtypes
P2Y1 receptors have been cloned and characterised in human, rat, 
mouse, cow, chick, turkey and Xenopus tissues. ADP is a more 
potent agonist than ATP and 2-methylthio ADP is even more 
potent. The most effective antagonists to display selectivity for 
the P2Y1 receptor at present are MRS2179, MRS2279 and 
MRS2500 (see Table 1). P2Y1 mRNA is high in different regions 
of the human brain, prostate gland and placenta (Burnstock and 
Knight, 2004; Léon et al., 1996). In post-mortem brain sections 
from Alzheimer’s disease patients, the P2Y1-like immunoreactiv-
ity in the hippocampus and entorhinal cortex was localised to 

Figure 1.  The architecture of the P2X4 receptor. Stereoview of the 
homotrimeric ΔzfP2X4 structure viewed parallel to the membrane. Each 
subunit is depicted in a different colour. N-acetylglucosamine (NAG) 
and glycosylated asparagine residues are shown in stick representation. 
The grey bars suggest the boundaries of the outer (out) and inner (in) 
leaflets of the membrane bilayer.
Source: Reproduced from Kawate et al. (2009), with permission from the Nature 
Publishing Group.
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neurofibrillary tangles, neuritic plaques and neuropil threads 
(Moore et al., 2000).

P2Y2 receptors have been cloned and characterised from 
human, rat, mouse, canine and porcine cells or tissues (Shen 
et al., 2004). P2Y2 receptors are activated by equivalent concen-
trations of ATP and UTP. The γ-thiophosphate, UTPγS and INS 
37217 are potent hydrolysis-resistant agonists of P2Y2 receptors 

(Abbracchio et al., 2006). Current P2Y2 receptor antagonists are 
shown in Table 1. Expression of P2Y2 receptor mRNA has been 
described in many tissues (Burnstock and Knight, 2004). P2Y2 
receptor expression in smooth muscle cells is up-regulated by 
inflammatory agents, including interleukin-1β, interferon-γ and 
tumour necrosis factor-α (Hou et al., 2000). In epithelial cells, 
P2Y2 receptor activation increases Cl– secretion and inhibits Na+ 
absorption (Kellerman et al., 2002). A P2Y2 receptor knockout 
mouse has been described that is defective in nucleotide-stimu-
lated ion secretion in airway epithelial cells (Cressman et  al., 
1999). P2Y2 receptors inhibit bone formation by osteoblasts 
(Hoebertz et al., 2002) and N-type calcium currents in neurons 
(Brown et al., 2000).

P2Y4 receptors have been cloned and characterised from 
human, rat and mouse. UTP is the most potent activator of the 
human P2Y4 receptor (Communi et  al., 2004). However, the 
recombinant rat and mouse P2Y4 receptors are activated equipo-
tently by ATP and UTP (Bogdanov et al., 1998). Reactive Blue 2 
blocks rat P2Y4 receptors, but only partially blocks human P2Y4 
receptors. P2Y4 mRNA and protein was most abundant in the 
intestine of both mouse and humans, but has also been described 
in other organs (Burnstock and Knight, 2004). P2Y4-null mice 
show normal behaviour, growth and reproduction; however, the 
chloride secretory response to apical UTP and ATP of the jejunal 
epithelium was abolished (Robaye et al., 2003).

P2Y6 receptors are selective for UDP in mouse, rat and human 
(Lazarowski et al., 2001). Selective agonists and antagonists are 
described in Table 1. A wide tissue distribution of P2Y6 mRNA 
and protein has been reported, and the highest expression was in 
spleen, intestine, liver, brain and pituitary (Burnstock and Knight, 
2004).

The human P2Y11 receptor has a unique profile (Abbracchio 
et al., 2006). The hP2Y11 receptor gene differs from other P2Y 
receptor subtype genes having the presence of a 1.9-kb intron in 
the coding sequence that separates an exon encoding the first 6 
amino acid residues from a second exon encoding the remaining 
part of the protein (Communi et al., 2001b).

P2Y12 receptors have been identified and characterised in 
human, rat and mouse (Abbracchio et al., 2006). ADP is the ago-
nist of this receptor. The P2Y12 receptor is highly expressed in 
platelets where it is the molecular target of antiplatelet drugs, 
clopidogrel and ticagrelor (Savi and Herbert, 2005). The P2Y12 
receptor is also expressed in sub-regions of the brain, glial cells, 
brain capillary endothelial cells, smooth muscle cells and chro-
maffin cells (Burnstock and Knight, 2004). P2Y13 receptors have 
been identified and characterised in human, mouse and rat 
(Abbracchio et  al., 2006). Naturally occurring agonists of the 
P2Y13 receptor are ADP and di-adenosine triphosphate. Selective 
antagonists of the human P2Y13 receptor are shown in Table 1. 
The P2Y13 receptor is expressed in spleen, placenta, liver, heart, 
bone marrow, monocytes, T cells, lung and various regions of the 
brain (Fumagalli et al., 2004).

The P2Y14 receptor is 47% identical to the P2Y12 and P2Y13 
receptors. The gene for this receptor is in human chromosome 
3q24-3q25 (Abbracchio et al., 2003). The P2Y14 receptor is acti-
vated by UDP-glucose and is coupled to the Gi/o family of G pro-
teins (Harden, 2004). P2Y14 mRNA is distributed in many 
systems in the human body. Chemoattractant and neuroimmune 
functions have been claimed for the P2Y14 receptor.

Figure 2.  (a) Dendrogram to show relatedness of 29 P2X receptor 
subunits. Full-length amino acid sequences were aligned with Clustal 
W using default parameters. The dendrogram was constructed with 
TreeView. h, human (Homo sapiens); r, rat (Rattus norvegicus); m, 
mouse (Mus musculus); gp, guinea pig (Cavia porcellus); c, chicken 
(Gallus gallus); zf, zebrafish (Danio rerio); bf, bullfrog (Rana 
catesbeiana); x, claw-toed frog (Xenopus laevis); f, fugu (Takifugu 
rubripes). The ellipses indicate the apparent clustering by relatedness 
into subfamilies. Source: Reproduced from North (2002), with 
permission from the American Physiological Society. (b) A phylogenetic 
tree (dendrogram) showing the relationships among the current 
members of the P2Y receptor family (human P2Y1, P2Y2, P2Y4, P2Y6, 
P2Y11, P2Y12 and P2Y13 receptors) and the human UDP-glucose receptor 
(here indicated as the P2Y14 receptor). The P2Y receptors can be 
divided into two subgroups shown with green and lilac backgrounds. 
Sequences were aligned using CLUSTALX and the tree was built using 
the TREEVIEW software. Source: Reproduced from Abbracchio et al. 
(2003), with permission from Elsevier.
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Physiology of purinergic signalling
Early studies were focused largely on short-term purinergic  
signalling in neurotransmission, neuromodulation, secretion, che-
moattraction and acute inflammation, but there is increasing inter-
est in long-term (trophic) signalling involving cell proliferation, 
differentiation, motility and death in development, regeneration, 
wound healing, restenosis, epithelial cell turnover, cancer and age-
ing (Abbracchio and Burnstock, 1998; Burnstock and Verkhratsky, 
2010). In blood vessels, there is dual purinergic short-term control 
of vascular tone by ATP (Burnstock, 2002): ATP released as a 
cotransmitter from perivascular sympathetic nerves activate P2X 
receptors resulting in contraction of smooth muscle; ATP released 
from endothelial cells during changes in blood flow (shear stress) 
and hypoxia acts on P2X and P2Y receptors on endothelial cells, 
resulting in production of nitric oxide and relaxation. There is also 
long-term control of cell proliferation and differentiation, migra-
tion and death involved neovascularisation, restenosis following 
angioplasty and atherosclerosis (Erlinge and Burnstock, 2008). 
Purinergic signalling is involved in development, ageing and 
regeneration (Burnstock, 2007). Purinergic receptors are expressed 
on stem cells (Burnstock and Ulrich, 2011; Delic and Zimmermann, 
2010; Trujillo et al., 2009). Many cell types release ATP physiolog-
ically in response to gentle mechanical distortion, hypoxia or some 
agents (Bodin and Burnstock, 2001). The mechanism of ATP trans-
port includes, in addition to vesicular release, ABC transporters, 
connexin or pannexin hemi-channels, maxi-ion channels and even 
P2X7 receptors (Burnstock, 2007; Lazarowski et  al., 2011). 
Extracellular breakdown of released ATP is by ectonucleotidases, 
including E-NTPDases, E-NPPS, alkaline phosphatase and ecto-
5′-nucleotidose (Yegutkin, 2008; Zimmermann et  al., 2007). P1 
and P2 receptors are involved in neurotransmission and neuromod-
ulation in the CNS, and in normal behaviour, including memory, 
feeding, locomotion and cognition (Burnstock et al., 2011).

Purinergic pathophysiology and 
therapeutic potential
ATP was shown early to be a major cotransmitter with ACh in 
parasympathetic nerves mediating contraction of the urinary blad-
der of rodents (Burnstock et  al., 1978). However, in healthy 
human bladder, the role of ATP as a cotransmitter is minor, but 
under pathological conditions, such as interstitial cystitis, outflow 
obstruction and most types of neurogenic bladder, the purinergic 
component is increased to about 40% (Burnstock, 2001, 2006). 
There is also a significantly greater cotransmitter role for ATP in 
sympathetic nerves in spontaneously hypertensive rats (Vidal 
et al., 1986). P2X3 receptors are located on small nociceptive sen-
sory nerves and are involved in the initiation of pain (Bradbury 
et al., 1998; Burnstock, 1996, 2013; Chen et al., 1995). There are 
peripheral extensions of the sensory nerves in skin, tongue and 
visceral organs and central projections to inner lamina 2 of the 
spinal cord. A hypothesis describing purinergic mechanosensory 
transduction and pain in visceral organs was published in 1999 
(Burnstock, 1999). It was proposed that ATP, released from 
urothelial/epithelial cells during distension, acts on P2X3 and 
P2X2/3 receptors on subepithelial sensory nerve endings to send 
nociceptive messages via sensory ganglia to the pain centres in the 
brain (Burnstock, 1999). Supporting evidence has been reported 
in the bladder (Vlaskovska et  al., 2001), ureter (Rong and 

Burnstock, 2004) and gut (Wynn and Burnstock, 2006). Purinergic 
mechanosensory transduction via low threshold fibres is also 
involved in urine voiding (Cockayne et al., 2000). Antagonist to 
P2X4, P2X7 and P2Y12 receptors on microglia have been shown 
to reduce neuropathic and inflammatory pain (Burnstock, 2009; 
Inoue, 2007). There is increasing attention to the potential roles of 
purinergic signalling in trauma, ischaemia and neurodegenerative 
conditions, including Alzheimer’s, Parkinson’s and Huntington’s 
diseases, multiple sclerosis and amyotrophic lateral sclerosis 
(Burnstock, 2007; Sperlágh and Illes, 2014). The involvement of 
purinergic signalling in epilepsy, neuropsychiatric diseases and 
mood disorders has also been reported (Boisson and Burnstock, 
2010; Burnstock, 2008b).

Purinergic agents are being investigated for the treatment of dis-
orders of the urinary tract (Burnstock, 2011), skeletal muscle (Ryten 
et al., 2004), gut (Burnstock, 2008a), bone (Burnstock and Arnett, 
2006; Orriss et al., 2010), the cardiovascular system (Erlinge and 
Burnstock, 2008), kidney (Bailey et al., 2007; Taylor et al., 2009) 
and the reproductive system (Calvert et al., 2008; Gür et al., 2009). 
There are also reports that extracellular ATP acts on P2Y2 receptors 
to facilitate HIV-1 infection (e.g. Séror et al., 2011). The therapeutic 
potential of purinergic compounds for the treatment of cancer is 
being explored (Burnstock and Di Virgilio, 2013; Shabbir and 
Burnstock, 2009; Shabbir et  al., 2008; Stagg and Smyth, 2010; 
White and Burnstock, 2006; White et al., 2009). Selective purino-
ceptor agonists and antagonists with therapeutic potential are also 
being developed for thrombosis and stroke, atherosclerosis, kidney 
failure, osteoporosis, bladder incontinence and colitis (Bartlett 
et al., 2014; Burnstock, 2006, 2013). This would be facilitated by 
the discovery of selective purinoceptor agonists and antagonists 
that are orally bioavailable and stable in vivo.
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