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Multifractality of random eigenfunctions
and generalization of Jarzynski equality
I.M. Khaymovich1,2, J.V. Koski1, O.-P. Saira1, V.E. Kravtsov3,4 & J.P. Pekola1

Systems driven out of equilibrium experience large fluctuations of the dissipated work. The

same is true for wavefunction amplitudes in disordered systems close to the Anderson

localization transition. In both cases, the probability distribution function is given by the

large-deviation ansatz. Here we exploit the analogy between the statistics of work dissipated

in a driven single-electron box and that of random multifractal wavefunction amplitudes,

and uncover new relations that generalize the Jarzynski equality. We checked the new

relations theoretically using the rate equations for sequential tunnelling of electrons and

experimentally by measuring the dissipated work in a driven single-electron box and found a

remarkable correspondence. The results represent an important universal feature of the work

statistics in systems out of equilibrium and help to understand the nature of the symmetry of

multifractal exponents in the theory of Anderson localization.
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U
nlike the adiabatic processes where the work W done on
the system is equal to the difference in the free energy DF,
the non-adiabatic drive protocols are associated with

work that depends not only on the parameters of the system and
details of the drive protocol but also experiences fluctuations
relative to its average value1–8. Statistics of work can be described
by the probability distribution function (PDF), Pw(W), and it is
an important goal to find universal features in Pw(W) that remain
unchanged within certain universality classes9. The best known
relations of this kind are the Jarzynski equality10–12 and the
Crooks relation13. The former one states that the exponent
e�ðW�DFÞ=kBT averaged over repeated identical driving protocols
is equal to 1, where T is the temperature of the single bath and kB

is the Boltzmann constant. This necessarily implies that during
some drive realizations the dissipated work W �DF must be
negative in a naive (and wrong) contradiction with the second
law, which only states that the average dissipated work remains
positive. The Crooks relation

PwðWÞ
~Pwð�WÞ

¼ eðW�DFÞ=kBT ð1Þ

concerns the PDFs of work in the direct (Pw(W)) and time-
reversed (~Pwð�WÞ) processes. This relation has many important
consequences (with the Jarzynski equality being one of them) and
practical applications, for example, in the determination of free
energy of folding proteins1,5.

We use the Crooks relation to find a correspondence between
statistics of work in a broad class of systems driven by time-
reversal symmetric protocols and statistics of random multifractal
wavefunctions in disordered quantum systems close to the
Anderson localization transition14–16. The unifying principle of
this correspondence17 is the so-called large-deviation principle18

according to which the PDF of a large variety of systems takes the
form of the large-deviation ansatz (LDA),

PLDA Sð Þ � exp � nG S=nð Þ½ �; n � 1; ð2Þ
where G(y) is a system-specific function. The LDA can be viewed
as a generalization of the Central Limit Theorem of statistics
according to which the sum S of a large number n of identically
distributed independently fluctuating quantities sk has a limiting
Gaussian distribution with the variance s2

pn. Indeed, if we
require that G(y) in equation (2) has a minimum, the expansion
of this function near this minimum immediately results in the
correct Gaussian PDF. The significance of the LDA is that it also
describes the non-Gaussian tails of the distribution. Different
realizations of LDA are characterized by different functions G(y)
and different effective number n of independently fluctuating
quantities. For example, in the discrete Markov process (or
Markov chain) driving time t plays the role of large parameter n
for steady-state distributions of dissipated work19 and heat20.

Critical eigenfunctions ci (i¼ 1, ... N) near the Anderson
localization transition and in certain random matrix ensembles
have multifractal statistics14–16. A characteristic feature of such
statistics is that the eigenfunction amplitude cij j2 takes a broad
set of values (at different sites i or in different realizations of
disorder) that scale like cij j2� N � a (a40) with the total
number of sites N in a disordered tight-binding lattice (or the
matrix size). The number of sites on a lattice where scaling is
characterized by a certain a is MBN f(a) , where f(a) is known as
the spectrum of fractal dimensions. Where a is taking only one
single value a0, the set of ‘occupied’ sites on the d-dimensional
lattice would be a fractal with the Hausdorff dimension
dh¼ d � f(a0). Multifractality implies that there is a range of
possible values of a with the corresponding range of fractal
dimensions f(a). In the language of LDA, this implies that
PDF of the amplitude cij j

2 has a form equation (2) with

S ¼ � ln N j c j 2ð Þ and n¼ ln N. The function G(y) is related
with the multifractality spectrum f(a) as G(y)¼ 1� f(1þ y)14. It
depends on parameters of the system such as the dimensionality
or the bandwidth of the random matrix ensemble, and has a non-
trivial limit at N-N. There is a remarkable symmetry14,17,21,

f 1þ yð Þ ¼ f 1� yð Þþ y; , G yð Þ ¼ G � yð Þ� y ; ð3Þ
whose physical origin is perhaps deeper than a current
understanding22 based on ‘full chaotization’ of particle
dynamics in a random potential, which leads to the homo-
geneous distribution of the scattering phase off the disordered
system.

An important observation17 with potentially very far-reaching
consequences is that within the LDA the symmetry; equation (3)
is equivalent to the Crooks-like relation,

PLDA yð Þ
PLDA � yð Þ ¼ en y; y ¼ S=n : ð4Þ

In this work, we formulate a generalization, equation (7), of the
Jarzynski equality for the work-generating function. This
generalization has been proven theoretically by a stochastic
calculus using the rate equations and experimentally for a driven
single-electron box (SEB) in the Coulomb blockade regime.

Results
The large-deviation parameter and the temperature. To for-
mulate a dictionary between the statistics of work in driven sys-
tems and that of random multifractal eigenfunctions, we compare
equations (1) and (4) assuming that the drive protocol in equa-
tion (1) is time-reversal symmetric, therefore ~Pw Wð Þ ¼ Pw Wð Þ.
Using this comparison and the definition of S and n for multi-
fractal wavefunctions, we obtain

yw ¼
W�DFð Þ
kBTð Þnw

; , y ¼ �
ln N cij j

2� �
lnN

; ð5Þ

where the subscript w stands for the distribution of work fluc-
tuations. To determine the yet undefined parameter nw, we use
the following heuristic argument based on the above analogy. We
note that for a normalized eigenfunction on a lattice obeyingP

i cij j
2¼ 1 we have cij j � 1. This means that yZ� 1. A similar

restriction for yw implies (W�DF)/kBT Z � nw, that is

nw ¼ E0=kBT; ð6Þ
where (�E0) is the lower bound of the dissipated work. This
result for the large-deviation parameter nw can be proven by a
usual stochastic approach (see equation (15) in the
Supplementary Note 1) for the SEB governed by rate equations
obeying detailed balance. However, we believe that it is valid
generically for all driven systems with the dissipated work
bounded from below. Thus the effective number (equation (6)) of
independent random variables in such driven systems is inversely
proportional to temperature T and is easily controllable experi-
mentally. This result is crucially important for experimental
verification of our extension of the Jarzynski equality.

Work-generating function and extension of the Jarzynski
equality. With the established physical meaning of nw, the ana-
logy between the work distribution in driven systems and the
multifractal statistics of random eigenfunctions becomes com-
plete. It is illustrated in Figs 1 and 2.

A remarkable property of the LDA (equation (2)) is that the
average of e� q Sh i � e� n~Dq is an exponential function
of nc1, where ~Dq ¼ minyfq yþG yð Þg18,19. Given that
n¼ lnN, this implies a power-law scaling with N of the
moments Nq cij j

2q� �
� N �Dq (with Dq , ~Dq) of random
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wavefunctions near the critical point of the Anderson localization
transition. When applied to the statistics of work, the exponential
dependence on nw¼ E0/kBT results in the following relation for
the work-generating function FðqÞ ¼ e� qðW �DFÞ=kBT

� �
:

ln e� qðW �DFÞ=kBT
D E

� � E0=kBTð ÞDw
q Tð Þ �!T!0 � E0=kBTð ÞDw

q ;

ð7Þ
where the limit Dw

q is independent of temperature. Equation (7) is
the main theoretical result of our work, where we claim that the
logarithm of the work-generating function is linear in E0/kBTc1,

with Dw
q being a non-trivial function of a real q. It generalizes the

Jarzynski equality, which corresponds to q¼ 1 and Dw
q¼1 Tð Þ ¼ 0.

Apparently, we have also lnh1i / Dw
q¼0 Tð Þ ¼ 0. One can easily

show using equation (3) and the definition of Dw
q that the

symmetry

Dw
q Tð Þ ¼ Dw

1� q Tð Þ ð8Þ

holds both for Dw
q and for Dw

q Tð Þ. This symmetry has its
counterpart for the critical exponents Dq that determine the scaling
with N of the moments of random critical wavefunctions. The
limit Dw

q of Dw
q ðTÞ at E0/kBT-N (at a fixed drive frequency f) is
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Figure 1 | Comparison of distributions of dissipated work and amplitudes of random multifractal wavefunctions. (a) Distribution of the measured

normalized dissipated work (W�DF)/E0 on the logarithmic scale. The width of the distributions increases with increasing drive frequency f¼ 1 (red),

2 (green) and 4 Hz (violet) at temperature T¼ 214 mK. (b) Multifractality spectrum f(a) of critical eigenfunctions in disordered systems close to the

Anderson localization transition versus normalized logarithm of wavefunction intensity a ¼ � ln cij j
2=lnN for the power-law random banded matrix model

with the bandwidth b¼0.1, 0.3, 1, 4 (adapted with permission from ref. 21. Copyrighted by the American Physical Society). This parameter is known to

mimic the dimensionality of space in which the Anderson transition happens: b-0 corresponds to the limit of infinite dimensionality d-N, or the Bethe

lattice limit, while b-N corresponds to d¼ 2þ e, where e -þ0. In both a and b, solid and dashed lines correspond to G(y), G(� y)� y and f(a),

f(2� a)þ a� 1, respectively, to demonstrate the symmetry (equation (3)). (c) Evolution of distribution of the normalized dissipated work (W�DF)/E0 on

the logarithmic scale with decreasing drive frequency f in a SEB with a superconducting external electrode for experimental system parameters and

T¼ 214 mK obtained theoretically from the rate equations (equations (3) and (4) in the Supplementary Note 1). The width of the distributions decreases

with decreasing driving frequency f (from red to violet curve). The similar calculations for the SEB with the normal electrode give b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT= ft0E0ð Þ

p
,

where t0 is the characteristic relaxation time of the circuit. Thus an effective bandwidth b of the equivalent random matrix theory depends on the equivalent

size of the matrix N¼ exp(E0/kBT). While the limit T-0 always corresponds to the limit b-0, the limit f-0 at a fixed T corresponds to the adiabatic

limit b-N.
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Figure 2 | Comparison of Dw
q for dissipated work and multifractal critical exponents Dq. (a) The measured function Dw

q ðTÞ in equation (7) at drive

frequencies f¼ 1 (red), 2 (green) and 4 Hz (violet) and temperature T¼ 214 mK. (Inset) A plot of the exponent of the dissipative work e�ðW�DFÞ=kB T versus

the drive realization number j at a drive frequency f¼ 1 Hz and temperature T¼ 214 mK. In most of the drives the exponent is smaller than 1, which

corresponds to W4DF, as the second law requires for averages. However, there are rare events seen as high spikes when DF�W4kBT. (b) Multifractal

exponents Dq for the same model and parameters as in Fig. 1b (adapted with permission from ref. 21. Copyrighted by the American Physical Society). In

both a and b small difference between Dq (solid lines) and D1 � q (dashed lines) violating the symmetry (equation (8)) is due to experimental (in a) or

numerical (in b) errors. (Bottom inset) A plot of a typical amplitude cij j
2 of the critical wavefunction in a two-dimensional lattice with N sites cut at a

certain level cij j
2¼ N� a (adapted with permission from ref. 39. Copyrighted by the American Physical Society). (Top inset) The map of the region in space

where j c j 2 4N� a is a fractal of the Haussdorf dimension dh(a)¼ 2f(a)o2. Multifractality implies a dependence of dh on a, or on the cutoff level N� a

(adapted with permission from ref. 40. Copyrighted by the American Physical Society).
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expected to be robust to changing the details of the driven system
and the drive protocol. For a driven two-level system, described by
rate equations (equations (3) and (4)) in the Supplementary
Note 1) and obeying detailed balance Gþ Uð Þ ¼ Gþ �Uð ÞeU=kBT

for the up (down) transition rates Gþ (G� ), standard stochastic
dynamics calculus confirms the main result equations (6) and (7),
with Dw

q having always the same asymptotic behaviour
Dw

q 	 1
2 � q� 1

2

�� �� at large enough |q|cqc (see equation (18) in
the Supplementary Note 1). This form of Dw

q corresponds to the
limit of infinite dimensions, or the Bethe lattice limit23, in the
problem of the random critical wavefunctions. Note that the
universal behaviour of Dw

q (and the corresponding behaviour of
Pw(W)) is reached only in the limit T-0, with all other
parameters of the system and drive being fixed. If, however, the
temperature is low but fixed, then there always exists a sufficiently
low drive frequency f such that the dissipated work distribution
tends to a d-function, as the adiabatic limit requires24. For a SEB
with a superconducting electrode, the range of such frequencies
could be extremely low at temperatures kBTooDS, with DS being a
superconducting gap in the island (see Fig. 1c).

Experimental verification for a SEB. The general theory above
can be applied to a driven SEB, which is a small metallic island
connected to an external electrode with a tunnel junction. The free
electrons on the SEB island and the electrode form a particle bath,
assumed to be at thermal equilibrium at temperature T (refs 6,25).
A standard rate equation approach26,27, which is essentially
classical and based on the picture of sequential tunnelling of
electrons, confirms our main result (equation (7)) and the
symmetry (equation (8)) (see Supplementary Notes 1 and 2).
This theory gives a linear in T� 1 low-temperature behaviour
of the cumulant generating function (left-hand side of
equation (7)), as shown in Fig. 3a,b. We consider two different
cases as examples belonging to different universality classes
marked by a drastically different dependence of the tunnelling
rate Gþ (U) on the drive voltage UckBT: a SEB with normal
island and (a) a superconducting external electrode
(Gþ � e�DS=kBT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DSkBT
p

1þ eU=kBT
� �

, DS4U) or (b) a normal
external electrode (Gþ � U sinh� 1 U=2kBTð ÞeU=2kBT ). The
evolution of Dw

q Tð Þ with temperature in both cases is shown in
Fig. 4. The limiting Dw

q appears to be of triangular shape in case
(a), and of trapezoidal shape in case (b).

The main quantum effects, which are beyond the rate equation
approach, are the elastic co-tunnelling28 and the Andreev
tunnelling29. Estimations show (see equation (3) and the
Supplementary Note 3) that for SEB at our experimental
conditions, they may become relevant at low temperatures
ToT*B60 mK. We believe that these effects merely
renormalize the parameter E0 and the function Dw

q and do not
change the 1/T behaviour in equation (7). Further investigations
are necessary to check the validity of this conjecture.

For an experimental verification of our main result
(equation (7)) and the symmetry (equation (8)), we use a SEB
formed by two metallic islands, of which one is normal and the
other one is superconducting with energy gap DS. As a two-island
SEB is only capacitively coupled to the environment, it is less
influenced by external noise from higher temperature stages of
the set-up. Otherwise its behaviour is identical to a normal one-
island SEB with a superconducting ‘external electrode’. The
measured structure is described in refs 6,30,31. We used
aluminium and copper as a superconductor and a normal
metal, respectively, and apply magnetic field to increase the
tunnelling rates through the junction by suppressing the gap DS,
see the Supplementary Note 4 for details. The Hamiltonian
H(n,ng)¼ EC(n2� 2n ng) of the SEB consists of the charging
energy of the island with an integer number of excess electrons n
and the interaction with the source of the gate voltage Vg

controlling the gate charge ng¼CgVg/e through the capacitance
Cg. The energy required to charge the island with a single electron
� e is EC¼ e2/2CS, where CS is the total capacitance of the island.
In this experiment, we apply a sinusoidal modulation ngðtÞ ¼
1
2 � 1

2 cosð2pftÞ and consider a monotonous segment of ng(t)
from 0 to 1 as a single realization of the process 0oto(2f)� 1.
We focus on the large Coulomb energy limit ECckBT, in
which n is restricted to two values, n¼ 0 and n¼ 1. In this
case, the dissipated work is determined from the trajectory
of n(t) by24,32

W�DF ¼ � EC

Z1

0

2n� 1ð Þdng: ð9Þ

Like in the textbook example of a moving piston where the
volume V(t) of the gas is controlled deterministically and the
pressure p(t) experiences fluctuations due to collisions of gas
atoms with the piston, the gate voltage ng(t) is a deterministic
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Figure 3 | The dependence in T� 1 of the logarithm of the work-generating function and its symmetry in the moment order q. In a and b, the theoretical

T� 1 dependence obtained from the rate equations for a SEB with (a) a superconducting and (b) a normal external electrode is shown. (c) Demonstration of

the experimental test of this dependence. In all panels the dependencies become linear at large values of T� 1. The dashed (solid) lines correspond to the
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2. In c, the
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T extrapolation for the function Dw
q ðTÞ. The notations are the same as in c.
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function, whereas n(t) experiences telegraph fluctuations. These
fluctuations are detected by a nearby charge-sensitive single-
electron transistor. The dissipated work is computed from
equation (9) and its statistics over repeated identical driving
protocols is studied. Here the lower bound �E0 of the dissipated
work is determined by the Coulomb energy E0¼ EC.

The experimental PDFs of work for few different drive
frequencies are presented in Fig. 1. This plot demonstrates the
dependence of the PDF on the frequency, which is reminiscent of
the dependence on the bandwidth b of the corresponding PDF for
random multifractal wavefunctions for the power-law banded
random matrices14. Using this PDF one can compute the qth
moments of e�ðW�DFÞ=kBT for different values of the parameter q
and find the function Dw

q ðTÞ from equation (7) (see Fig. 2). In
both figures the charging energy of the SEB determining the
dissipated work equation (9) is EC¼ 167±4 meV, while the bath
temperature is T¼ 214 mK. The drive frequencies are indicated in
the figures.

Next, we check experimentally the linear in E0/kBT low-
temperature dependence in equation (7) and the symmetry of
equation (8). The results are presented in Fig. 3c. The
corresponding theoretical curves are given in Fig. 3a,b. Note a
good linearity of experimental data for the negative q (full circles,
solid lines) and a much larger scatter of it (open circles) for the
large positive q, which corresponds to rare events with
W�DFo0. The linear in T evolution of Dw

q Tð Þ ¼
Dw

q þ cq kBT=E0ð Þ is demonstrated experimentally in Fig. 4c. Its
counterpart for the random eigenfunction problem is the
evolution with the system size N linear in 1/lnN, which was used
recently in ref. 23 to find the spectrum of fractal dimensions f(a)
extrapolated to the infinite system size. Similarly to this work, the
limiting function Dw

q is obtained by the linear in T extrapolation
to T-0 (see the inset in Fig. 3c). In both figures, the charging

energy is EC¼ 111±4 meV, the drive frequency is f¼ 4 Hz, while
the temperatures are indicated in the figures. The estimated33–35

value of the superconducting energy gap DS¼ 96±11meV in
applied magnetic field is rather close to EC in this case. The
corresponding extrapolated function Dw

q shown in Fig. 4c is close
to the triangular form obtained theoretically from the rate
equations in the ideal case DS¼EC and shown in Fig. 4a, albeit it
is somewhat rounded on the top following a trend towards the
trapezoidal form shown in Fig. 4b. The asymptotic behaviour of
the extrapolated function Dw

q at q41 or qo0 is close to the
theoretically predicted asymptotics Dw

q ¼ 1=2� j q� 1=2 j ,
linear in q with unit slope, supporting the linear in T
extrapolation.

Discussion
In conclusion, we have shown that the analogy between the
statistics of random critical wavefunctions and that of the work
dissipated in driven systems is very suggestive. Its predictions are
fully confirmed theoretically and experimentally by studying
stochastic dynamics in a driven SEB described by rate equations
obeying detailed balance. Thus one of the most difficult problems
in quantum mechanics of disordered systems turns out to be
analogous to one of the simplest problem in classical stochastic
Markovian dynamics. In particular, the physical origin of the
symmetry (equation (8)) is somewhat unclear in the problem of
Anderson localization (but see ref. 22). At the same time, the
corresponding symmetry for driven systems is a consequence of
the Crooks relation or, equivalently, of detailed balance for rate
equations. This might suggest that there would be a stochastic
description for the critical random eigenfunction problem by an
equivalent Markovian process with detailed balance. One can see a
remote analogy of such correspondence in the Schramm–Loewner
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evolution, which maps fractal phase boundaries in two-dimen-
sional critical systems onto a simple random walk on a line36–38.
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