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Abstract: Cyclic 6-membered aromatic compounds such as benzene and azabenzenes (pyridine,
pyridazine, and pyrazine) are known to be light-sensitive, affording, in particular, the Dewar benzene
type of intermediates. Pyridine is known to provide the only Dewar pyridine intermediate that
undergoes reversible ring-opening. We found that irradiation of photosensitive gels prepared
from poly(4-vinyl pyridine) and pyridine at 254 or 312 nm leads to pyridine ring-opening and
subsequent formation of 5-amino-2,4-pentadienals. We show that this light-induced process is
only partially reversible, and that the photogenerated aminoaldehyde and aminoaldehyde-pending
groups undergo self-condensation to produce cross-linked, conjugated oligomers that absorb light in
the visible spectrum up to the near-infrared range. Such a sequence of chemical reactions results in
the formation of gel with two distinct morphologies: spheres and fiber-like matrices. To gain deeper
insight into this process, we prepared poly(4-vinyl pyridine) with low molecular weight (about
2000 g/mol) and monitored the respective changes in absorption, fluorescence, 1H-NMR spectra,
and electrical conductivity. The conductivity of the polymer gel upon irradiation changes from ionic
to electronic, indicative of a conjugated molecular wire behavior. Quantum mechanical calculations
confirmed the feasibility of the proposed polycondensation process. This new polyacetylene analog
has potential in thermal energy-harvesting and sensor applications.

Keywords: photochemistry; aromatic heterocycle; pyridine; electroconducting polymer

1. Introduction

Aromatic organic compounds are known to undergo a variety of photochemical
conversions. Thus, upon UV irradiation, benzene develops yellow coloration owing to the
formation of a mixture of unsaturated compounds. The photo-process strongly depends on
the wavelength of irradiation and temperature. The isolated products were fulvene, Dewar
benzene, and benzvalene, which revert back to benzene and hexadienyne isomers, along
with a polymeric material formed irreversibly [1]. Depending on conditions, the light-
induced reactions of azabenzenes (pyridine, pyridazine, and pyrazine) can also give rise to
various product mixtures and involve Dewar benzene-type primary intermediates [1–3].

Pure pyridine is a highly hygroscopic colorless photosensitive liquid. This aromatic
heterocyclic compound reversibly converts into 5-amino-2,4-pentadienal (1) [4–6], also via
Dewar pyridine [7], in the presence of water upon irradiation at 254 nm. The photoinduced
formation of substituted pyridine derivatives via pyridinyl radicals is an alternative mecha-
nism observed in non-polar aliphatic solvents such as cyclohexane [8]. The reversible ring-
opening of pyridine in water was proposed as an effective undergraduate experiment [9].
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According to the authors, the aldehyde enamine derived from glutaconic aldehyde is
unstable and reverts slowly, at room temperature in the dark, to pyridine. Interestingly, the
process is rendered irreversible in the presence of strong basic or acidic media, wherein
ammonia and glutaconic acid are produced. A pure sample of 5-amino-2,4-pentadienal
was isolated as yellow crystals, which rapidly turned brownish at room temperature and
upon exposure to air [10]. The (almost) reversible formation of 5-amino-2,4-pentadienal
upon 10 min irradiation at 250 nm of a poly(4-vinyl pyridine)/pyridine/water system was
proposed [11] to be responsible for the appearance of a multi-band emission spectrum
extending above 600 nm.

Recently, we suggested that the appearance of the multi-band emission spectrum of
pyridine, irradiated at 254 or 312 nm, cannot be explained by the formation of 5-amino-2,4-
pentadienal alone and suggested that this aminoaldehyde undergoes oligomerization [12].
Gaining deeper insight into the photochemical processes within pyridine and its deriva-
tives is important, in particular, since polyvinyl pyridines are known to exhibit potential
for several industrial applications. For instance, poly(4-vinyl pyridine) (P4VP) and its
photochemical behavior attracted researchers as a promising material for photolithog-
raphy [13] and references therein. Cross-linking by UV irradiation at 254 nm, which is
ascribed to recombination of the photogenerated radical species, was used for the prepa-
ration of negative tone photoresists. Thoroughly dried P4VP dissolved in dry pyridine,
taken in the equimolar ratio to the pyridine repeat units of the polymer, produces stable
solid photo- and electrosensitive gels P4VP/Py [14]. The physical aggregation of poly-
mer chains was shown to occur due to the presence of the hydrogen bond network, and
these gels exhibit not only high ionic conductivity (polyelectrolyte behavior), but also
enhanced photoinduced electron mobility [15,16]. The P4VP/Py gel was shown to exhibit
unusual emission with the maxima at 477, 527, and 584 nm, explained by photoinduced
proton transfer [17], which resembled the emission from the irradiated pyridine [12]. Here,
we report on our investigation of the photochemical behavior of low-molecular-weight
poly(4-vinyl pyridine)/pyridine (P4VP/Py) gels.

2. Results and Discussion

For our initial experiments, we used the commercially available P4VP polymer with
a molecular weight of 50,000 g/mol. To increase the solubility of photoproducts and
enable 1H-NMR monitoring, we prepared a low-molecular-weight polymer (MW about
2000 g/mol) (see Supplementary Materials for the details). Freshly distilled pyridine and
thoroughly dried polymer samples were used, and although this treatment is insufficient to
completely remove water, we noticed that the photoinduced reactions occur more rapidly.

The efficient photoinduced pyridine ring-opening, recyclization, and polycondensa-
tion require the presence of only a catalytic amount of water, as shown in Scheme 1.
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Scheme 1. Photoinduced pyridine ring-opening and subsequent polycondensation.

The new P4VP/Py gel composition was prepared from the low-MW polymer as thick,
viscous oil. Irradiation of a thin-layer sample of this gel on a quartz plate gave rise to the
appearance of yellow to yellow–brownish coloration. The products were partially soluble
in methylene chloride, and the respective changes in the UV-Vis spectra observed upon
irradiation in methylene chloride solution are shown in Figure 1. Although absorption
of a dilute solution of P4VP/Py gel is very weak at 312 nm, after 6 h of irradiation, the
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absorption of the products extends to 750 nm, and after 24 h in the dark, the methylene
chloride solution became slightly turbid, indicative of a thermal-induced increase in cross-
linking density. No more changes in absorption were observed after prolonged storage
in the dark. The fluorescence spectrum of a thin layer of the gel sample irradiated for
6 h shown in the inset of Figure 1 covers the whole visible range and resembles the
fluorescence spectrum of the irradiated pyridine samples [12]. The intensity of several
peaks and shoulders observed in the fluorescence spectrum of irradiated pyridine depend
on the excitation wavelength, and each of them belongs to a different soluble oligomer
chain length (Supplementary Materials, Figure S2). We did not notice any difference
between the samples irradiated at 254 and 312 nm.
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Figure 1. UV-Vis spectra of low-MW P4VP/Py gel samples in methylene chloride before and after
irradiation at 312 nm as well as after holding the 6 h irradiated sample in the dark for 24 h. Inset:
fluorescence spectrum of a thin film of a sample irradiated for 6 h (excitation at 350 nm).

The higher solubility of the gel made from pyridine, low-MW P4VP, and its photoprod-
ucts in methylene chloride allowed monitoring of the process using the 1H-NMR technique
(Figure 2). The downfield part of the gel spectrum before irradiation exhibited two broad
signals at about 8.25 and 6.35 ppm, characteristic of pyridine pendant group protons
(Figure 2a). Irradiation of the neat gel at 312 nm for one hour was followed by dissolution
of the sample in CD2Cl2 and immediate 1H-NMR spectrum recording (Figure 2b). The
presence of a mixture of the pyridine-ring-opened products can be recognized by a doublet
signal at 9.12 ppm, which is assigned to the proton of the terminal CH=O group present
in 5-amino-2,4-pentadienal and corresponding self-condensation oligomers, as well as a
doublet at 8.77 ppm, which can be assigned to the proton of the HC=N- group present in
the oligomers [18]. The spectrum of the solvent-free P4VP/Py gel sample after irradiation
for 6 h is shown in Figure 2c. The increased amount of longer oligomers is manifested by
the increased intensity of the polyene =C-H group signals and the diminished intensity of
the downfield doublet of the O=C-H group. This doublet signal, at about 9.3 ppm, is still
discernible after 6 h of irradiation (Figure 2c), but disappears completely after storing the
irradiated sample for 24 h in the dark (Figure 2d). At the same time, the intensity of the
signal at 8.77 ppm, corresponding to the HC=N group, increases in the dark as compared
to the signal of pyridine (Figure 2c,d). Notably, the positions and signal-splitting patterns
(doublets and triplets, the latter being actually doublets of doublets) are similar to those
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previously observed for 5-amino-2,4-pentadienal [10] and a series of azapolyenealdehydes
in DMSOd6 [18].
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In order to gain a deeper insight into the electronic structures of the 5-amino-2,4-
pentadienal polycondensation products, which are actually oligomers of hitherto unknown
polyazaacetylenes, we undertook quantum mechanical calculations [19] on a series of
oligomers of 1 (Chart 1) (see Supplementary Materials for the computational details).

Molecules 2021, 26, x  5 of 10 
 

 

 
Chart 1. 1,6-Polyazaacetylene monomer (1) and respective oligomers (2–4): all-trans model struc-
tures. 

Even taking into account that the structures in the crowded pendant-conjugated oli-
gomers can be far from the ideal all-trans conformation, and that chain length growth can 
be limited by the solubility of longer oligomers, the presence of trimer 3 can already pro-
vide absorption in the whole visible range (Figure 3). 

We also calculated the vertical ionization potentials (IP) and electron affinities (EA) 
of the model compounds characterizing their electron-donating and -accepting properties 
(Table 1). Whereas monomer 1 is a moderate donor comparable to anthracene (experi-
mental IP = 7.40 eV), the IP of dimer 2 is close to that of pentacene (IP = 6.64 eV), and those 
of 3 and 4 are very strong electron donors which can be compared to tetrathiafulvalenes 
(IP = 6.38 − 6.92 eV), well-known components of organic metals [20]. According to calcu-
lations, compounds 1 and 2 are weak acceptors, but the EA of compound 3 compares to 
p-benzoquinone (EA = 1.85 eV), and derivative 4 to tetracyano-p-benzoquinone (2.45 eV) 
(for an experimental IP and EA data compilation see [20]). 

 
Figure 3. Calculated (B3LYP/aug-cc-pVDZ//B3LYP/aug-cc-pVDZ model chemistry) absorption 
spectra of molecules 1–4 (Chart 1) in dichloromethane; TD-SCF was solved for 10 states. 

  

Chart 1. 1,6-Polyazaacetylene monomer (1) and respective oligomers (2–4): all-trans model structures.

Even taking into account that the structures in the crowded pendant-conjugated
oligomers can be far from the ideal all-trans conformation, and that chain length growth
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can be limited by the solubility of longer oligomers, the presence of trimer 3 can already
provide absorption in the whole visible range (Figure 3).
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We also calculated the vertical ionization potentials (IP) and electron affinities (EA)
of the model compounds characterizing their electron-donating and -accepting properties
(Table 1). Whereas monomer 1 is a moderate donor comparable to anthracene (experimental
IP = 7.40 eV), the IP of dimer 2 is close to that of pentacene (IP = 6.64 eV), and those of
3 and 4 are very strong electron donors which can be compared to tetrathiafulvalenes
(IP = 6.38 − 6.92 eV), well-known components of organic metals [20]. According to
calculations, compounds 1 and 2 are weak acceptors, but the EA of compound 3 compares
to p-benzoquinone (EA = 1.85 eV), and derivative 4 to tetracyano-p-benzoquinone (2.45 eV)
(for an experimental IP and EA data compilation see [20]).

Table 1. Calculated vertical ionization potentials (IP) (eV) and electron affinities (EA) (eV) of model
structures 1–4 (Chart 1) in vacuum (B3LYP/aug-cc-pVDZ//B3LYP/aug-cc-pVDZ model chemistry).

Structure IP (eV) EA (eV)

1 7.39 0.26
2 6.60 1.21
3 6.23 1.84
4 6.01 2.23

A possible polycondensation process is presented in Scheme 2. A molecule of pyridine
was taken into account owing to its hygroscopicity; it forms strong hydrogen bonds with
at least one molecule of water (binding enthalpies of 4.5−5.9 kcal/mol according to [21],
and our present calculations afforded 4.8 kcal/mol), thus serving as a water-binding
component. We find that in both the dichloromethane solution and in a vacuum, the
∆H values of the reactions are always negative and amount to −2.4 to −2.9 and −5.9 to
−6.5 kcal/mol at 298 K in the solution and vacuum, respectively. The calculated ∆G values
are presented in Figure 4. The Gibbs free energies became negative below about 80 K, as
calculated in methylene chloride, and about 210 K in the vacuum. These values are typical
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for polycondensation reactions [22,23]. A large difference in the temperatures at which
the polycondensation becomes thermodynamically favorable (a polar solvent vs. vacuum)
is related to the electron-donating–electron-accepting (D–A) conjugated structure of the
polycondensing molecules: the degree of charge transfer from D to A increases in polar
media, giving rise to stabilization of the monomer and decrease in ∆H of polycondensation
reactions. Moreover, the presence of regions of local order within the gels can render the
polycondensation process enthalpy-driven rather than entropy-driven.
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The electrical properties of the gels were recorded using a home-made setup (Supple-
mentary Materials, Figure S3). The conductivity of the gels undergoes remarkable changes
upon irradiation, as shown in Figure 6. Thus, after one-hour irradiation at 254 nm, and
holding the low-MW P4VP/Py gel sample for 10 h in the dark, the conductivity and hystere-
sis typical of ionic conductivity diminished. After repeating the above irradiation/holding
in the dark treatment two more times, we found that the dependence of the current on the
applied voltage becomes linear, following Ohm’s law (Figure 6). This is a direct indication
of the electronic conductivity mechanism.
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Similar behavior was observed in the voltammograms of the high-MW P4VP/Py gel
samples. The conversion of ionic conductivity into electronic conductivity is irreversible,
as the prolonged holding of the irradiated samples in the dark does not lead to even
partial re-appearance of the hysteresis. This also means that the regions of local order
within the gels cannot be restored after irradiation. This phenomenon can be noticed in
transmission electron microscopy (TEM) images of the samples before and after irradiation
(Supplementary Materials, Figure S4).

3. Conclusions

We conclude that the color and electrical property changes of both pyridine and
P4VP/Py gels occur as a result of the initial photoinduced pyridine ring-opening, which
produces 5-amino-2,4-pentadienal (1) or/and the 5-amino-2,4-pentadienal moieties at-
tached to the polyvinyl chain, and its subsequent polycondensation into the hitherto
unknown oligomeric polyazaacetylenes. The oligomers can further cross-link the polymer
chains. TD DFT calculations show that polyazaacetylenes possess both strong electron-
donating and electron-accepting properties. The later attribute facilitates the occurrence
of redox process events between the chains, or the reaction with oxygen and water to
produce oxidized and reduced stable radical species. The consumption of the redox reac-
tive polycondensation products shifts the equilibrium toward oligomer formation. The
conjugated polycondensation cross-linked macromolecular system described herein serves
as a ‘molecular wire’ converting the ionic conductivity of the P4VPy/Py gels into electronic
conductors. The isolation and full characterization of the soluble oligomers produced by
irradiation at low temperatures are under investigation in our laboratories.
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Supplementary Materials: The following are available online. Experimental and computational
details: synthetic procedure for low-molecular-weight poly(4-vinylpyridine) and 1H-NMR spectrum
(Figure S1); fluorescence spectra of irradiated pyridine at different excitation wavelengths (Figure S2);
gel preparation, spectrometer details, calculation details, and the full reference to Gaussian 16
software; conductivity measurements setup (Figure S3); and TEM images of the low-MW samples of
gel before and after irradiation (Figure S4).
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