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Abstract
Climate sensitivity of vegetation has long been explored using statistical or process- 
based models. However, great uncertainties still remain due to the methodologies’ 
deficiency in capturing the complex interactions between climate and vegetation. 
Here, we developed global gridded climate– vegetation models based on long short- 
term memory (LSTM) network, which is a powerful deep- learning algorithm for long- 
time series modeling, to achieve accurate vegetation monitoring and investigate the 
complex relationship between climate and vegetation. We selected the normalized 
difference vegetation index (NDVI) that represents vegetation greenness as model 
outputs. The climate data (monthly temperature and precipitation) were used as in-
puts. We trained the networks with data from 1982 to 2003, and the data from 2004 
to 2015 were used to validate the models. Error analysis and sensitivity analysis were 
performed to assess the model errors and investigate the sensitivity of global veg-
etation to climate change. Results show that models based on deep learning are very 
effective in simulating and predicting the vegetation greenness dynamics. For models 
training, the root mean square error (RMSE) is <0.01. Model validation also assure 
the accuracy of our models. Furthermore, sensitivity analysis of models revealed a 
spatial pattern of global vegetation to climate, which provides us a new way to inves-
tigate the climate sensitivity of vegetation. Our study suggests that it is a good way 
to integrate deep- learning method to monitor the vegetation change under global 
change. In the future, we can explore more complex climatic and ecological systems 
with deep learning and coupling with certain physical process to better understand 
the nature.
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1  | INTRODUC TION

In the context of global change, terrestrial ecosystems are facing 
severe challenges. More and more studies have shown that climate 
change has affected the vegetation greenness and distribution pat-
tern (Connor et al., 2018; Forzieri et al., 2017; Gottfried et al., 2012; 
Keenan & Riley, 2018; Pearson et al., 2013), and in return, changes in 
vegetation greenness and distribution pattern provide feedbacks to 
climate systems through energy fluxes process (Forzieri et al., 2017; 
Pearson et al., 2013; Xu et al., 2013). It is critical to reveal the com-
plicated relationship between climate and vegetation to better un-
derstand the climate feedbacks, ecosystem health, and sustainable 
development. Accurately predicting the effect of future climate 
change on vegetation is also one of the major challenges in global 
change ecology (Allen et al., 2010). However, the ability to reveal the 
climate– vegetation relationship and project the future is limited by 
model performances and uncertainties in complex social– ecological 
systems (Bonan & Doney, 2018; Friedlingstein et al., 2014; Mahowald 
et al., 2016; McDowell et al., 2016; Rineau et al., 2019). It is neces-
sary to develop new generation models to achieve better vegetation 
monitoring and ecosystem management.

Scientists have established many vegetation– climate- related 
models in recent years. There are two main types: statistical models 
and ecological process- based models. The typical statistical relation- 
based models, such as Miami model (Lieth, 1975) and Thornthwaite 
memorial model, can predict the impact of climate on vegetation by 
establishing the correlation between climate factors and vegetation 
production. This type of model is simple in form and easy to perform, 
thus has been widely used in different regions (Stephan et al., 2008). 
However, models’ errors are relatively large and predictive ability is 
limited. Another type of models is based on the ecological process, 
such as the Century (Parton et al., 1993), TEM (McGuire et al., 1997), 
BIOME- BGC (Running & Hunt, 1993), and some dynamic vegetation 
models such as LPJ- DVGM, LPJ- GUESS, and IBIS. These models 
comprehensively consider the process of material and energy ex-
change between vegetation and environment, promote the mech-
anism research of the interaction between ecological process and 
climate change, and have been widely used in modern vegetation 
dynamic models. The model processes are very complex with large 
number of variables, which makes it somewhat difficult to be gener-
alized on a global and long- time scale.

Unprecedented development of big data and information tech-
nology provides us with exciting opportunities to explore complex 
ecosystem issues (Reichman et al., 2011; Reichstein et al., 2019). 
Many tools in artificial intelligence (AI), particularly machine learn-
ing, have been applied to the analysis of earth sciences, especially 
for making accurate predictions from data (Bergen et al., 2019; 
Gómez- Chova et al., 2015; Pearson et al., 2013; Reichstein 
et al., 2019; Zhu et al., 2017). However, traditional machine learn-
ing methods have inherent limitations, that is, the ability to analyze 
system behaviors with the coupling of time and space is still insuf-
ficient (Reichstein et al., 2019). In recent years, the development of 
deep- learning technology has solved this problem to a large extent. 

Deep learning is a multi- layer representation learning method that 
allows computers to learn from experiences (LeCun et al., 2015); 
this technology is at the core of big data analysis and has achieved 
remarkable success in computer vision, speech recognition (Zhu 
et al., 2017).

Deep- learning technology is a branch of machine learning and 
refers to an algorithm that uses artificial neural networks (ANNs) 
as the framework for representation learning (LeCun et al., 2015). 
Through the calculation of the depth of the hidden layers, simple 
features are mapped to the output through additional layers of 
more abstract features. And the ability to learn from data further 
makes deep- learning algorithm different and powerful. As a result, 
the complex relationship between the dependent and independent 
variables can be better mined to improve the accuracy of the model 
simulation and projection and help us better understand behavior of 
complex systems (Goodfellow et al., 2016).

Deep learning has been developed rapidly in recent years due to 
its high flexibility and performance. However, its application in ecol-
ogy is still in the infancy (Christin et al., 2019; Reddy & Prasad, 2018). 
Most ecological researches relevant to deep- learning method are for 
species identification and classification (Ferreira et al., 2020; Kiskin 
et al., 2020; Tabak et al., 2019; Wäldchen & Mäder, 2018). Other 
applications of deep learning in ecology include behavior studies 
(Browning et al., 2017), statistical downscaling and blending of re-
mote sensing images (Reichstein et al., 2019; Vandal et al., 2018), and 
ecosystem modeling (Chen et al., 2016; Reddy & Prasad, 2018). Due 
to the development of big data and automatic monitoring, it is easy 
and capable to accumulate a large amount of data nowadays, and 
deep learning proves to be efficient in dealing with huge data and 
accurate classification and prediction, and with great potential due 
to its high accuracy and flexibility, especially for dynamic time series 
modeling as well as for complex relations among variables coupling 
both time and space scales. However, no previous studies have been 
carried out to model the vegetation– climate relationship with deep- 
learning methods and our study is first of its kind aimed to model and 
predict ecosystem dynamics with deep learning.

Here, we modeled vegetation dynamics driven by climate factors 
with deep- learning technology to achieve accurate vegetation mon-
itoring and investigate the complex relationship between climate 
and vegetation based on long short- term memory (LSTM) network. 
We selected the normalized difference vegetation index (NDVI), de-
rived from the third generation of the Global Inventory Modeling 
and Mapping System (i.e., GIMMS NDVI 3g), to represent vegetation 
greenness. A total of 34 years (1982– 2015) of monthly NDVI data are 
taken as dependent variable. The corresponding monthly tempera-
ture and precipitation from the Climatic Research Unit product (CRU 
TS 4.01) are used as independent variables to establish the global 
gridded climate– vegetation models. Then, we performed sensitivity 
analysis to investigate the impact of temperature and precipitation 
on global vegetation. The aim of this paper is to introduce the deep- 
learning method to vegetation dynamics modeling and investigate 
the sensitivity of vegetation to climate change, to better monitor the 
future ecosystem change.
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2  | MATERIAL S AND METHODS

2.1 | Datasets collection and annotation

We used the NDVI to represent vegetation greenness level. NDVI is 
widely used in dynamic vegetation monitoring (Eastman et al., 2013; 
Guo et al., 2017; Kariyeva & Van, 2011; Walker et al., 2012; Xu & 
Guo, 2014), and it can represent the physiological functions of veg-
etation and the greenness level in an area better than other indi-
cators (Pinzon & Tucker, 2014a; Tucker et al., 2005). In this paper, 
we adopted the latest version of the Global Inventory Modeling 
and Mapping System (GIMMS), the third generation of NDVI data 
from 1982 to 2015 (https://clima tedat aguide.ucar.edu/clima te- data/
ndvi- norma lized - diffe rence - veget ation - index - 3rd- gener ation - nasag 
fsc- gimms), with a temporal resolution of 15 days and a spatial reso-
lution of 0.083° (~8 km). The influences of cloud cover, solar altitude 
angle, orbital drift and other factors from the data were removed 
from this dataset (Pinzon & Tucker, 2014b). We processed the data 
using maximum value compositing (MVC) method (Holben, 1986) 
to obtain the NDVI. Combined NDVI data with monthly resolution 
were used to minimize the impact of the atmospheric conditions and 
clouds on NDVI. The vegetation data were unified to a spatial resolu-
tion of 0.5° to match the observational gridded climate data.

Monthly precipitation and temperature data were derived from 
the Climatic Research Unit (CRU) global climate dataset (http://badc.
nerc.ac.uk/brows e/badc/cru) based on interpolation of global site 
observation data. We chose the latest version of the temperature 
and precipitation data, CRU TS 4.01, with a temporal resolution of a 
month and a spatial resolution of 0.5°. Data from 1982 to 2015 are 
selected, and pixel data with invalid values are deleted.

2.2 | Deep- learning framework

Deep- learning frameworks mainly include deep neural networks 
(DNNs), convolutional neural networks (CNNs), and recurrent neural 
networks (RNNs) (Goodfellow et al., 2016). We used the long short- 
term memory (LSTM) network in this research, which is a variant of 
recurrent neural network (RNN). RNN is a type of neural network 
dedicated to processing time series data samples (Graves, 2013). 
Each layer of the information in a neural network not only outputs 
to the next layer but also outputs a hidden state, which is used when 
processing the information to the next sample. The recurrent struc-
ture allows the previous information to be continuously saved with 
a memory effect; thus, it is widely applied in speech recognition and 
time series modeling.

Long short- term memory is an improved algorithm based on 
RNNs that can describe the long- term dependence of long- distance 
time series (Hochreiter & Schmidhuber, 1997). LSTM works similarly 
to RNNs, with one more cell state parameterized structure added 
and internal memory to store the previous information, which makes 
it more powerful in modeling and predicting time series due to its 

long- term memory (Gamboa, 2017). Thus, it is a better choice to 
select LSTM as our model framework since LSTM can better solve 
long- term problems and have a faster training effect than other 
algorithms.

2.3 | Model training and validation

The basic process of deep- learning technology is to train a model 
with a large amount of historical data and input new data to make 
projections when the model accuracy reaches a certain level. In 
this study, we modeled long- term serial vegetation data and climate 
data for each pixel globally. To determine the optimal structure and 
parameters of the models, we conducted a preliminary vegetation– 
climate modeling experiment with 1,000 randomly selected pixels 
worldwide. By adjusting the parameters of the models and making 
an experience- based judgment, we ultimately built models includ-
ing three layers: two cascading LSTM layers and a fully connected 
layer. The dimension of each LSTM layer is 75, and the input and 
output sizes of the models are 2 (temperature and precipitation) and 
1 (NDVI), respectively. The model inputs include temperature and 
precipitation time series data for each grid point. The time step of 
the models is 6, which means that the network generates the pre-
dicted NDVI values for the last 6 months with the six successive 
months of precipitation and temperature data. We used the error 
function (MSE) and Adam method to optimize the models (Kingma 
& Adam, 2014). When the model projection was close to the actual 
NDVI value within a predefined difference, there was no decrease in 
the loss curve, the modeling process was completed, and the NDVI 
value predicted by the model was the output.

The model training effect is dependent on the model training 
time (m). To explore the most suitable training time (m) and validation 
time (n) for the models, we randomly selected 1,000 points and an-
alyzed the effects of training years on model performance. Training 
times ranging from 2, 4, 6 … to 32 years were used to train the mod-
els. To ensure sufficient model verification, we ultimately selected 
22 years (264 months, 1982– 2003) of data to train the model, fol-
lowed by 12 years (144 months, 2004– 2015) for model verification.

For model training, we used the root mean square error (RMSE) 
to represent the model fitting accuracy. Then, for model validation, 
we calculated the coefficient of variation (CV) to evaluate the per-
formance of the model (Abdi, 2010). When CV is <15%, the model 
has better performance and the prediction accuracy is acceptable. 
When CV is >15%, the model is less effective.

Coefficient of variation is used to measure the devia-
tion of measured data from predicted data, calculated as fol-
lows:CV =

√
1

n

∑
n
i = 1

(yi − ŷi)
2

�y� where n is number of samples, yi is 
measured data, ŷi is predicted data, and y is the mean value of mea-
sured data.

After removing the missing and invalid values, we finally ob-
tained a total of 53,432 valid pixels globally, and we established 
53,432 vegetation– climate models.

https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms
http://badc.nerc.ac.uk/browse/badc/cru
http://badc.nerc.ac.uk/browse/badc/cru
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2.4 | Sensitivity analysis

The models established by the deep- learning method are based 
on the datasets. We can explore the importance of different 

independent variables on the dependent variable through sensi-
tivity analysis. In this paper, permutation importance (PI) (Altmann 
et al., 2010; Strobl et al., 2008) was used to indicate the magnitude 
of the influence of features on the target variable. The larger the PI 

F I G U R E  1   Model simulation and 
validation based on deep learning. (a1– a3) 
Three grid models randomly selected 
across a latitudinal gradient. The first 
22 years (264 months) are used to 
train the models, and the next 12 years 
(144 months) are used to validate the 
model accuracy. The red line and purple 
line represent the original NDVI values, 
and the blue line and green line represent 
the model simulations
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value is, the greater the influence of the variable on the target vari-
able. Permutation importance was implemented in Python through 
the eli5 package (URL: https://pypi.org/proje ct/eli5/). The principle 
is to keep the other features unchanged in the validation dataset, 
randomly add noise data to feature X, and obtain a new “mutation” 
validation set (Strobl et al., 2008). Then, we predicted and scored 
this new validation dataset and compared the model's performance 
based on the new validation dataset with that based on the original 
validation dataset. The larger the difference is, the greater the im-
pact of feature X on Y.

Since there are only two independent variables (temperature and 
precipitation) in our study, we calculated the PI of temperature (PIT) 
and the PI of precipitation (PIP) separately and obtained the tem-
perature and precipitation permutation importance difference (PID) 
by PIT minus PIP to represent the difference in the sensitivity of 
vegetation to temperature and precipitation. When PID ≥ 0.01, veg-
etation is more sensitive to temperature than it is to precipitation. 
When PID ≤ −0.01, vegetation is more sensitive to rainfall. When 
−0.01 < PID < 0.01, vegetation is sensitive to both temperature and 
rainfall.

2.5 | Model error analysis

To further explore the sources of model errors, we conducted an 
error analysis on all the models worldwide. We mainly assessed cli-
mate and vegetation factors related to our study, including the fol-
lowing six factors: mean annual temperature (MAT), mean annual 
precipitation (MAP), temperature change (ΔTMP), interannual vari-
ability of temperature (IAT), interannual variability of precipitation 
(IAP), and interannual variability of vegetation (IAV). The errors of 
the models are expressed by the CV. Among these factors, the MAT 
and MAP of each grid point are calculated from CRU climate data 
averaged over 1982– 2015, the ΔTMP is calculated as the average 
temperature of 2011– 2015 minus the average temperature of 1982– 
1986, the IAT and IAP are calculated from the CV for CRU climate 
data from 1982 to 2015, and the IAV is calculated from the CV in the 
NDVI data from 1982 to 2015.

We adopted linear regression method and calculate correlations 
between the model error CV with the related variables to analyze 
the relationships between different variables.

In addition, the vegetation variability is related to the land 
cover type, and we also analyzed the influence of different land 
cover types on the model performance. The global vegetation clas-
sification data are derived from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) land cover product MOD12C1 (http://
glcf.umd.edu/data/lc/). The MOD12C1 data product has an annual 
resolution and a spatial resolution of 0.05°. We used land cover 
data from 2012 as the base map with which to divide the global 
vegetation cover areas. The MOD12C1 data product adopts the 
International Geosphere- Biosphere Program scheme, which divides 
the globe into 17 land use types. In this paper, after removing areas 
of water and snow, 15 land cover types are used for the analysis. The 

land cover data were interpolated to a 0.5° resolution to match the 
NDVI and climate data. The dominant land cover type (the land cover 
type with the highest proportion within the 0.5° pixel) was used as 
the land cover type of a given grid point.

3  | RESULTS

3.1 | Model performance

Our results suggest that pixel- level deep- learning driven models are 
effective in simulating the dynamics of vegetation with enhanced 
performance (Figure 1). For model training, approximately 92% of 
the global areas have RMSE < 0.01 (Figure 2a). Due to the nonlinear 
modeling and multilevel expression of deep learning, the fitting pre-
cision of our models is very high. Results show that for 75% of the 
global gridded models, CV that measures the deviation of measured 
data from predicted data is <15% (Figure 2b).

Spatial differences exist in the predictive skill of the models. In 
general, the performance is better in the Southern Hemisphere than 
in the Northern Hemisphere. The regions with the best model per-
formance (CV < 10%) are mainly located near the equator (in South 
America and Africa), while the regions with relatively poor model 
performance (CV > 20%) are mainly distributed in the boreal re-
gion of the Northern Hemisphere (including the Tibetan Plateau) 
(Figure 2b). Overall, most of the models established in our study are 
good at simulating and projecting vegetation greenness, which en-
sures our ability to predict future vegetation dynamics.

3.2 | Sensitivity analysis

Sensitivity analysis of models showed a spatial pattern of global veg-
etation to climate factors (Figure 3). The results show that 47.96% 
of the terrestrial ecosystem is more sensitive to temperature than 
it is to precipitation, especially at high latitudes in the Northern 
Hemisphere; this trend is also extended to Northeast China, central 
North America, and Southeast Australia (PID > 0.01). Approximately 
18.48% of the globe is more sensitive to precipitation than to tem-
perature (PID < −0.01) (Figure 3). These areas are mainly distributed 
in the tropical regions with savannas and grasslands. Our models pro-
vide a new method to analyze the sensitivity of global vegetation to 
climate based on data processing. Notably, the model performance in 
the areas equally sensitive to temperature and precipitation is better 
than that in the areas more sensitive to temperature or precipitation 
alone, which reminds us that vegetation sensitivity to temperature 
and precipitation can affect model accuracy. This suggests that the 
impacts of climate sensitivity on vegetation should be considered in 
the modeling of future vegetation dynamics.

At the biome level, the deciduous needleleaf forest 
(PIT = 0.134) and permanent wetlands (PIT = 0.088) are the 
most sensitive land cover types to temperature. And savannas 
(PTD = 0.011) is the most sensitive types to precipitation. We 

https://pypi.org/project/eli5/
http://glcf.umd.edu/data/lc/
http://glcf.umd.edu/data/lc/
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also found that deciduous needleleaf forest and permanent 
wetland mainly distributed in Northeast Asia had the greatest 
model errors, as well as vegetation interannual variation, with the 

indication that these vegetation respond to climate very compli-
catedly and vegetation sensitivity of climate may influence the 
vegetation response to climate.

F I G U R E  2   Statistics of model training 
and validation results. (a) represents the 
root mean square error (RMSE) to reveal 
the global model fitting accuracy on the 
training sets. (b) represents coefficient of 
variation (CV) to validate the models on 
the validating sets

F I G U R E  3   Sensitivity analysis of 
the models. (a) represents the global 
vegetation sensitivity to climate. (b) shows 
the spatial distribution of global land 
cover types based on the International 
Geosphere- Biosphere Program (IGBP) 
scheme and the moderate resolution 
imaging spectroradiometer land cover 
product MOD12C1
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3.3 | Model error analysis

To understand the causes of model errors, we further analyzed the 
correlations between the model error CV and the related variables 
(Figure 4). Ultimately, we associated the model error with the in-
terannual variation in vegetation (R2 = 0.49, p = 0.00) (Figure 4). 
The model error is highly consistent with the vegetation interan-
nual variation. For vegetation with smaller interannual variations, 
such as evergreen broadleaf forest and deciduous broadleaf for-
est, the performance of the models is very good (CV = 5%– 9%) 
(Figure 5a). They are mainly distributed in areas where MAT > 15°C 
(Figure 5bc), temperature increase <0°C (Figure 5de), and sensitive 
to both temperature and precipitation (Figure 3). For vegetation 
types with larger interannual variations, such as permanent wet-
lands and deciduous needleleaf forest, our model performance is 
slightly worsened (CV = 17%– 19%) (Figure 5a). They are mainly 
distributed in areas where MAT < 0°C (Figure 5bc), temperature 
increase >2°C (Figure 5de), and with significant sensitivity to tem-
perature (Figure 3).

This indicates that in temperature- restricted areas, the rising 
temperature in recent years may lead to the increase in vegetation 
volatility. The variability of vegetation is greatest in the region with 
warming of more than 2℃ and is much greater than in other re-
gions, which reminds us that the increase of temperature in excess 
of 2°C may seriously affect vegetation growth. Moreover, there is a 
certain denotation in the model performance, that is, regions with 
poor model performance are likely to be regions with large interan-
nual variations in vegetation, and these regions (especially the bo-
real permafrost regions and the highland vegetation in the Tibetan 
Plateau) may be more vulnerable to climate warming. Therefore, 
there should be more focus on and conservation action in these 
areas.

4  | DISCUSSION

Climate factors are the most important variables affecting vegeta-
tion greenness, and the study of vegetation– climate relationship is 
a basis for simulating and predicting vegetation dynamics. Based 
on the vegetation– climate relationship, previous works have built 
many vegetation models at global scale, which are mostly based on 
the simple statistical relationships (Stephan et al., 2008; Hewson 
et al., 2019; Jorgenson et al., 2010; Lieth, 1975; Schuur, 2003; Zhu 
et al., 2016). The complex relationship of variables and dynamic 
processes and their interactions cannot be accurately simulated. 
Especially for vegetation response to the climate variation and 
adaptability, most of the vegetation dynamic models are based on 
the hypothesis that vegetation has a fixed pattern of response to 
climate change.

Deep- learning techniques can capture small changes of veg-
etation response to climate patterns in the long- time series, thus 
enhance the advantage and the accuracy of the vegetation model. 
What's more, deep learning has been proved to be an effective 
method to solve the complex relationship between variables, and 
LSTM models can efficiently predict the vegetation dynamic time 
series (Reddy & Prasad, 2018). In this research, we combine the big 
data platform and deep- learning technology to achieve global pixel 
modeling, simulate vegetation over a long- time scale. Sensitivity 
analyses of machine learning- based models can help us thoroughly 
understand the relationship between different variables. Though 
our deep- learning model is data- driven and it was used to be seen as 
a black box with an insufficient ability to interpret mechanisms from 
the models, which now has been proved transparent and interpre-
table by various methods to understand the results (Lucas, 2020), it 
is very valuable and potential in helping us understand and project 
the nature.

F I G U R E  4   Correlations between 
the model CV and the related 
variables: (a) Interannual variations 
in temperature(IAT); (b) Interannual 
variations in precipitation(IAP); (c) 
Interannual variations in vegetation (IAV); 
(d) Mean annual temperature (MAT); (e) 
Mean annual precipitation (MAP); and (f) 
Increasing temperature (ΔTMP). All the 
values were calculated based on remotely 
sensed data from 1982 to 2015
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F I G U R E  5   Model performance in different land cover types and temperature scenarios. (a) The model performances (CV) vary with land 
cover types (defined by the MODIS- based IGBP land cover classification types for 2012). (a) CV > 15% means that the modeling accuracy 
is relatively low, and CV < 15% means a high modeling accuracy. The data used here are output by the model validation datasets. (b, c) The 
relationship between mean annual temperature (MAT) and model CV and the vegetation variation (IAV), calculated by the NDVI coefficient 
of variation from 1982 to 2015. (d, e) The relationship between temperature change (from 1982 to 2015) and model CV and the vegetation 
variation (IAV)
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Notably, though our models developed with LSTM are pow-
erful with monitoring the vegetation dynamics, the performance 
of our model is slightly worsened in boreal regions and cannot 
describe thoroughly the relationship between the climate and 
vegetation especially for deciduous needleleaf forest and perma-
nent wetland, which are the most sensitive biomes to tempera-
ture and with the highest interannual variability. It reminds us that 
these types of vegetation respond to climate very complicatedly 
and they may be more sensitive to future climate warming. It 
is also a common problem of current process- based ecosystem 
models conducted in this region (Keenan & Riley, 2018; Pearson 
et al., 2013). Previous studies showed that vegetation growth has 
been found increasing rapidly during the past few decades in bo-
real regions (Mahowald et al., 2016; Myneni et al., 1997; Pearson 
et al., 2013). This is consistent with recent warming and resulted 
in the greening trend of high latitudes (Keenan & Riley, 2018; 
Zhu et al., 2016) along with the quick vegetation type shifts and 
uncertain climate feedbacks (Pearson et al., 2013). High latitude 
vegetation models are known to perform more poorly and tend 
to overestimate the vegetation growth extent and trend due to 
the elusive vegetation functional types and phenology (Anav 
et al., 2013; Mahowald et al., 2016; Murray- Tortarolo et al., 2013). 
Thus, it still remains a challenge to better reveal and predict the 
northern vegetation growth patterns.

The significant temperature rising in recent years may partly ex-
plain the interannual variations in vegetation growth in boreal re-
gions (Keenan & Riley, 2018; Nolan et al., 2018; Pearson et al., 2013), 
which is likely related to permafrost activities coupled with vege-
tation dynamics due to climate change (Jorgenson et al., 2010). 
Early research revealed that boreal region dynamics is dominated 
by mean annual air temperature, and rising temperature will lead to 
the melting of permafrost and the dissolution of underground ice 
(Vandenberghe et al., 2014). In recent years, the soil hydrothermal 
conditions in the northern permafrost region have undergone dras-
tic changes with climate warming (Cazenave et al., 2009). Permafrost 
degradation also greatly affects surface water circulation and thus 
further influence the vegetation growth (Hinzman et al., 2005). The 
interannual fluctuations of vegetation growth increase, and the hy-
drothermal regulation of vegetation growth is unbalanced, which 
further leads to the continuous increase of interannual fluctua-
tions of vegetation growth, increasing the instability of the regional 
ecosystem.

Besides the climate factors, elevated atmospheric CO2 concen-
tration, varying rates of nitrogen deposition, land use, and other 
anthropic factors could also influence the vegetation greenness, 
which may bring a greater vegetation change potential due to the 
more complex factors interacted together (Zhu et al., 2016). Further, 
we can explore the more complex social– ecological systems by in-
putting more natural and anthropogenic variables and coupling with 
certain physical process based on deep learning to better under-
stand the complex relationship of vegetation and the environment. 
And sensitivity analysis of machine learning can also help us investi-
gate the sensitivity of vegetation to different variables through data 

mining, thus further consider the vegetation sensitivity and adoption 
to the environment into the modern vegetation dynamic models.

5  | CONCLUSIONS

In summary, we apply state- of- the- art technology (i.e., deep learn-
ing) to build global gridded vegetation– climate models based on 
dynamic time series modeling. We conclude that deep learning is 
an effective way to simulate the long- term vegetation greenness 
dynamics and investigate the climate sensitivity of vegetation. Our 
methods show that deep learning has a great potential in modeling 
long- term vegetation dynamics. We achieved global gridded long- 
time series modeling and effective sensitivity analysis to reveal 
vegetation response to climate change, which is a totally new at-
tempt to integrate application of deep learning with big data to our 
ecological modeling studies, and it proves to be possible and nec-
essary in the future under the context of big data and automatic 
monitoring. Further integrating more natural and anthropogenic 
factors in vegetation dynamics coupling with other physical mod-
els may yield a more reliable modeling result. More interpretable 
methods can also be used to improve the deep- learning applica-
tions in ecology widely.
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