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Abstract

Motivation: Gene–environment (GxE) interactions are one of the least studied aspects of the genetic architecture of
human traits and diseases. The environment of an individual is inherently high dimensional, evolves through time
and can be expensive and time consuming to measure. The UK Biobank study, with all 500 000 participants having
undergone an extensive baseline questionnaire, represents a unique opportunity to assess GxE heritability for many
traits and diseases in a well powered setting.

Results: We have developed a randomized Haseman–Elston non-linear regression method applicable when many
environmental variables have been measured on each individual. The method (GPLEMMA) simultaneously esti-
mates a linear environmental score (ES) and its GxE heritability. We compare the method via simulation to a whole-
genome regression approach (LEMMA) for estimating GxE heritability. We show that GPLEMMA is more computa-
tionally efficient than LEMMA on large datasets, and produces results highly correlated with those from LEMMA
when applied to simulated data and real data from the UK Biobank.

Availability and implementation: Software implementing the GPLEMMA method is available from https://jmarchini.
org/gplemma/.

Contact: jonathan.marchini@regeneron.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The advent of genome-wide association studies (The Wellcome Trust
Case Control Consortium, 2007) has catalyzed a huge number of dis-
coveries linking genetic markers to many human complex diseases and
traits. For the most part, these discoveries have involved common var-
iants that confer relatively small amounts of risk and only account for
a small proportion of the phenotypic variance of a trait (Manolio et al.,
2009). This has led to a surge of interest in methods and applications
that measure the joint contribution to phenotypic variance of all meas-
ured variants throughout the genome (SNP heritability), and in testing
individual variants within this framework. Most notably the seminal
paper of Yang et al. (2010), who used a linear mixed model (LMM) to
show that the majority of missing heritability for height could be
explained by genetic variation by common SNPs (Yang et al., 2010).
When testing variants for association these LMMs can reduce false
positive associations due to population structure, and improve power
by implicitly conditioning on other loci across the genome (Listgarten
et al., 2012; Loh et al., 2015; Yang et al., 2014). These methods model
the unobserved polygenic contribution as a multivariate Gaussian with
covariance structure proportional to a genetic relationship matrix
(GRM) (Eskin et al., 2008; Lippert et al., 2011; Zhou and Stephens,
2012). This approach is mathematically equivalent to a whole genome

regression (WGR) model with a Gaussian prior over SNP effects
(Listgarten et al., 2012).

Subsequent research has shown that the simplest LMMs make
assumptions about the relationship between minor allele frequency
(MAF), linkage disequilibrium (LD) and trait architecture that may not
hold up in practice (Evans et al., 2018; Speed et al., 2012) and general-
izations have been proposed that stratify variance into different compo-
nents by MAF and LD (Speed et al., 2012, 2017; Yang et al., 2015).
Other flexible approaches have been proposed in both the animal breed-
ing (de los Campos et al., 2013; Hayes et al., 2001) and human literature
(Carbonetto and Stephens, 2012; Logsdon et al., 2010; Zhou et al.,
2013) to allow different prior distributions that better capture SNPs of
small and large effects. For example, a mixture of Gaussians (MoG)
prior can increase power to detect associated loci in some (but not all)
complex traits (Carbonetto and Stephens, 2012; Loh et al., 2015). Other
methods have been proposed that estimate heritability only from sum-
mary statistics and LD reference panels (Bulik-Sullivan et al., 2015;
Speed and Balding, 2019). Heritability can also be estimated using
Haseman–Elston regression (Haseman and Elston, 1972) and has recent-
ly been extended using a randomized approach (Wu and Sankararaman,
2018) that has OðNMÞ computational complexity and works for mul-
tiple variance components (Pazokitoroudi et al., 2020). Other recent
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work has shown that LMM approaches such as these are not able to dis-
entangle direct and indirect genetic effects, the balance of which will
vary depending on the trait being studied (Young et al., 2018).

There has been less exploration of methods for estimating heritability
that account for gene–environment interactions. One interesting approach

has proposed using spatial location as a surrogate for environment
(Heckerman et al., 2016) using a three component LMM—one based on

genomic variants, one based on measured spatial location as a proxy for
environmental effects, and a gene–environment component, modelled as
the Hadamard product of the genomic and spatial covariance matrices.

Other authors have used this method to account for gene-gene interac-
tions (Crawford et al., 2017; Ober et al., 2015).

Modelling gene–environment interactions when many different
environmental variables are measured is a more challenging prob-

lem. If several environmental variables drive interactions at individ-
ual loci, or if an unobserved environment that drives interactions is
better reflected by a combination of observed environments, it can

make sense to include all variables in a joint model. StructLMM
(Moore et al., 2019) focuses on detecting GxE interactions at indi-
vidual markers. Environmental similarity between individuals is

modelled (over multiple environments) as a random effect, and each
SNP is tested independently for GxE interactions. However, this ap-

proach does not model the genome wide contribution of all the
markers, which is often a major component of phenotypic variance.

We recently proposed a WGR approach called LEMMA applic-
able to large human datasets such as UK Biobank, where many po-
tential environmental variables are available (Kerin and Marchini,

2020). The LEMMA regression model includes main effects of each
genotyped SNP across the genome, and also interactions of each

SNP with a environmental score (ES), that is a linear combination of
the environmental variables. The ES is estimated as part of the
method using a Variational Bayes algorithm to fit the WGR model.

The model uses mixture of Gaussian (MoG) priors on main and
GxE SNP effects, that allow for a range of different genetic architec-
tures from polygenic to sparse genetic effects (Carbonetto and

Stephens, 2012; Logsdon et al., 2010; Zhou et al., 2013). The ES
can be readily interpreted and its main use is to test for GxE interac-

tions one variant at a time, typically at a larger set of imputed SNPs
in the dataset. However, the ES can also be used to estimate the pro-
portion of phenotypic variability that is explained by GxE interac-

tions (SNP GxE heritability), using a two component randomized
Haseman–Elston (RHE) regression (Pazokitoroudi et al., 2020).

The main contribution of this article is to combine the estimation of
the LEMMA ES into a stand-alone RHE framework. This results in a

non-linear optimization problem that we solve using the Levenburg-
Marquardt (LM) algorithm. The method implicitly assumes a Gaussian
prior on main effect and GxE effect sizes. We also propose a separate

RHE method that estimates the independent GxE contribution of each
measured environmental variable. We set out the differences between

these two models and present a simulation study to compare them to
LEMMA. We show that GPLEMMA is more computationally efficient
than LEMMA on large datasets. We also apply the method to UK

Biobank data and show that GPLEMMA produces estimates very close
to LEMMA. Software implementing the GPLEMMA algorithm in
Cþþ is available at https://jmarchini.org/gplemma/.

2 Materials and methods

2.1 Modelling SNP heritability
The simplest model for estimating SNP heritability has the form

y ¼ Xbþ e; bleN 0;
r2

g

M

� �
; eeN 0;r2

e

� �
where y is a continuous phenotype, X is an N�M matrix of geno-

types that has been normalized to have column mean zero and col-
umn variance one, and b is an M-vector of SNP effect sizes.

Integrating out b leads to the variance component model

yeN 0;r2
gKþ r2

e I
� �

;

where K ¼ XXT

M is known as the genomic relationship matrix (GRM)

(Yang et al., 2010). Estimating the two parameters in this model rg

and re leads to an estimate of SNP heritability of h2 ¼ r2
g

r2
gþr2

e
. This is

commonly referred to in the literature as the single component
model. Subsequent research has shown that the single component
model makes assumptions about the relationship between minor al-
lele frequency (MAF), linkage disequilibrium (LD) and trait archi-
tecture that may not hold up in practice (Evans et al., 2018; Speed
et al., 2012). There have been many follow up methods, including;
generalizations that stratify variance into different components by
MAF and LD (Yang et al., 2015), approaches that assign different
weights for the GRM (Speed et al., 2012, 2017), methods that re-
place the Gaussian prior on b with a spike and slab on SNP effect
sizes (Powell et al., 2018) and methods that estimate heritability
only from summary statistics and LD reference panels (Bulik-
Sullivan et al., 2015; Finucane et al., 2015).

2.2 Randomized Haseman–Elston regression
An alternative method used to compute heritability is known as
Haseman–Elston (HE) regression (Haseman and Elston, 1972). HE-
regression is a method of moments (MoM) estimator that optimizes
variance components ðr2

g ; r
2
e Þ in order to minimize the squared differ-

ence between the observed and expected trait covariances. The MoM
estimator ðr̂2

g ; r̂
2
e Þ can be obtained by solving the minimization

arg min
r2

g ;r
2
e

jjyyT � ðr2
gKþ r2

e IÞjj2F

or equivalently by solving the linear regression problem

vecðyyTÞ ¼ r2
gvecðKÞ þ r2

e vecðIÞ þ �0

where vecðAÞ is the vectorization operator that transforms an
N�M matrix into an NM-vector. In matrix format, both of these
forms correspond to solving the following linear system

trðK2Þ trðKÞ
trðKÞ N

� �
r2

b

r2
e

 !
¼ yTKy

yTy

� �
(1)

HE-regression methods are widely acknowledged to be more com-
putationally efficient (Golan et al., 2014; Wu and Sankararaman,
2018; Yang et al., 2017) and do not require any assumptions on the
phenotype distribution beyond the covariance structure (Golan et al.,
2014) (in contrast to maximum-likelihood estimators). However,
HE-regression based estimates typically have higher variance (Yang
et al., 2017), thus implying that they have less power.

Recent method developments (Pazokitoroudi et al., 2020; Wu and
Sankararaman, 2018) have shown that a randomized HE-regression
(RHE) approach can be used to compute efficiently on genetic datasets
with hundreds of thousands of samples. Wu and Sankararaman (2018)
observed that Equation (1) can be solved efficiently without ever hav-
ing to explicitly compute the kinship matrix K by using Hutchinson’s
estimator (Hutchinson, 1990), which states that trðAÞ ¼ E½zTAz� for
any matrix where z is a random vector with mean zero and covariance
given by the identity matrix. The proposed method involves approxi-
mating trðKÞ and trðK2Þ using only matrix vector multiplications with
the genotype matrix X, to compute the following expressions

tr Kð Þ � 1

B

1

M2

X
b

jjXTzbjj22;

tr K2ð Þ � 1

B

1

M2

X
b

jjXXTzbjj22:

Thus an approximate solution can be obtained in OðNMBÞ time,
where B denotes a relatively small number of random samples.
Subsequent work by Pazokitoroudi et al. extended this approach to
a multiple component model (Pazokitoroudi et al., 2020)
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yeN 0;
X

k

r2
kKk þ Ir2

e

� �
:

With parameter estimates obtained as solution to the linear sys-
tem given by

T b
bT N

� �
r2

b

r2
e

 !
¼ c

N

� �
; (2)

where Tkl ¼ trðKkKlÞ; bk ¼ trðKkÞ and ck ¼ yTKky. Finally, both
papers show how to efficiently control for covariates by projecting

them out of all terms in the system of equations. Thus with covari-
ates included the multiple component model becomes

yeN Ca;
X

k

r2
kKk þ Ir2

e

� �
;

and terms in the subsequent linear system are given by Tkl ¼
trðWKkWKlWÞ; bk ¼ trðWKkWÞ and ck ¼ yTWKkWy, where

W ¼ IN � CTðCTCÞ�1C. The GPLEMMA and MEMMA approaches
developed in this article use this method of handling covariates.

2.3 Modelling GxE heritability
We introduce two extensions of the RHE framework for modelling
GxE interactions with multiple environmental variables. In both
models we let E be an N�L matrix of environmental variables and

C be an N�D matrix of covariates, where both matrixes are nor-
malized such that columns have mean zero and variance one. We
use notation El to denote the lth column of E, and diagðxÞ denotes a

null matrix with elements of vector x on its diagonal. We note that
columns of E are always included in C, so that D>L.

2.3.1 MEMMA

The first model assumes that each environmental variable interacts
independently with the genome

y ¼ CaþXbþ
X

l

ðEl �XÞkl þ �; (3)

where beN 0;
r2

b

M IM

� �
; kleN 0;

r2
wl

M IM

� �
; �eN 0; r2

e IN

� �
and El �X

denotes the element-wise product of El with each column of X.
Integrating out b and k leads to the variance component model

yeN Ca;
XLþ2

k¼1

hkKk

0@ 1A;
where h ¼ r2

b; ðr2
wl
ÞLl¼1; r

2
e

n o
; Fk ¼ Ek �X and

Kk ¼

XXT

M
if k ¼ 1;

Fk�1FT
k�1

M
if 1 < k � Lþ 1;

I if k ¼ Lþ 2:

8>>>><>>>>:
Fitting the variance components is done analytically by solving

the system of equations Th ¼ c where Tkl ¼ trðWKkWKlWÞ; ck ¼
yTWKkWy and W ¼ IN � CðCTCÞ�1CT . As shown in the original
RHE method (Pazokitoroudi et al., 2020; Wu and Sankararaman,

2018), Hutchinson’s estimator can be used to efficiently estimate
Tkl. To do this our software streams SNP markers from a file and

computes yTWXXTWy and the following N-vectors

ub ¼ XXTWzb; (4)

vb;l ¼ XXTElWzb; (5)

where zbeNð0; INÞ for 1 � b � B are random N-vectors. Then

Tkl ¼
1

M2B

X
b

ðnk
bÞ

Tnk
b;

where nk
b is defined as

nk
b ¼

ub if k ¼ 1;
vb;l if 1 < k � Lþ 1;
zb if k ¼ Lþ 2:

8<:
Finally, the variance components are converted to heritability

estimates using the following formula

ĥ
2

k ¼
ĥktr Kkð ÞP
k ĥktr Kkð Þ

:

We call this approach MEMMA (Multiple Environment Mixed
Model Analysis). MEMMA costs OðNMLBÞ in compute and
OðNLBÞ in RAM.

2.3.2 GPLEMMA

The second model involves the estimating a linear combination of
environments, or environmetal score (ES), that interacts with the
genome. The model is given by

y ¼ CaþXbþ ðg�XÞcþ �; (6)

beN 0;
r2

b

M
IM

� �
; (7)

ceN 0;
r2

c

M
IM

� �
; (8)

where g ¼ Ew is a column vector that we refer to as the linear envir-
onmental score (ES). This is the same model used by LEMMA
(Kerin and Marchini, 2020), which we include below for complete-
ness, except the mixture of Gaussians priors on SNP effects (b and c)
have been replaced with Gaussian priors. For this reason, we call
this approach GPLEMMA (Gaussian Prior Linear Environment
Mixed Model Analysis). Integrating out the SNP effects yields the
model

yeN Ca; r2
bKþ r2

c K2ðwÞ þ r2
e I

� �
;

where K2ðwÞ ¼ diag Ewð ÞKdiag Ewð Þ ¼ 1
M

P
l;m wlwmFlF

T
m and

Fl ¼ El �X. Minimizing the squared loss between the expected and
observed covariance is equivalent to the following regression
problem

vecðyyTÞ ¼ r2
bvecðKÞ þ

X
l;m

r2
c wlwmvecðFlF

T
mÞ þ r2

e vecðIÞ þ �0: (9)

In this format it is clear that optimizing r2
b; r

2
c ;w; r

2
e is a non-

linear regression problem. Further, including a parameter for r2
c is

no longer necessary. From here on we set ~wl ¼
ffiffiffiffiffi
r2

c

q
wl and drop the

parameterization without loss of generality.

2.3.3 Levenburg–Marquardt algorithm

We use the Levenburg-Marquardt (LM) algorithm (Zolfaghari
et al., 2005), which is commonly used for non-linear least squares
problems. The algorithm effectively interpolates between the Gauss-
Newton algorithm and the method of steepest gradient descent, by
use of an adaptive damping parameter. In this manner, it is more ro-
bust than the straight forward Gauss-Newton algorithm but should
have faster convergence than a gradient descent approach.

Without loss of generality, consider the model

Y ¼ f ðhÞ þ �; (10)

where f ðhÞ is a function that is non-linear in the parameters h. Given
a starting point h0, LM proposes a new point hnew ¼ h0 þ d by solv-
ing the normal equations
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ðJðh0ÞTJðh0Þ þ lIÞd ¼ Jðh0ÞT�ðh0Þ; (11)

where Jðh0Þ ¼ df ðh0Þ
dh0

and �ðh0Þ ¼ Y � f ðh0Þ are respectively the
Jacobian and the residual vector evaluated at h0.

If hnew has lower squared error than h0, then the step is accepted
and the adaptive damping parameter l is reduced. Otherwise, l is

increased and a new step d is proposed. For small values of l
Equation (11) approximates the quadratic step appropriate for a
fully linear problem, whereas for large values of l Equation (11)

behaves more like steepest gradient descent. This allows the algo-
rithm to defensively navigate regions of the parameter space where
the model is highly non-linear. If hþ d reduces the squared error,

then the step is accepted and l is reduced, otherwise l is increased
and a new step d is proposed.

In summary the LM algorithm requires computation of the
matrices JðhÞTJðhÞ; JðhÞT�ðhÞ at each step, as well as the squared

error (which we define as SðhÞ). We now give statements of the equa-
tions used to compute each of these values, and show that each iter-
ation can be performed in OðNL2BÞ time.

We apply the LM algorithm with h ¼ r2
b;w;r

2
e

n o
; Y ¼ vecðyyTÞ

and

f ðhÞ ¼ r2
bvecðKÞ þ

X
l;m

wlwmvecðFlF
T
mÞ þ r2

e vecðIÞ:

Several quantities can be pre-calculated and re-used in the LM
algorithm. The N-vectors ub, vb;l and yTWXXTWy are needed and
have been defined above. In addition, GPLEMMA also benefits

from the pre-calculation of

Hl;m ¼ ET
l diagðWyÞXXTdiagðWyÞEm; 1 � l;m � L

which can also be computed as genotypes are streamed from file.
Let ðJTJÞhi ;hj

denote the entry of the JTJ that corresponds to

f ðhÞ
@hi

T f ðhÞ
@hi

for hi; hj 2 w; r2
b;re

n o
and define the N-vector

vbðwÞ ¼
P

l wlvb;l. Then the ðLþ 2Þ � ðLþ 2Þ matrix JðhÞTJðhÞ is

given by

JTJ
� �

wl ;wm
¼ tr diag gð ÞKdiag Elð Þdiag Emð ÞKdiag gð Þ

� �
;

¼ 1

M2B

X
b

vbðwÞTdiag Elð Þdiag Emð ÞvbðwÞ
� �

;

JTJ
� �

wl ;r2
b
¼ tr diag gð ÞKdiag Elð ÞK

� �
¼ 1

M2B

X
b

vbðwÞTdiag Elð Þub

� �
;

JTJ
� �

r2
b
;r2

b
¼ tr KKð Þ ¼ 1

M2B

X
b

jjubjj22;

JTJ
� �

r2
b
;r2

e
¼ tr Kð Þ ¼ 1

M2B

X
b

zT
b Wub;

JTJ
� �

wl ;r2
e
¼ tr diag gð ÞKdiag Elð Þ

� �
¼ 1

M2B

X
b

zT
b WvbðwÞ;

JTJ
� �

r2
e ;r

2
e
¼ tr Wð Þ:

JðhÞT�ðhÞ is given by

ðJðhÞT�ðhÞÞr2
b
¼ trðyTWKWyÞ � JðhÞTJðhÞr2

b;

ðJðhÞT�ðhÞÞwl
¼ trðyTWdiagðElÞKdiagðEwÞWyÞ � JðhÞTJðhÞwl;

ðJðhÞT�ðhÞÞr2
e
¼ trðyTWyÞ � JðhÞTJðhÞr2

e :

where

trðyTWdiagðElÞKdiagðEwÞWyÞ ¼
X

m

Hl;m

Finally the squared error, which we define as SðhÞ, is given by

S
�
r2

b;wÞ¼jj
�

yyT�CovðyÞ
�
jj2F;

¼tr
��

yyT�CovðyÞ
��

yyT�CovðyÞ
��
;

¼trðyyTyyTÞ�2
r2

b
1
r2

e

0B@
1CA

T

trðyTKyÞ
tr yTK2ðwÞy
� �

trðyTyÞ

0@ 1A

þ
r2

b
1
r2

e

0B@
1CA

T trðKKÞ tr
�

KK2ðwÞ
�

trðKÞ

tr
�

KK2ðwÞ
�

tr
�

K2ðwÞK2ðwÞ
�

tr
�

K2ðwÞ
�

trðKÞ tr
�

K2ðwÞ
�

N

0BBBB@
1CCCCA

r2
b

1
r2

e

0B@
1CA

where

tr K2ðwÞK2ðwÞð Þ � 1

M2B

X
b

jjvbðwÞjj22

The initial preprocessing step has costs OðNMLBþNML2Þ in
compute and OðNLBÞ in RAM. The remaining algorithm does not
require much RAM in addition to that required in the preprocessing

step, so also costs OðNLBÞ in RAM. Construction of the summary
variable vbðwÞ ¼

P
l wlvb;l costsOðNLBÞ in compute. Each iteration

of the LM algorithm costs OðNL2BÞ.
It is possible to parallelize GPLEMMA using OpenMPI by parti-

tioning samples across cores, in a similar manner to that used by
LEMMA (Kerin and Marchini, 2020). Given that evaluating the ob-
jective function Sðr2

b;wÞ is characterized by BLAS level 1 array oper-

ations, a distributed algorithm using OpenMPI should have superior
runtime versus an the same algorithm using OpenMP as well as pro-
viding RAM limited only by the size of a researchers compute

cluster.
We perform 10 repeats of the LM algorithm with different initi-

alizations, and keep results from the solution with lowest squared
error SðĥÞ. Each run is initialized with a vector of interaction

weights ~w, where each entry set to 1
L and a small amount of

Gaussian noise is added.

~w ¼ 1

L
~1 þN 0;

2

L2
IL

� �
:

To transform the initial weights vector ~w to the initial parame-
ters h0 we let r̂2

b; r̂
2
c ; r̂

2
e

� �
be solutions to

r̂2
b; r̂

2
c ; r̂

2
e

� �
¼ minr2

b ;r
2
c ;r

2
e
jjyyT �

�
r2

bKþ r2
c K2ð ~wÞ þ r2

e I
�
jj2F:

The GPLEMMA algorithm is then initialized with h0 ¼
r̂2

b;w; r̂
2
e

� �
where w ¼ rc ~w.

2.3.4 LEMMA

The LEMMA model is given by

y ¼ CaþXbþ ðg�XÞcþ �; (12)

bewN 0;
r2

b1

M
IM

� �
þ 1� wð ÞN 0;

r2
b2

M
IM

� �
; (13)

cepN 0;
r2

c1

M
IM

� �
þ 1� pð ÞN 0;

r2
c2

M
IM

� �
; (14)

where g ¼ Ew is the linear environmental score (ES). The use of the
MoG priors makes it harder to analytically integrate out the param-

eters. The LEMMA algorithm uses a Variational Bayes approach to
first estimate the ES and fit the whole genome regression parar-

meters b and c. The primary use of the LEMMA model is for testing
individual SNPs for GxE effects. However, LEMMA can also esti-
mate GxE heritability. It uses the VB algorithm to estimate the ES,

and then plugs this estimate into Eq 6 and uses a randomized
Haseman–Elston linear regression to estimate the variance
components.
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2.3.5 Relationship between MEMMA and GPLEMMA

Comparing Equation (3) with Section 6, suggests that the
GPLEMMA model can be expressed at the MEMMA model with
the added constraint that

K ¼ wcT

where K ¼ ½k1; . . . ; kL�T is the L�M matrix of GxE effect sizes in
MEMMA for the L environments and M SNPs.

We can expect the two models to give similar heritability esti-
mates, under the simplifying assumptions that GxE interactions do
occur with a single linear combination of the environments and that
the set of random variables g; ðEl � gÞLl¼1

n o
is mutually independ-

ent. Let g � Nð0;KÞ and � � Nð0;r2
e IÞ. Then connection between

the two models is revealed by observing

y ¼ N Ca; r2
bKþ r2

c K2ðwÞ þ r2
e I

� �
;

¼ rbgþ rc
P

l wlEl

� �
� gþ �;

¼ rbgþ
X

l

rwl
El � gþ �;

¼ N 0; r2
bKþ

P
l r

2
wl

El � K� ET
l þ r2

e I
� �

;

where r2
wl
¼ r2

c w2
l . Thus we should expect both models to have the

same estimate for the proportion of variance explained by GxE
interaction effects.

Even in the case that MEMMA and GPLEMMA have the same
expected heritability estimate, there are still some differences be-
tween the two. GPLEMMA is a constrained model, so the variance
of its heritabiity estimates may be smaller. Further, although r̂2

wl
is

proportional to the square of the weights used to construct the ES
the sign of the interaction weight wl has been lost. Thus it is not pos-
sible to reconstruct an ES for use in single SNP testing using
MEMMA.

2.4 Simulated data
We carried out simulation studies to compare the performance of
MEMMA, LEMMA and GPLEMMA in a variety of different scen-
arios, using three different phenotype simulation strategies; a base-
line phenotype that was simulated according to the LEMMA model
(Kerin and Marchini, 2020), a phenotype which generalizes the
LEMMA model to three orthogonal ESs and a misspecified pheno-
type that had squared dependancy on a heritable environmental
variable S.

The simulations use real data subsampled from genotyped SNPs
in the UK Biobank (Bycroft et al., 2018), drawing SNPs from all 22
chromosomes in proportion to chromosome length and using unre-
lated samples of mixed ancestry (N ¼ 25k; 12 500 white British,
7500 Irish and 5000 white European, N ¼ 50k; 29 567 white
British, 7500 Irish and 12 568 white European, N ¼ 100k; 79 567
white British, 7500 Irish and 12 568 white European; using self-
reported ancestry in field f.21000.0.0). All samples were genotyped
using the UKBB genotype chip and were included in the internal
principal component analysis performed by the UK Biobank.
Environmental variables were simulated from a standard Gaussian
distribution.

Let N be the number of individuals, M the total number of SNPs,
L the total number of environmental variables and h2

G and h2
GxE the

herirtability of main effects and GxE effects. The baseline phenotype
was simulated using the model

y ¼ CaþXbþ ðg�XÞcþ �;
g ¼ Ew;

� � Nð0; IÞ;

where X represents the N�M genotype matrix after columns have
been standardized to have mean zero and variance one, C is the first
principle component of the genotype matrix and E is the N�L ma-
trix of environmental variables. In all simulations a was set such
that Ca explained one percent of trait variance. The interaction

weight vector w contained Lactive non-zero elements, which were
drawn from a decreasing sequence

wi ¼ ð�1Þi 1� i

2Lactive

� �
i � Lactive;

0 o=w:

8<:
The effect size parameters b and c were simulated from a spike

and slab prior such that the number of non-zero elements was gov-
erned by MG and MGxE for main and interaction effects respectively.
Non-zero elements were drawn from a standard Gaussian, and then
subsequently rescaled to ensure that the heritability given by main
and interaction effects was h2

g and h2
GxE respectively. We chose a set

of default parameters: N ¼ 25K; M ¼ 100K; L ¼ 30; Lactive ¼ 6;
MG ¼ 2500; MGxE ¼ 1250; h2

g ¼ 20%; h2
GxE ¼ 5%, and then varied

one parameter at a time to examine the effects of sample size, num-
ber of environments, number of non-zero SNP effects and GxE herit-
ability. In addition, we investigated performance using a larger
baseline simulation with N ¼ 100K samples and M ¼ 300K var-
iants. The first genetic principal component was provided as a cova-
riate to all methods.

Figure 1 compares estimates of the proportion of variance
explained (PVE) by GxE effects from all three methods. In general,
all methods had upwards bias that decreased with sample size and
increased with the number of environments. While heritability esti-
mates from LEMMA and GPLEMMA appeared quite similar, esti-
mates from MEMMA had much higher variance and also appeared
to have higher upwards bias as the total number of environments in-
crease. All the methods exhibited less bias in the larger simulations
with N ¼ 100K samples and M ¼ 300K variants (Fig. 1e–g).
Supplementary Figure S1 shows the estimated PVE by main effects
from the same set of simulations. In general the estimated PVE by
main effects from the three methods was extremely similar.

Figure 2 compares the absolute correlation between the simu-
lated ES and the ES inferred by LEMMA and GPLEMMA (note that
MEMMA does not provide an estimate of the ES). In general, the
estimated ES from GPLEMMA had slightly lower absolute correl-
ation with the true ES than the estimated ES from LEMMA.
LEMMA models SNP effects directly, so can estimate the SNPs
involved in the interaction, and this is likely the reason for the small
improvement in the accuracy of the ES. In large sample sizes
(N ¼ 100k with M ¼ 300k SNPs), both methods achieve a correl-
ation of over 0.98 with the simulated ES.

Next, we tested the methods against a generalized phenotype
with three orthogonal ESs that interacted with disjoint sets of SNPs.
More explicitly, the generalized phenotype was simulated from the
following model
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Fig. 1. PVE estimation. Estimates of the proportion of variance explained by GxE

effects by LEMMA, MEMMA and GPLEMMA whilst varying the number of envi-

ronments, the number of active environments, the number of non-zero SNP effects

and GxE heritability. All simulations constructed with the baseline phenotype. a–d

Simulations results using N ¼ 25K samples and M ¼ 100K variants by default, e–g

show simulation results using N ¼ 100K samples and M ¼ 300K variants. Results

from 15 repeats shown

5636 M.Kerin and J.Marchini

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa1079#supplementary-data


yeN CaþXbþ
X3

k¼1

gk �Xck; IN

0@ 1A;
where gk ¼ EWk is an N-vector and W is an L�K matrix of envir-
onmental weights with K¼3. W contained Lactive ¼ 6 rows with
non-zero elements drawn from a standard Gaussian distribution,
and columns were pairwise orthogonal. Similarly, ck denotes an M-
vector where the non-zero elements of ck and cj are disjoint. SNP
coefficients were drawn from a spike and slab prior in a similar
manner to the baseline phenotype with MG ¼ 2500 and
MGxE ¼ 1250.

Figure 3 displays results from a set of simulations with N ¼
100k samples and M ¼ 100k SNPs. The three ESs were scaled such
that the singular values of K where decreasing (with values 80, 60,
40). Figure 3b shows that the ES estimated by both LEMMA and
GPLEMMA was, in general, highly correlated with the ES with
highest singular value when the simulated GxE heritability was over
0.05. In this scenario, estimates of GxE heritability from both meth-
ods was centered around the true simulated heritability of that ES
(see Fig. 3a). However at lower levels of simulated GxE heritability,
both methods generally failed to identify one of the true ESs

(consistent with Fig. 2). In contrast, the estimates of GxE heritability
from MEMMA were centered on the sum of the GxE heritabilities
from all three ESs. This suggests that running both GPLEMMA and
MEMMA may help to elucidate the architecture of GxE interactions
for a given trait.

For a more challenging scenario, we reran the high GxE herit-
ability (h2

GxE ¼ 0:1) simulation using a larger number of SNPs
(M ¼ 300K) so that N>M and scaled the ESs such that the singular
values corresponding to the first two ESs were roughly equal (the
singular values were 80, 78, 60). In this scenario the ES estimated by
GPLEMMA did not correlate well with any one of the three simu-
lated ESs, but was highly correlated with a linear combination of
them (Supplementary Fig. S2). We hypothesize that with a large
number of ‘null’ variants GPLEMMA becomes less able to identify a
single ES and instead infers a mixture. In contrast, LEMMA consist-
ently identified one of the simulated ESs. The GxE heritability esti-
mates from all three methods were roughly as before, but with some
inflation (Supplementary Fig. S3).

In the third batch of simulation results we used a misspecified
phenotype, with squared dependancy on a heritable environmmental
variable S. The misspecified phenotype was simulated using the
model

ymisspec ¼ asS
2 þ ybaseline;

where S was simulated to have heritability of 30% with 2500 causal
SNPs drawn from a spike and slab prior, and a range of values for as

was used to vary the strength of the non-linear relationship between
y and S.

Supplementary Figure S4 compares MEMMA, GPLEMMA and
LEMMA in a simulation where the functional form of a heritable
environmental variable was misspecified (or more specifically; the
phenotype depended on the squared effect of a heritable environ-
ment). All methods were first tested without any attempt to control
for model misspecification, and second using a preprocessing strat-
egy where each environment was tested independently for squared
effects on the phenotype and any squared effects with p-value <
0:01=L were included as covariates. These are referred to as (�SQE)
and (þSQE) respectively in the figures. Using the (�SQE) strategy,
all methods showed upwards bias in estimates of GxE heritability
that increased with the strength of the squared effect on the pheno-
type (Supplementary Fig. S4b). Model misspecification also caused
bias in the ES of both GPLEMMA and LEMMA, however bias in
the ES from GPLEMMA appeared to be much worse
(Supplementary Fig. S4a). Using the ðþSQEÞ strategy, all GxE herit-
ability estimates were unbiased, consistent with earlier simulation
results.

Figure 4 shows a comparison of the runtime of LEMMA and
GPLEMMA as the sample size and number of environments varied.
The figure shows that on relatively small datasets (N ¼ 25k samples
or L¼10 environmental variables) LEMMA was slightly faster,
however on large datasets GPLEMMA is faster due to superior algo-
rithmic complexity. To give a direct comparison, on a simulated
data with N ¼ 100k samples, M ¼ 100k SNPs and L¼30
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environmental variables using 4 cores for each run, LEMMA took
an average of 648 minutes to run whereas GPLEMMA took an aver-
age of 233 minutes.

Supplementary Figure S5 displays simulation results on the com-
putational complexity of GPLEMMA. Supplementary Figure S5a
and b shows that GPLEMMA achieved perfect strong scaling (A
parallel algorithm has perfect strong scaling if the runtime on T pro-
cessors is linear in 1

T, including communication costs.) on the range
of cores tested. This suggests that GPLEMMA has superior scalabil-
ity to LEMMA, as for LEMMA the speedup due to increased cores
began to decay after the number of samples per core dropped below
3000 (Kerin and Marchini, 2020).

Time to compute the preprocessing step and solve the non-linear
least squared problem are shown in Supplementary Figure S5c–f,
while the number of environments and sample size were varied. As
expected, the preprocessing step appeared to be linear in both the
number of environments and sample size. Time to solve the non-
linear least squares problem appeared to be quadratic in the number
of environments and approximately linear in sample size N. As a
single LM iteration should have complexity OðNL2BÞ, this suggests
that the number of iterations required for convergence of the LM al-
gorithm was independent of sample size and the number of environ-
ments (at least for the range of values tested).

Finally, we tested GPLEMMA in simulation where we simulated
ordinal environmental variables, created using a binomial distribu-
tion Bin(n, p) where n with n 2 f3;4; 5g levels and p � Uð0; 0:5Þ.
Comparing GPLEMMAs performance in these simulations with pre-
vious results using a continuous environmental variable
(Supplementary Fig. S6) suggests that GPLEMMA is not sensitive to
the choice of ordinal or continuous environmental variables.

2.5 Analysis of UK Biobank data
To compare GPLEMMA and LEMMA on real data we ran both
methods on body mass index (log BMI), systolic blood pressure
(SBP), diastolic blood pressure (DBP) and pulse pressure (PP) meas-
ured on individuals from the UK Biobank. We filtered the SNP geno-
type data based on minor allele frequency (	 0:01) and IMPUTE
info score (	 0:3), leaving approximately 642 000 variants per trait.
We used 42 environmental variables from the UK Biobank, similar
to those used in previous GxE analyses of BMI in the UK Biobank
(Moore et al., 2019; Young et al., 2016). After filtering on ancestry
and relatedness, sub-setting down to individuals who had complete
data across the phenotype, covariates and environmental factors we
were left with approximately 280; 000 samples per trait. The sam-
ple, SNP and covariate processing and filtering applied is the same
as that reported in the LEMMA paper (Kerin and Marchini, 2020).

Table 1 shows the estimates and standard errors for SNP main
effects (h2

G) and GxE effects (h2
GxE) for GPLEMMA and LEMMA

applied to the 4 traits. In all cases there is good agreements between
the estimates from both methods.

Finally we ran RHE-regression on the four UK Biobank traits
whilst controlling for the same set of covariates. Heritability esti-
mates from RHE-regression were marginally higher than those
obtained by LEMMA and GPLEMMA (see Supplementary Table
S1).

3 Discussion

Primarily this article develops a novel randomized Haseman–Elston
non-linear regression approach for modelling GxE interactions of
quantitative traits in large genetic studies with multiple environmen-
tal variables. This approach estimates GxE heritability at the same
time as estimating the linear combination of environmental variables
(called an ES) that underly that heritability. This general idea was
pioneered in our previous approach LEMMA (Kerin and Marchini,
2020) which used a whole-genome regression approach to learn the
ES, and this was then used in a randomized Haseman–Elston ap-
proach to estimate GxE heritability. The GPLEMMA approach
introduced in this article does not need that first whole-genome re-
gression step, and this leads to substantial computational savings.
The model underlying GPLEMMA is very similar to that in
LEMMA, but implicity assumes a Gaussian distribution for main
SNP effects and GxE effects at each SNP.

We compared GPLEMMA to a simpler approach, which we
called MEMMA, that estimates GxE heritability of each environ-
mental variable in a joint model, but does not attempt to find the
best linear combination of them. We found that estimates of GxE
heritability from MEMMA had higher variance than estimates from
LEMMA and GPLEMMA, suggesting that the usefulness of
MEMMA might be limited. Results from LEMMA and GPLEMMA
were very similar, both in terms of estimating the ES and GxE herit-
ability. The primary advantage of GPLEMMA over LEMMA is in
computational complexity, as the empirical complexity of
GPLEMMA appeared to be linear in sample size whereas LEMMA
was shown to be super-linear (Kerin and Marchini, 2020).

The methods LEMMA, GPLEMMA and MEMMA have all
been developed for quantitative traits, and we have not explored
their use when applied directly to binary traits, as if they were con-
tinuous, as was carried out in Pazokitoroudi et al. (2020).
Developing GPLEMMA to directly model binary traits is a direction
for future work. It maybe that transformations that exist for single
component LMMs to convert heritability estimates to the liability
scale may be also work here.

In the future it may also be interesting to extend the GPLEMMA
model to partition variance using multiple orthogonal linear combi-
nations of environmental variables. This could be expressed using
the model

y ¼ CaþXbþ
XJ

j¼1

ðgj �XÞcj þ �; (15)

where gj ¼ Ewj is an N-vector, wj is an L-vector and
wj?wk8j;k 2 f1; . . . ; Jg.

LEMMA is also able to perform single SNP hypothesis testing
whereas GPLEMMA (currently) does not. The linear weighting par-
ameter w from GPLEMMA could be used to initialize LEMMA, or
the estimated ES could be used as a single environmental variable in
LEMMA. Exploring these, and other, approaches is future work.

While we are enthusiastic about the potential of GPLEMMA
(and LEMMA) to elucidate the contribution of GxE interactions to
disease traits, we suggest that more care is needed than a standard
genetic heritability analysis for a number of reasons. As our simula-
tions show, including a variable as an ’environment’ that is itself
under genetic control can lead to bias if the relationship between
that variable and trait of interest is not well modelled, and this
should be carefully considered. Also, GPLEMMA is only able to as-
sess the contribution of those variables included in the model. It may
well be the case that a relevant environment is not available and so
its GxE contribution cannot be assessed. Finally, the scale the meas-
ured trait can impact results (Kerin and Marchini, 2020) so it can be
useful to assess results on a range of scales.
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