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The pathological hallmarks of Alzheimer’s disease (AD)—widespread synaptic and neuronal loss and the pathological
accumulation of amyloid-beta peptide (Aβ) in senile plaques, as well as hyperphosphorylated tau in neurofibrillary tangles—
have been known for many decades, but the links between AD pathology and dementia and effective therapeutic strategies
remain elusive. Transgenic mice have been developed based on rare familial forms of AD and frontotemporal dementia, allowing
investigators to test in detail the structural, functional, and behavioral consequences of AD-associated pathology. Here, we review
work on transgenic AD models that investigate the degeneration of dendritic spine structure, synaptic function, and cognition.
Together, these data support a model of AD pathogenesis in which soluble Aβ initiates synaptic dysfunction and loss, as well
as pathological changes in tau, which contribute to both synaptic and neuronal loss. These changes in synapse structure and
function as well as frank synapse and neuronal loss contribute to the neural system dysfunction which causes cognitive deficits.
Understanding the underpinnings of dementia in AD will be essential to develop and evaluate therapeutic approaches for this
widespread and devastating disease.

1. Introduction

Alzheimer’s disease (AD) is a devastating progressive neu-
rodegenerative disease characterized by cognitive decline,
brain atrophy due to neuronal and synapse loss, and the
formation of two pathological lesions, extracellular amyloid
plaques composed largely of amyloid-beta peptide (Aβ),
and neurofibrillary tangles, intracellular aggregates of hyper-
phosphorylated tau protein [1, 2].

The brain is a remarkably adaptable network of neurons
sharing information through approximately 1014 synaptic
connections. The plasticity of this network in response to
environmental stimuli enables the brain to adapt to new
demands and allows learning and the formation of new
memories. Changes of synapses and dendritic spines, the
postsynaptic element of most excitatory synapses, in re-
sponse to stimulation are thought to underlie the brain’s
plasticity [3]. It follows that disruption of neural circuits due
to both synapse loss and decline in the ability of remain-
ing spine synapses to change in response to stimuli likely

contribute to the disruption of cognition observed in neu-
rodegenerative diseases such as Alzheimer’s disease. Indeed,
it is known that synapses are lost during AD and that, in
AD tissue, synapse loss correlates strongly with cognitive
decline, arguing the importance of this process as causative
to dementia [4–7].

Rare familial forms of AD occur in which amyloid
precursor protein (APP), the precursor to the Aβ peptide,
or presenilin (PS) 1 or 2, the catalytic subunit of the
gamma-secretase complex which cleaves APP to form Aβ,
are mutated and result in an autosomal dominant, early-
onset form of the disease [8]. Mutations in the tau protein
have not been found to cause AD but can lead to famil-
ial frontotemporal dementia with Parkinsonism linked to
chromosome 17 [9, 10]. These mutations strongly implicate
amyloid processing as an instigating factor in the disease and
also provide genetic tools for the construction of transgenic
mouse models of the disease which recapitulate many of its
pathological features [11]. In contemporary AD research,
these transgenic models are being used to characterize
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the physiological and behavioral consequences of AD neu-
ropathology in order to investigate the fundamental question
of the underlying anatomical causes of dementia. APP and
APP/PS1 transgenic mice express high levels of amyloid beta
(Aβ) and progressively develop many of the pathological
phenotypes of AD, including abundant extracellular Aβ
plaques, synaptic dysfunction and loss, astrocytosis, activa-
tion of microglia, and cognitive deficits [12]. For decades,
Aβ plaques were thought to cause dementia in AD patients
by physically interrupting normal neural connectivity and
function. However, the lack of correlation between Aβ
plaque load and the degree of cognitive impairment in AD
patients [4] and the fact that Aβ plaques occupy a negligible
fraction (less than 5%) of the neuropil [13–15] in cognitively
impaired transgenic mice [15] raised the possibility that
fibrillar Aβ in plaques does not contribute significantly to
dementia in AD patients. Instead, soluble Aβ species (i.e.,
monomeric, oligomeric, and protofibrillary Aβ species that
linger in aqueous solution after high-speed centrifugation)
seem to be the main culprits of the functional deficits in these
mice and probably also in initiating disease in AD patients.

Mice expressing dementia-associated tau mutations have
also been developed to study the contributions of neurofib-
rillary pathology to dementia and the interplay between Aβ
and tau [16, 17]. While genetic studies clearly implicate
amyloid as the initiating factor in AD, the correlation of
tangles with neuronal loss in AD brain, together with
the lack of neuronal loss and tangle formation in APP
transgenic models, and the lack of efficacy with Aβ-directed
therapeutics have contributed to the idea that tau pathology
is an important contributor to dementia downstream of Aβ
[18].

This paper will review the work on dendritic spine
changes and their contribution to functional changes in
synapses and behavioral deficits in AD models. It is impor-
tant to address these questions because the ability of synapses
and spines to change even in aged brain and the strong
correlation between synapse loss and cognitive decline in AD
indicate that enhancing spine plasticity could prevent or even
reverse cognitive deficits associated with neurodegenerative
disease.

2. In Vivo Imaging Reveals Dendritic
Spine Loss and Plaque-Associated Structural
Plasticity Deficits in AD Models

Dendritic spines form the postsynaptic element of the
vast majority of excitatory synapses in the cortex and
hippocampus brain regions important for learning and
memory. Changes in spines are thought to be a structural
basis for these processes [3]. Loss of dendritic spines similar
to the synapse loss observed in human AD has been reported
in several mouse models that develop amyloid and tau
pathology [13, 19–25]. The use of mouse models for in
vivo multiphoton imaging allows longitudinal investigations
to determine the temporal sequence of pathological events
and to answer “chicken-or-egg” questions such as which
comes first, spine loss or plaques? In order to perform

these experiments, it is first necessary to fluorescently
label dendritic spines and pathological lesions such as
plaques and tangles. Spines can be imaged with transgenic
expression of fluorophores such as GFP and YFP [26–
29] or through filling neurons with fluorescent dextrans
[30] or fluorescent proteins expressed in adeno-associated
virus or lentivirus [21, 31]. To label plaque pathology in
AD models, the blood-brain barrier-penetrable compounds,
Pittsburghs compound B and methoxy-XO4 (developed by
William Klunk), have been used in conjunction with in vivo
multiphoton imaging to observe amyloid plaques and their
clearance after treatment with immunotherapy [32–35].

Imaging of amyloid plaques together with imaging
dendrites and dendritic spines filled with fluorescent proteins
can be used to assess the effects of pathology on the
surrounding neuropil (Figure 1). This technique shows that
plaques form rapidly, over the course of one day, and
that within one week of plaque formation, surrounding
dendrites begin to curve and exhibit dystrophic swellings
[36]. Spine loss around plaques was determined to be due
to a loss of stability of spines in the vicinity of plaques
with more spine elimination than that in control brain,
reflecting dysfunctional structural plasticity [37]. These
structural plasticity changes contribute to functional deficits
around plaques. In one study, neural circuit function was
assessed using a fluorescent reporter of neuronal activation
(the coding sequence of Venus, flanked by short stretches
of the 5′ and 3′ untranslated regions from CamKIIα)
which gets transported to dendrites and locally translated
in response to activity resulting in increased fluorescence
in dendrites after neuronal activation. APP/PS1 transgenic
mice have greatly reduced levels of this reporter in dendritic
segments surrounding plaques, and they failed to upregulate
its expression in response to environmental stimulation,
a phenomenon which was robust in wild-type animals
[38]. Resting intraneuronal calcium levels are also disrupted
around plaques, indicating dysfunction [39].

From the above studies, it is clear that plaques affect
local dendrites and dendritic spines, but the precise bioactive
molecule around plaques which induces spine loss was not
clear for many years. The strongest candidate for the synap-
totoxic molecule around plaques arose as soluble oligomeric
Aβ due to work by William Klein, Dennis Selkoe, and other
groups who reported that soluble Aβ causes dendritic spine
collapse and impairs synaptic plasticity in culture [40–44],
correlates with memory loss in transgenic mice [45, 46],
and impairs memory and synaptic plasticity in vivo [47,
48]. In further support of the synaptotoxic role of Aβ,
both active and passive immunotherapy to remove Aβ have
favorable effects on memory, plaque clearance, and neurite
architecture in AD models [33, 49–53]. The first direct
assessment of whether oligomeric Aβ is present at synapses
in the brain came from application of the array tomography
technique to AD mouse brain tissue. Array tomography,
developed by Micheva et al., overcomes the axial resolution
limitation of confocal microscopy by physically sectioning
tissue into 70 nm ribbons of serial sections which can then be
used for immunofluorescent analysis to accurately quantify
the contents of small structures such as synapses [54, 55].
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Figure 1: In vivo multiphoton imaging of plaques (labeled with methoxy X-O4, blue), vasculature (labeled with Texas red dextran, red), and
dendrites (transgenically expressing YFP, green) in mice transgenic for mutant human APP and PS1 crossed with YFP transgenic mice allow
examination of dendritic spine plasticity and loss. Low-resolution three-dimensional image stacks (a) are used to repeatedly find the same
imaging sites. Higher-resolution image stacks (b) are used for spine analysis. Scale bars 100 μm (a) 10 μm (b).

In APP/PS1 mice, this technique shows that oligomeric Aβ is
in fact present at a subset of shrunken excitatory postsynaptic
densities, particularly in a halo of oligomeric Aβ surrounding
the dense cores of plaques [56]. As would be predicted from
the association of dendritic spine changes with physiological
plasticity [57–59] and the presence of oligomeric Aβ at
shrinking spines, dendritic spines can recover with thera-
peutic interventions aimed at removing oligomeric Aβ or
inhibiting calcineurin which is activated downstream of Aβ-
associated increases in intracellular calcium [30, 39, 60–62].
Removing soluble Aβ with the topical application of the 3D6
antibody allows rapid increases in the structural plasticity
of dendritic spines within one hour, before any clearance of
fibrillar Aβ occurs [30].

Tau overexpression has also been associated with spine
loss in postmortem studies of human tau transgenic ani-
mals [25]. In rTg4510 mice, pyramidal cells have reduced
spine density compared to wild-type animals, but tangle-
bearing neurons have no more loss than their non-tangle-
bearing neighbors [25]. Similarly rTg4510 hippocampal
circuits are deficient in experience-dependent upregulation
of immediate early genes compared to wild-type mice, but
tangle-bearing neurons are not impaired compared to non-
tangle-bearing cells in rTg4510 brain [63]. In vivo and
array tomography imaging of tangles in rTg4510 mice has
been developed and is demonstrating similar indications
that soluble tau may be more toxic than fibrillar tau in
terms of axonal transport and neuronal death [64–68]. In
cultured neurons and transgenic mice overexpressing tau,
mislocalization of tau to dendritic spines disrupts synaptic
function [69].

Very recent data elegantly link Aβ, tau, and dendritic
spine loss [70, 71]. Ittner et al. established that tau has a
dendritic function in targeting the Src kinase Fyn to dendritic
spines. Fyn phosphorylates NMDA receptor NR2 subunits
mediating their interaction with the postsynaptic scaffolding

protein PSD95 and disrupting this interaction of tau, and
Fyn prevents Aβ toxicity in APP transgenic mice [70].
Similarly, Roberson et al. found that Aβ, tau, and Fyn jointly
impair synaptic network function in electrophysiological
studies of APP and Fyn overexpressing mice on a tau null
background [71]. In culture, oligomeric Aβ was found to
cause tau mislocalization to dendrites which was associated
with local calcium elevation and dendritic spine loss [72].

3. Synaptic Plasticity Is Severely Impaired in
AD Mouse Models

It is widely accepted that, in early stages of AD, synaptic
dysfunction is the cause of dementia [84, 85]. Synaptic plas-
ticity provides a neurophysiological substrate for learning
and memory and is, therefore, often used to evaluate the
phenotype of transgenic mice. In APP transgenic AD mouse
models, there are significant alterations in hippocampal
synaptic transmission and plasticity at excitatory glutamater-
gic synapses that sometimes appear in young animals long
before Aβ is deposited in plaques (see Table 1). Most studies
performed before mice reached 6 months of age report
intact basal synaptic transmission [75, 78, 81, 83] although
some exceptions were also reported [74, 86]. It should be
noted that the lack of detectable changes in basal synaptic
transmission in the majority of studies does not rule out
synaptic dysfunction that has been overcome by functional
compensation. Indeed, evidence of functional compensation
in response to spine loss induced by Aβ has been observed
in several models [87–89]. From 6 months on, most of the
AD transgenic mice show significant deficits in basal synaptic
transmission [75, 78, 79, 81–83, 90]. This age-related
deterioration in synaptic transmission in AD transgenic mice
is unlikely to result from a decreased transmitter release
probability because paired-pulse facilitation (PPF), which
correlates inversely with the probability of transmitter release
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Table 1: Progressive synaptic malfunction AD transgenic mice.

Model Mutations
Age

(months)
Basal synaptic transmission Long-term potentiation

Paired-pulse
facilitation

2-3 Impaired [73]

Tg2576 APPswe
4–6 Impaired [74] Normal [74]/impaired [73]

6–12 Impaired [75] Normal [75]

>12 Normal [76, 77]/Impaired [75] Normal [75]/impaired [76, 77] Normal [4, 6]

<6 Normal [78] Impaired [78] Impaired [78]

PDAPP APP (V717F) 6–12

>12 Impaired [78] Normal [78] Impaired [78]

<6 Normal [79] Impaired [79, 80]

APP/PS1 APPswe/PS1dE9 6–12 Impaired [79, 80] Impaired [79, 80] Normal [80]

>12

1-2 Normal [81] Normal [81] Normal [81]

3xTg-AD APPSwe, PS1M146V, and tauP301L
3–6

6–12 Impaired [81] Impaired [81] Normal [81]

>12

5XFAD
APPswe/lnd/fl and a PS1 transgene
carrying double FAD mutations
(M146L and L286V)

<6 Normal [82] Normal [82] Normal [82]

6–12 Impaired [82, 83] Impaired [82, 83] Normal [82]

>12

[78], remains intact in most of AD transgenic mice, even at
advanced ages [78, 86] (see Table 1). Impairments in long-
term potentiation (LTP) were shown both in vitro and in
vivo, in the CA1 as well as dentate gyrus regions of the
hippocampus [76, 91]. Failure of LTP expression is detected
in AD mice in some cases before 4 months of age [73, 78] but
usually appears later [75, 76, 81–83, 86, 92], when Aβ load
is higher. These findings emphasize the fact that extracellular
deposition of fibrillar Aβ is not required for the development
of severe functional deficits in AD models. This conclusion is
strengthened by the observation that direct application of Aβ
oligomers into the brain prevents LTP [48, 93, 94].

Studies of the mechanisms of Aβ-mediated synaptic
dysfunction converge on the theme of increased postsynaptic
calcium concentrations leading to internalization of NMDA
and AMPA receptors via mechanisms similar to those seen in
long-term depression [40, 42, 95, 96]. Overall, these findings
suggest that synaptic dysfunction is an early event in AD
pathogenesis and may play a role in the disease process.

4. Impaired Cognition in AD Mouse Models

Learning and memory processes are believed to depend
on changes of synaptic transmission in certain areas of
the brain, including the hippocampus. Most studies done
with AD transgenic mice assess spatial navigation capability
(e.g., Morris water maze, radial maze, Barnes maze) since
this memory system depends on the hippocampus and is
highly conserved in mammals [97]. The onset of cognitive
decline is difficult to define in humans, particularly without
a reliable biomarker. Thus, the use of transgenic mouse
models to address this question is particularly useful, since
the early cognitive changes can be identified and correlated

with molecular and cellular changes. The implication of
Aβ in the cognitive decline in AD transgenic mice is no
longer controversial. However, there were contrasting reports
regarding the onset of cognitive decline in different AD
models (Table 2). In some studies, deficits in learning and
memory were observed at 3 months, implicating soluble
Aβ assemblies [98, 99], while other studies have shown
onsets at intermediate ages [76, 98, 100–104] or at advanced
ages [100, 101, 105, 106], invoking insoluble Aβ plaques.
Moreover, in the 3XTg-AD mouse model, spatial long-
term retention memory deficits were found to correlate
with intraneuronal Aβ at 4 months [81], an age when
these transgenic mice do not have Aβ plaques [107]. A
similar observation has been shown for 5x FAD mice,
which also accumulate high amounts of intraneuronal Aβ
peptides [108] and present with significant impairment in
the working memory already at 4-5 months of age [102,
103]. Due to this controversy, the Aβ species responsible
for the cognitive decline in these mice was under debate for
many years. Strong evidence for the toxicity of soluble Aβ
came from a study showing that naturally secreted soluble
Aβ oligomers administrated into the rat’s lateral cerebral
ventricles at picomolar concentrations disrupt the memory
of a complex learned behavior [47]. This suggests that soluble
Aβ oligomers, rather than Aβ plaques, may be responsible
for the cognitive impairment in the absence of Aβ plaques or
neuronal death.

Although aged AD mice are impaired at learning several
tasks that depend on the hippocampus, the performance
of these mice on tasks requiring an intact amygdala, such
as cued-fear conditioning, has been thoroughly established
only for Tg2576 mice [112, 119] and aged APP/PS1 mice
[15]. In these models amygdala-dependent learning is
severely impaired at advanced ages, implying that neurons of
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Table 2: Progressive cognitive impairments in APP AD transgenic mice.

Model
Age

(months)
Spatial task

Working memory
Fear conditioning

Learning Probe test Contextual Cued

Tg2576

<6
Impaired [109]/normal

[98, 100, 110]
Normal [100, 111]

Normal [110]/impaired
[98]

Impaired
[74, 109, 112–118]

Normal [119]

6–12
Normal [101]/impaired

[110, 120]
Normal [120]/
impaired [111]

Normal
[98, 101]/impaired [110]

Impaired
[115, 121]/normal [122]

Normal [122]

>12 Impaired [101, 110] Impaired [111]
Impaired

[76, 98, 101, 110]
Impaired [112, 115, 117]

Normal [112,
119]/impaired

[119]

APP/PS1

<6 Normal [123–128]
Normal [126, 127]/

impaired [128]
Normal [124, 127, 129,

130]/impaired [80]

Normal
[131–133]/impaired
[79, 117]/enhanced

[127]

6–12
Impaired

[79, 80, 105, 126–
128, 134]

Normal [105, 127,
134]/impaired

[79, 80, 126, 128]

Impaired
[80, 127, 129, 130]

Impaired [79]/normal
[127]

>12
Impaired

[105, 106, 124, 128, 135]
Impaired [105, 106] Impaired [124, 129] Impaired [15]

3xTg-AD

1-2 Normal [107] Normal [107] Normal [107, 136]

3– 6 Impaired [137–139]
Impaired

[107, 137, 138]
Normal [136]

6–12 Impaired [107, 140]
Impaired

[107, 139, 140]
Impaired [136, 139, 141] Impaired [139]

>12 Impaired [142] Impaired [141, 143]

5XFAD
<6 Impaired [108, 144] Normal [102, 108] Normal [82, 145] Normal [144]

6–12 Impaired [144] Impaired [102, 103] Impaired [82, 144, 145]

>12 Impaired [102, 103, 146]

the amygdala, similar to hippocampal neurons, are suscepti-
ble to the toxic effect of Aβ.

At later stages of the disease, widespread synaptic and
neuronal death probably contribute greatly to dementia.
These effects are likely mediated by tau downstream of
the initiating amyloid pathology [18]. Reflecting this later
stage of dementia, tau-expressing mouse lines which undergo
neuronal loss develop behavioral deficits. Interestingly, two
of these mouse lines which have reversible expression of
pathological tau exhibit recovery of cognition after transgene
suppression even after extensive neuron loss [147, 148].
These studies point to the powerful ability of synapses to
regenerate and allow functional recovery of neural circuits
if the toxic insult in the disease can be removed.

5. Conclusions

The data presented in this paper are from a strong body
of literature supporting the hypothesis that oligomeric Aβ
accumulation in the brain initiates the disease process in AD
by impairing structural and functional plasticity of synapses.
This underlies behavioral deficits observed in APP mouse
models which begin before Aβ deposition in plaques and
continue after plaque deposition when the plaques appear to
be a reservoir of oligomeric Aβ causing local structural and
functional disruptions. Downstream of the initial amyloid
insult, tau pathology contributes to synapse and neuronal
loss and consequent cognitive decline. AD transgenic mice

are characterized by a number of specific cognitive deficits,
compatible with AD, which makes them indispensable for
testing of novel anti-AD drugs. Finally, the plastic nature of
synapses and their clear involvement in both early and late
stages of cognitive decline in these AD models highlight the
importance of synaptic targets for therapeutic approaches.
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amyloid aggregates, neurodegeneration, and neuron loss
in transgenic mice with five familial Alzheimer’s disease
mutations: potential factors in amyloid plaque formation,”
Journal of Neuroscience, vol. 26, no. 40, pp. 10129–10140,
2006.

[109] C. Perez-Cruz, M. W. Nolte, M. M. van Gaalen et al.,
“Reduced spine density in specific regions of CA1 pyramidal
neurons in two transgenic mouse models of Alzheimer’s
disease,” Journal of Neuroscience, vol. 31, no. 10, pp. 3926–
3934, 2011.

[110] G. Chen, K. S. Chen, J. Knox et al., “A learning deficit
related to age and β-amyloid plaques in a mouse model of
Alzheimer’s disease,” Nature, vol. 408, no. 6815, pp. 975–979,
2000.

[111] M. A. Westerman, D. Cooper-Blacketer, A. Mariash et al.,
“The relationship between AÎ2 and memory in the Tg2576
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