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Introduction
According to the statistics from International 
Diabetes Federation (IDF), there were 425 mil-
lion diabetes mellitus (DM) patients in 2017 
worldwide, and that number is expected to 
increase to 629 million by 2045.1 Abnormally high 
blood glucose caused by insulin insufficiency or 
insensitivity can lead to severe complications such 
as chronic renal failure, microvascular complica-
tion, cerebrovascular accident, and infarction 
induced by high glycated serum and blood vessel 
proteins.2,3 Moreover, insufficient insulin signal 
leads to the decreased glucose uptake from the 
blood that, in turn, can result in ulcers, gangrene, 
diabetic retinopathy, and neuropathy.2 Recent 
DM treatment is inclined to maintain the blood 
glucose level within normal limits by (e.g. nutri-
tional therapy and physical management) and 
medication due to the incurable nature of DM.4,5 
Diabetic medications can be characterized into 
five strategies based on their acting mechanisms: 

raising insulin secretion (e.g. sulfonylurea and 
meglitinide analogs), reducing intestinal glucose 
absorption (e.g. acarbose), triggering insulin-inde-
pendent glucose uptake signaling (e.g. thiazolidin-
edione and biguanide), reducing urinal glucose 
reabsorption (e.g. gliflozins), and prolonging 
insulin sensitive [e.g. dipeptidyl peptidase 4 
(DPP-4) inhibitor and glucagon-like peptide 1 
(GLP-1) receptor agonists] [American Diabetes 
Association, 2019b]. These antidiabetic drugs help 
DM patients to maintain their blood glucose lev-
els with various adverse effects (Table 1), such as 
urine-tract infection, lactoacidosis, hypoglycemia, 
and obesity. These drug-related adverse effects 
can deteriorate the quality of life of DM patients 
and create unsurmountable difficulties for proper 
dosing regimens in a clinical setting. It has been 
observed that DPP-4 inhibitors can exert a similar 
efficacy in reducing blood glucose levels with-
out severe adverse effects such as hypoglycemia 
as compared with sulfonylurea.6 Nevertheless, 
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various adverse side effects associated with the 
current DPP-4 inhibitor can still be observed 
that, in turn, can severely limit their practical 
application. As such, there is a clinical demand 
for novel DPP-4 inhibitors from various sources 
including chemical synthesis and botanic sources 
containing herbs and plants with fewer side 
effects. In this article, we have reviewed various 
approaches including in silico, in vitro enzymatic 
and cell assays, and in vivo animal tests in the 
search for natural DPP-4 inhibitors for the treat-
ment of type 2 diabetes.

Overview of DPP-4 and its biological 
function

Two forms of DPP-4
DPP-4, which is a 88 kDa serine protease, contains 
one region of cytoplasmic region (amino acids 
1–6) coupled with transmembrane domain (amino 
acids 7–28) and extracellular region (amino acids 
29–766) with the main catalytic domain.14 There 
are two DPP-4 isoforms in the body: membrane-
bound DPP-4 (mDPP-4) composed of full-length 
DPP-4 peptide; and soluble DPP-4 (sDPP-4), 
whose cytoplasmic and transmembrane regions 
are absent.14 Both forms can exert various biologi-
cal activities in regulation of physiology and 
pathology.15

Biological function of soluble form DPP-4
sDPP-4 is secreted by lymphocytes, circulates in 
the blood,16 and shows high concentration in kid-
ney.17 It has been observed that sDPP-4 plays vari-
ous roles in improving skeleton muscle activity, 
immunocyte activation, chemotaxis, and homeo-
stasis. sDPP-4 can secrete into serum via the 
response of skeletal muscle cells upon acute physi-
cal activities or feeding protein hydrolysate.18 
Secreted sDPP-4 can reduce vasoconstriction that 
is caused by neuropeptide Y (NPY) and subse-
quently increase the arteriolar diameter of skeletal 
muscle that provides a physiological explanation 
for raising training efficiency caused by sDPP-
4.19,20 In addition to arteriolar diameter of skeletal 
muscle, secreted sDPP-4 acts as myokine, which 
stimulates inflammation in smooth muscles from 
blood vessel through activating protease-activated 
receptor 2 (PAR2)/ERK/NF-κB signaling path-
way, increasing proinflammatory cytokine release 
and finally stimulating smooth muscle cell prolifer-
ation.21 However, sDPP-4-induced smooth muscle 
inflammation is not always good to the body. For 
instance, Romacho et  al. reported sDPP-4 might 
cause microvascular endothelial dysfunction, which 
is the cause of chronic kidney disease in elders, 
through the same signaling with smooth muscle 
inflammation.22,23 Thus, Dubé et al. illustrated that 
cardiovascular inflammation can be attenuated by 
DPP-4 inhibitor in the process of HIV treatment, 

Table 1. Current hypoglycemic agents and their side effect.7

Class Name Mechanism Side effect Reference

Sulfonylurea Glimepiride, Glyburide, 
Gliclazide

Insulin secretion Hypoglycemia, 
obesity

Deacon and 
Lebovitz8

Meglitinides 
agonist

Repaglinide, Nateglinide Insulin secretion Hypoglycemia, 
obesity

Grant et al.7

Thiazolidinedione Pioglitazone, Rosiglitazone, 
Lobeglitazone

Increase insulin 
sensitivity

Obesity, edema Kung and 
Henry9

DPP-4 inhibitors Sitagliptin, Vildagliptin, 
Saxagliptin

Increase insulin 
sensitivity

Indigestion, 
rash

Chin et al.10

Biguanide Metformin Reduce 
gluconeogenesis

Lactoacidosis, 
indigestion

Defronzo et al.11

Amylase/
glucosidase 
inhibitors

Acarbose, Miglitol, 
Voglibose

Inhibit starch 
digestion

Diarrhea, 
flatulence

Zhang et al.12

Sodium/glucose 
transporter 
inhibitors

Dapagliflozin, Canagliflozin, 
Empagliflozin

Reduce urine 
glucose re-
absorption

Urinary and 
genital tract 
infection

Lupsa et al.13
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and that leads to diminish cardiovascular morbidity 
of HIV treatment.24 In T-cell activation, sDPP-4 
can activate T-cell proliferation via co-stimulation 
with T-cell receptor (TCR) signaling and Toll-like 
receptor, whose activation is neither associated 
with its enzymatic activity nor with adenosine 
deaminase binding.25–28 On the other hand, sDPP-4 
can upregulate the expressions of IL-6 and TNF-α 
in monocyte through caveolin-1/ERK/NF-κB/c-
Fos signaling, which is involved in monocyte prolif-
eration.29 It is noteworthy that Tansi et al. proved 
the interaction between DPP-4 and HIV-1 tran-
scription regulator Tat (HIV-1-Tat).30 Markedably, 
the effect on DPP-4/HIV-1-Tat in viral infection 
and proliferation needs further investigative atten-
tion. The role of sDPP-4 in chemotaxis regulation 
is related to the degradation of chemokine. 
Hematopoietic stem cell homing is attracted by 
stromal cell-derived factor 1 (SDF-1/CXCL12) 
and colony-stimulating factors (CSFs), which are 
substrates of both sDPP-4 and mDPP4.15,31 
Accordingly, sDPP-4 inhibition can improve suc-
cess rate of transplantation after analyzing the rela-
tionship between sDPP-4 activity and hematopoietic 
stem cell transplantation.32 The known DPP-4 
(both soluble and membrane-bound forms) sub-
strates include numerous homeostatic hormones 
such as GLP-1, NPY, glucagon, peptide Y, and 
secretin, which accurately regulate blood sugar 
homeostasis.15 GLP-1 is involved in insulin sensi-
tivity and secretion, food reward, and appetite 
through ghrelin and leptin, and cellular metabolism 
with adiponectin.15,33–35 NPY blocks melanocor-
tin-4 receptor signaling and leads to the reduction 
of energy consumption and possibility of obe-
sity.36,37 After secretion from intestinal L cell, 
GLP-1 is rapidly degraded by sDPP-4 into inactive 
GLP-1 amide, in which half-life is shorter than 
2 min.38 In dysglycemic patients, active GLP-1 
content can be further decreased and cause more 
severe hyperglycemia.39 Accordingly, inhibiting 
sDPP-4 activity can keep more active GLP-1 and 
NPY in serum and thus improve insulin effi-
ciency.40 Other biological activities including non-
immunodeficient virus infection are also explored. 
It has been demonstrated by the case study of 
Middle East respiratory syndrome coronavirus 
(MERS-CoV) infection that sDPP-4 can poten-
tially function to block viral infection.41,42 Truncated 
C-X-C chemokine 10 (CXCL10) secretion in per-
sistent infection of hepatitis C is essential,43 imply-
ing that DPP-4 may play a role in HCV persistent 
infection as manifested by a case report, in which a 
DM patient complicated with HCV infection 

showed HCV replication reduction after sitagliptin 
treatment.44 sDPP-4 is essential for maintaining 
immune activity and chemotaxis, especially in 
inflammatory regulation, based on all available 
information of its biological activities. Thus, the 
serum activity of sDPP-4 can be an indicator of 
physiological or immunological stages.

The effect of serum sDPP-4 activity can be classi-
fied into several categories: infection related dam-
age, transplantation or autoimmune disease, 
respiratory disease, and response to diabetic med-
ications and complications, as discussed in detail 
in the following. Serum sDPP-4 activity in HIV 
infection is referred to the HIV-induced intestinal 
damage that is caused by Th17 cell depletion.45,46 
It has been observed that rheumatoid arthritis 
and multiple sclerosis patients have lower serum 
sDPP-4 activity than healthy people,47,48 whereas 
HIV patients have higher serum sDPP-4 activ-
ity.49 Moreover, Leicht et  al. analyzed sDPP-4 
activity in end-stage renal disease patients before 
and after kidney transplantation, and sDPP-4 
activities were found to decrease after kidney 
transplantation.50 These results suggest that 
serum sDPP-4 activity can be a potential bio-
marker for monitoring the progress of autoim-
mune disease and the prognosis of organ 
transplantation. Interestingly, serum sDPP-4 
activity can be associated with the progress of 
chronic obstructive pulmonary disease (COPD),51 
which is highly correlated with respiratory inflam-
mation, obviously indicating the relationship 
between serum sDPP-4 activity and COPD pro-
gression.52 However, the prognosis of malignant 
pleural mesothelioma (MPM), which is a rare 
pulmonary malignancy, can be predicted by 
sDPP-4 activity in pleural fluid.53 The pathologi-
cal correlation between sDPP-4 activity and 
MPM prognosis is still veiled. These reports pro-
vide interesting suggestions about sDPP-4 levels 
as the biomarkers of various diseases, which are 
not easy to monitor in serum or other body fluid.

Biological function of membrane-bound DPP-4
Remarkably, mDPP-4 can be found mainly in the 
kidney, gastrointestinal tract, T lymphocytes, and 
reproductive organs.54,55 Biological activities of 
mDPP-4 include the regulation of immune 
response and blood vessel function.15 mDPP4, 
also named CD26, is a T-cell co-stimulator of 
T-cell receptor responding to antigen-presenting 
cells.56 Thus, mDPP-4 recently has been 
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considered as a potent target in treatment of 
transplantation and autoimmune disease. 
Dolanbay et  al. reported an interesting study 
about the impact of mDPP-4 inhibition in early 
pregnancy that can be important in treating recur-
rent implantation failure.57 In hematopoietic stem 
cell transplantation, graft-versus-host disease 
(GVHD) is a common complication, which is 
critical in survival rate after transplantation.58 
Zhang et al. proved the association between Th17 
cells and GVHD and which Th17 cell can be reg-
ulated by mDPP-4 inhibition that indicates cur-
rent DPP-4 inhibitors can help ameliorating the 
onset of GVHD.59 The impact of mDPP-4 in 
immune regulation is also implicated in autoim-
mune disease and hypersensitivity. mDPP-4 
expression levels in CD8+ T cells of Hashimoto’s 
thyroiditis patients are significantly lower than 
healthy subjects that is plausibly attributed to dis-
ease progression.60 In contrast, mDPP-4 levels 
are almost 11-fold higher in psoriatic skin than in 
normal skin, asserting the involvement of 
mDPP-4 in psoriatic development.61 mDPP-4 
plays a positive role in asthma progress through 
promoting T-cell activation.62 These reports have 
unequivocally demonstrated the positive role 
played by mDPP-4 in immune regulation. 
mDPP-4 acts on both endothelial and epithelial 
cells in regulation of blood vessel function,. In 
addition to endothelial inflammation caused by 
sDPP-4, the role of mDPP-4 in endothelial gen-
erally involves the endothelial migration, angio-
genesis, and proliferation under hypoxia status, 
which can be found in the development of endo-
metriosis.63 Xu et al. have pointed out that DPP-4 
inhibitors that can alleviate pulmonary artery 
remodeling and, finally, delay the development of 
pulmonary hypertension.64 In the regulation of 
cardiovascular function, mDPP-4 inhibition can 
reverse diastolic left ventricular dysfunction via 
inhibiting mDPP-4/SDF-1α related angiogene-
sis.65 mDPP-4 involves in epithelial-mesenchymal 
transition (EMT) for epithelial cell,66 suggesting 
the potential implication of mDDP-4 in promot-
ing cancer development. In fact, breast cancer 
metastasis can be triggered by DPP4 inhibition 
through CXCL12/CXCR4/mTOR pathway.67 
However, DPP-4 inhibitor shows the opposite 
activity in non-small cell lung cancer, which  
suppresses cancer cell growth via macrophage-
mediated natural killer (NK) cell activation.68 
Collectively, these studies have furnished com-
prehensive descriptions of mDPP-4 biological 
functions in the whole body and further manifest 

that DPP-4 inhibition (sDPP-4 or mDPP-4) can 
produce unexpected side effects.

Role of DPP-4 in diabetes treatment
The endocrinological impact of DPP-4 is more 
prominent in the mediation of blood glucose. 
DPP-4 inhibition is a predominant approach for 
treating diabetes because of prolonged incretin 
half-lives within serum, especially in type 2 DM.69 
In addition, it has been suggested that sitagliptin 
can preserve pancreatic β-cell function and sub-
sequently stabilize insulin secretion as shown by 
two 4-year clinical trials, in which sitagliptin was 
adopted to treat slowly progressive type 1 DM 
(SPTIDDM) and latent autoimmune diabetes 
adult (LADA).55,70 In addition to clinical treat-
ment, DPP-4 levels can be used as a biomarker. 
For instance, high serum sDPP-4 levels can be 
referred to the elevated glycation end products, 
which subsequently evoke endothelial cell dam-
age and diabetic nephropathy incidence.71,72 In 
addition, high serum sDPP-4 levels also indicate 
worse drug response to DPP-4 inhibitor and 
hyperglycemia, which are the indicators of poor 
glycemic control and advanced disease pro-
gress.73,74 The above information emphasizes the 
effect of DPP-4 inhibition and monitoring in DM 
treatment. The method of screening DPP-4 
inhibitor and the recent known natural DPP-4 
inhibitors are presented in the following.

Methods for screening novel DPP-4 
inhibitors

In silico screening of DPP-4 inhibitors
Virtual screening has been seamlessly integrated 
into drug discovery and development75 and its 
success significantly relies on compound library,76 
especially the structural diversity of compound 
library.77 For instance, microalgal metabolites 
were screened for DDP-4 inhibitors.78 Compared 
with the synthesized chemicals, natural com-
pound libraries generally consist of more struc-
turally diverse compounds than their synthetic 
counterparts,79 providing a better screening 
resource. As such, numerous studies have adopted 
various natural compound libraries to find novel 
DDP-4 inhibitors as listed in Table 2.

It is not uncommon to observe that docking stud-
ies were carried out based on a single DDP-4 
crystal structure, despite the fact that a great 
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number of DDP-4-inhibitor co-complex struc-
tures have been deposited in the Protein Data 
Bank (PDB). Deng et al.88 for instance, docked a 
series of synthesized triazole-based uracil deriva-
tives into the linagliptin-DDP4 co-complex struc-
ture (PDB code: 2RGU) using the standard 
precision (SP) Glide (Schrödinger, Inc.), which 
places internally generated ligand conformations 
with various positions and orientations into the 
binding pocket. Deng et  al.89 employed Gold 
(Cambridge Crystallographic Data Center), 
which is a genetic algorithm (GA)-based scheme 
to explore the conformational flexibility of ligand 
and the rotational flexibility of receptor, to dock 
synthesized pyrazolo inhibitors into the quina-
zolinone-DDP4 co-complex structure (PDB 
code: 2ONC).90 It should be noted that both 

Glide and Gold are flexible docking algorithms.91 
Nevertheless, DDP-4 is unrestrained per se as 
manifested by the fact that DDP-4 consists of 
various binding subsites, namely S1, S’1, S2, S’2, 
and extensive S2, etc., to which the corresponding 
amino acids of the DDP4 substrate peptide desig-
nated by P1, P’1, P2, P’2, etc. from the nearest to 
the farthest cleavage point can bind as shown in 
Figure 1,92 and S2, which is composed of various 
hydrophobic residues, namely GLU205 and 
GLU206 dyad and ARG125, is highly plastic.93 
Furthermore, Nabeno et al. categorized inhibitors 
into three different classes (Figure 1) based on 
the interactions between inhibitor and DDP-4 
subsites as listed in Table 3, from which it can be 
observed that inhibitors of different classes bind 
to different DDP-4 subsites, and S1 and S2 are the 

Table 2. Natural compound libraries adopted by various studies.

Natural compound library Reference

Traditional Chinese Medicine Database (TCM Database@Taiwan) Chen80

Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target 
database (NPACT)

Mangal et al.81

Natural Products subset of the ZINC database Irwin and Shoichet et al.82

The Binding Database (BindingDB) Liu et al.83

Antidiabetic natural compounds database (ADNCD) Khatoon et al.84

Phenol-explorer Rothwell et al.85

In-house natural products database (NPD) Zhang et al.86

The NuBBE Database (NuBBEDB) Nguyen et al.87

Figure 1. Nomenclature of substrate inhibitor residues and their corresponding subsites in the binding pocket 
of enzyme and the concept of three classes of inhibitors based on their subsites.
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common binding subsites.92 In fact, the root 
means square deviation (RMSD) between 
alogliptin-bound protein conformation (PDB: 
3G0B) and teneligliptin-bound one (PDB: 3VJK) 
is 1.07 Å, denoting the promiscuous nature of 
DDP-4 that can be further demonstrated by 
Figure 2, in which the six DDP4 co-complex 
structures (PDB codes are 3W2T, 1X70, 3BJM, 
2RGU, 3VJK, and 3G0B) are superimposed. 
Moreover, the diverse structures of inhibitors can 
also manifest the plasticity of DPP4. Lee et al. for 
instance, analyzed the chemical structures of 
those launched DDP-4 inhibitors and divided 
them into different classes94 that, in turn, can be 
further noticeable the promiscuity of target pro-
tein.95 As such, the promiscuity of DDP-4 cannot 
be fully taken into account unless more sophisti-
cated structure-based ensemble docking schemes 
such as SVM-Pose/SVM-Score combinatorial 
ensemble docking96 or analog-based pharmaco-
phore ensemble schemes such as pharmacophore 
ensemble/support vector machine97 can be 

adopted. It can be argued that molecular dynam-
ics (MD) can be used to address the flexibility of 
DDP4 as illustrated by the study of Liu et  al.98 
Nevertheless, the lengthy MD calculation will 
substantially increase computational time and 
expense, making it impractical to be carried out in 
a high-throughput fashion, let  alone the more 
resource-demanded quantum mechanical (QM)/
molecular mechanics (MM) algorithm.99

Direct test of compounds against DPP-4
There are four types of assay methods for screen-
ing DPP-4 inhibitors for direct testing: direct enzy-
matic assay, in vitro cell assay, ex vivo assay, and in 
vivo animal tests. DPP-4 and tested compounds 
are mixed in the direct enzymatic assay, followed 
by adding specific substrate peptides such as gly-
pro-p-nitroanilide. The chemical p-nitroanilide 
will be released from peptides and the amount is 
determined by optical absorption at 405 nm at 
noninhibition state.105 This method is fast for anal-
ysis and can be used to evaluate the inhibition pat-
tern from calculated Ki values. However, the 
minimum changes within direct enzymatic assay 
cannot be directly translated into the actual bioac-
tivity in cells and animals.106 Ex vivo assay can 
simulate the biological interaction within body, 
whereas it needs fresh serum or tissue sample as 
the source of DPP-4.107,108 Moreover, previous 
studies reported that mucosal DPP-4 inhibition 
can be possibly related to the onset of coeliac dis-
ease, which is an autoimmune disorder due to the 
immune response to gluten.109,110 However, a 
modern version of DPP4 activity assay needs to 
homogenize the whole intestinal biopsy that, in 
turn, can lead to mucosal DPP-4 inhibition.108 
Yazbeck et al. have derived a new DPP4 substrate 
with 13C isotope that can be released upon reaction 

Table 3. Three classes of inhibitors based on their subsites, their corresponding Protein Data Bank (PDB) 
entry, and references.

Inhibitor PDB code Class Reference

Vildagliptin 3W2T 1 Nabeno et al.92

Saxagliptin 3BJM 1 Metzler et al.100

Alogliptin 3G0B 2 Zhang et al.101

Linagliptin 2RGU 2 Eckhardt et al.102

Sitagliptin 1X70 3 Kim et al.103

Teneligliptin 3VJK 3 Yoshida et al.104

Figure 2. The superposition of six DDP4 co-complex 
structures, whose PDB codes are 3W2T (color-coded 
in green), 1X70 (gray), 3BJM (purple), 2RGU (orange), 
3VJK (brown), and 3G0B (red). The ligand alogliptin is 
shown in colors.
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with DPP-4.111 As such, the requirement to 
homogenize the biopsy is completely exonerated, 
leading to higher correlation as compared with its 
conventional counterparts.111

Myocytes and pancreatic cells are often used in the 
cell-based assays to discover DPP-4 inhibitors. 
Because β-cells in pancreatic islet is an important 
GLP-1 target, the downstream signaling of GLP-1 
in pancreatic cells can be an indicator or biomarker 
of DPP-4 activity.112 In addition, GLP-1 attenu-
ates lipopolysaccharide (LPS)-induced cardiomy-
ocyte inflammation. The variations of inflammatory 
signaling including NF-κB, ERK, and TNF-α 
within LPS-induced cardiomyocyte can indirectly 
gauge DPP-4 activity.113 Nevertheless, the results 
of cell-based assay can be an authentic representa-
tive of the realistic situation mainly due to the fact 
that they do not consider in vivo pharmacody-
namic and pharmacokinetic factors. Nevertheless, 
direct action upon target cells can be very helpful 
in detailing intracellular dynamics prior to clinical 
or animal tests.

DPP-4 inhibitors have been highlighted as poten-
tial regimen for autoimmune-disease based on the 
characteristics in T-cell activation and inflamma-
tion.55 Notably, autoimmune animal model 
becomes a platform for testing in vivo efficacy of 
DPP-4 inhibitors in long-term administration.114 
Alternatively, in vivo assay of DPP-4 inhibitory 
efficacy can be verified by diabetic animal model 
despite the fact that DPP-4 can degrade GLP-1, 
leading to insulin desensitization and secretion 
decrease.112 The most unvanquished limitation of 
in vivo test is that only end-point effect can be 
observed in pre-testing drug candidate despite the 
fact that it is more related to clinical situations. 
The data retrieved from in vitro and direct enzy-
matic assay can be synergistically essential for 
understanding the conceivable hypoglycemic 
mechanism.

Natural compounds as novel DPP-4 inhibitors
The effects of DPP-4 studies were mainly 
focused on immune, endocrine, and neuron  
system from the end of 1990s to early of 
2000s.115–117 A study reported in 2006 that incre-
tin was the molecular target of DPP-4, suggest-
ing the implication of DPP-4 inhibitor in diabetes 
treatment. Consequently, the diabetic research 
has turned into a new paradigm for searching for 
antidiabetic DPP-4 inhibitors.118 To date, only 

very limited natural DPP-4 inhibitors from vari-
ous sources/origins have been reported (Table 
4). Natural DPP-4 inhibitors from different ori-
gins using different approaches for screening the 
compound to reach the target are summarized as 
follows. In addition to plant source, DPP-4 
inhibitors from animals and microbes are single-
subclasses, in which DPP-4 inhibitors from ani-
mals and microbes are peptides and macrolides, 
respectively. Interestingly, the most predomi-
nant subclasses of DPP-4 inhibitors are terpe-
noids, peptides, phenolics, and flavonoids. 
These findings have implicated that alkaloids are 
not suitable as DPP-4 inhibitors or their applica-
tions in DDP4 inhibition have not been well 
explored. In addition to pure compounds, some 
crude extracts of natural materials or protein 
hydrolysates can exert DPP-4 inhibition as well. 
For instance, the DPP-4 inhibition activities of 
methanol extracts of Ficus benghalensis, Syzigium 
cumini, Ocimum sanctum, and Eucalyptus sp. have 
been demonstrated.119,120 The hypoglycemic 
efficacy of traditional Chinese antidiabetic medi-
cines decoction of Schizandra chinensis Baill., 
Coptis chinensis, Psidium guajava L., and Morus 
alba L. has been verified by DPP-4 inhibition by 
in vivo test.121 The protein hydrolysates from 
whey, barbel, and yam can reduce the DPP-4 
activity in enzymatic measurements.122–125 
Through partition by molecular sieve, the high-
est inhibition peptide sequences of DPP-4 such 
as Ala-Pro, Leu-Pro-Val-Pro-Gln, Trp-Ser-Gly, 
and Phe-Ser-Asp have been found.126–128 
Nevertheless, these results from in vitro enzy-
matic assays cannot guarantee a promising 
future since physiological regulation of DPP-4 is 
far more complicated than bench-top experi-
ments. Therefore, the results from direct enzy-
matic assay for new candidates or hits require 
further validation such as in vivo investigations 
to confirm their actual therapeutic values when 
compared with clinical medicines.

Caution of using DPP-4 inhibitors
Previous sections have described the biological 
functions, assay methods, and known natural 
DPP-4 inhibitors, which are purported to treat 
DM. However, DPP-4 inhibition can possibly 
cause unexpected sequela owing to its entangle-
ment with immune response and endothelial 
functions. In fact, the roles of DPP-4 in tumori-
genesis and progression, respectively, have been 
reviewed recently.144,145 In lung cancer and 
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Table 4. Natural DPP-4 inhibitors from different origins.

Structure 
subclass

Compound name Source Testing 
method

Reference

Plant origin

Alkaloids Ephedrine Ephedra spp. Enzymatic Ojeda-Montes et al.129

Berberine Coptis chinensis Enzymatic Al-Masri et al.130

Diarylheptanoid Calebin A Curcuma longa Enzymatic Oliveira et al.131

Flavonoids Chrysin Passiflora caerulea In vitro Kalhotra et al.132

Kaempferol, Kaempferol 7-O-Α-L-
Rhamnoside, Vitexin, Lepidoside, Rutin

Smilax china L. Enzymatic Zhao et al.133

Aspalathin Aspalathus linearis In vivo Muller et al.134

Glycoside Linustatins A, Linustatins B, Linustatins C, 
Linustatins D, Linustatins E

Linum usitatissimum 
L.

Enzymatic Yang et al.135

Peptide Soybean hydrolysate Glycine max Ex vivo Lammi et al.108

Lupin hydrolysate Lupinus spp, Ex vivo Lammi et al.108

AP peptide, IPA Peptide Euphausia superba Enzymatic Ji et al.128

Phenolics Emodin Rheum palmatum 
Linn

In vivo Wang et al.136

Salvianolic Acid C Xiaokean formula Enzymatic Wu et al.137

(+)-Vitisin A Vitis thunbergii var. 
taiwaniana

Enzymatic Lin et al.138

(–)-Vitisin B  

Syringic Acid 4-O-Β-D-Glucopyranosyl-
(1→5)-Α-L-Rhamnopyranoside, Eight 
phenolic glycosides, Two phenolic acids

Magnolia officinalis Enzymatic Yan et al.139

Sterol Stigmasterol Fagonia cretica Enzymatic Saleem et al.140

Terpenoids 16-hydroxycleroda-3,13-dien-15,16-olide Polyalthia longifolia In vivo Huang et al.141

Quinovic Acid, Quinovic acid-3Β-O-Β-D-
glycopyranoside

Fagonia cretica Enzymatic Saleem et al.140

Quinovic acid-3Β-O-Β-D-glucopyranosyl-
(28→1)-Β-D-glucopyranosyl ester

 

Ginsenoside Rg, Timosaponin AI Xiaokean formula Enzymatic Wu et al.137

Two norsesquiterpenoids Magnolia officinalis Enzymatic Yan et al.139

Lupeol Hedera nepalensis Enzymatic Saleem et al.140

Xanthonoid Mangiferin Magnifera indica In vivo Suman et al.142

Animal origin

Peptide LPVPQ peptide, IPM peptide milk Enzymatic Nongonierma et al.126

 (Continued)

https://journals.sagepub.com/home/taj


S-R Lin, C-H Chang et al.

journals.sagepub.com/home/taj 9

pancreatic cancer, DPP-4 inhibitor can assuredly 
reduce cancer progression and promote the over-
all survival.146 However, in breast cancer, prostate 
cancer, and endometrial carcinoma, DPP-4 inhi-
bition would cause the opposite consequence 
which promotes cancer progression.67,147,148 The 
role of DPP-4 inhibition in cancer treatment is 
inconclusive, but it is certain that DPP-4 inhibi-
tion in tumorigenesis and tumor development in 
site-specific tumor should be considered.144,145 In 
addition to cancer development, opportunistic 
infection is another issue of DPP-4 inhibition. 
Anno et  al. reported a 69-year-old DM patient, 
who developed fever after taking vildagliptin for 1 
week owing to hypercytokinemia.149 It is obvious 
that numerous chemokines such as CXCL3, 
CXCL4, CXCL 5, and CXCL10 can also func-
tion as DPP-4 substrates.56 Chen et al. have found 
that DM patients with short-term DPP-4 inhibi-
tor treatment are at higher risk of herpes zoster 
infection as compared with non-DPP-4 treatment 
patients after surveying the Longitudinal Health 
Insurance Database 2000.150 The development of 
Hashimoto’s thyroiditis and celiac disease are 
inversely correlated with DPP4 levels (vide supra), 
suggesting that DPP-4 inhibition can promote 
disease progression. Inflammatory bowel disease 
(IBD), which is a general term for Crohn’s dis-
ease and ulcerative colitis, is caused by opportun-
istic infection or immune cell infiltration.151,152 A 

meta-analysis published by Radel et al. has indi-
cated that DPP-4 inhibition can increase the risk 
of Crohn’s disease.153 In conclusion, DPP-4 
inhibitors can be used to treat DM, whereas their 
complications with other immune disease or can-
cer should be seriously considered.

Perspectives and future research
The effect of virtual screening via computational 
biology or informatics further combined with in 
vitro enzymatic and cell assay, and in vivo animal 
tests offer a promising approach to discover can-
didates or hits for expediting the preclinical devel-
opment process (Figure 3). Nevertheless, poor or 
ill drug absorption, distribution, metabolism, 
excretion, and toxicity (ADME/Tox) properties 
make substantial contributions to drug attri-
tions,154 and little effort has been dedicated to 
profiling ADME/Tox properties of DDP-4 inhib-
itors. As such, it is necessary to predict ADME/
Tox parameters in the process of virtual screen-
ing, which should be carried by adopting schemes 
that can consider the unstructured nature of 
DDP-4, to minimize the late-stage failures.
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Figure 3. Effect of natural products in DPP-4 inhibition and the screening methods.

Structure 
subclass

Compound name Source Testing 
method

Reference

WSG peptide, FSD peptide Barbus sp. Enzymatic Sila et al.127

Microbial origin

Macrolide Grassypeptolide A marine In vitro Kwan et al.143

FSD, Phe-Ser-Asp; IPM, Ile-Pro-Met; LPVPQ, Lys-Pro-Val-Pro-Gln; WSG, Trp-Ser-Gly.

Table 4. (Continued)
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