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Abstract Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive

manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic

defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either

aposymbiotic females or females harboring a different symbiont strain. However, if the female

carries the same symbiont strain, then embryos develop properly, thereby imparting a relative

fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to

high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in

interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii)

causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii)

important impacts on arthropod speciation. This review serves as a gateway to experimental,

conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s

mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.

Introduction
From 1938 through the 1960s, an enigmatic, intraspecific incompatibility that caused embryonic

death was reported between geographically isolated strains of Culex pipiens mosquitoes

(Laven, 1951; Marshall, 1938), Aedes scutellaris mosquitoes (Smith-White and Woodhill, 1955),

and Nasonia vitripennis parasitoid wasps (Ryan and Saul, 1968). Crossing experiments in both Culex

and Nasonia surprisingly revealed that the incompatibility was caused by a maternally-inherited cyto-

plasmic factor (Laven, 1951; Ryan and Saul, 1968). This cytoplasmic incompatibility (CI) manifested

as embryonic death when males carried the factor, but it was rescued if the female was from the

same maternal lineage (Figure 1A). Intriguingly, Cu. pipiens (Laven, 1951) and N. vitripennis

(Ryan and Saul, 1968) that had this cytoplasmic factor were either compatible, unidirectionally

incompatible (Figure 1A,B), or bidirectionally incompatible (Figure 1C) with strains of different geo-

graphic origin. The underlying cause of these incompatibilities would remain a mystery for several

decades.

Motivated by the finding that Typhus is a Rickettsial disease (da Rocha-Lima, 1916), microbiolo-

gists Hertig and Wolbach conducted a survey of Rickettsia-like bacteria among numerous arthropod

orders in and around Boston, Massachusetts in 1924 (Hertig and Wolbach, 1924). The bacteria

were classified as Rickettsia-like based on size (often smaller than other bacteria), shape (cocciform

or rod), Gram staining (gram-negative), and a Giemsa nucleotide stain (to separate microscopy arti-

facts from cells with DNA). In the Cu. pipiens mosquito, they found tiny rod-like or coccoid, gram-

negative, Rickettsial bacteria residing within male and female reproductive cells (Hertig and
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Wolbach, 1924). The bacteria were absent in various other tissues including oesophageal divertic-

ula, gut tissues, malphighian tubes, fat-body, heart and pericardial cells, salivary glands, and acces-

sory reproductive organs (Hertig and Wolbach, 1924). Intriguingly, when Cu. pipiens with the

bacteria were reared in the lab, offspring also harbored them in their reproductive tissues as early

larva, suggesting that the bacteria were maternally inherited (Hertig and Wolbach, 1924). These

bacteria would later be named Wolbachia pipientis by Dr. Marshall Hertig: Wolbachia for Dr. Simeon

Burt Wolbach, Hertig’s PhD advisor, and pipientis for the mosquito it was discovered in Her-

tig, 1936. In this review, we will refer to the symbiont as Wolbachia since it currently remains a

genus of only one recognized species.

In 1971, Yen and Barr investigated the effects of CI on embryonic development and discovered

Rickettsia-like bacteria matching the description of Wolbachia in the eggs of symbiont-bearing Cu.

pipiens females (Yen and Barr, 1971). This finding led them to the breakthrough hypothesis that CI

is caused by these long-overlooked bacteria (Yen and Barr, 1971). They later tested this hypothesis

using crosses with antibiotic-treated and untreated Cu. pipiens mosquitoes and determined that CI

is a symbiont-derived phenotype caused by Wolbachia (Yen and Barr, 1973), thus substantiating

Wolbachia as the etiological agent of CI phenotypes. This initial characterization of Wolbachia and

CI in Cu. pipiens opened the floodgates, with many ensuing studies reporting cases of CI-inducing

Wolbachia in Diptera (Baton et al., 2013; Bian et al., 2013; Hoffmann et al., 1986; Riegler and

Stauffer, 2002), Hymenoptera (Betelman et al., 2017; Dittmer et al., 2016), Coleoptera

(Kajtoch and Kotásková, 2018), Hemiptera (Ju et al., 2017; Ramı́rez-Puebla et al., 2016), Orthop-

tera (Martı́nez-Rodrı́guez and Bella, 2018), Lepidoptera (Arai et al., 2019; Hornett et al., 2008),

Thysanoptera (Nguyen et al., 2017), Acari (Gotoh et al., 2007; Gotoh et al., 2003; Vala et al.,

2002), Isopoda (Cordaux et al., 2012; Sicard et al., 2014), and Arachnids (Curry et al., 2015).

Among these orders, Wolbachia are highly diverse and phylogenetically divided into 17 ‘super-

groups’ (denoted A-S, excluding G and R), and CI-inducing Wolbachia are so far restricted to super-

groups A and B (Lefoulon et al., 2020; Lo et al., 2007; Wang et al., 2016). However, despite the

considerable diversity between Wolbachia strains, the most studied models for CI are the Wolbachia

of Culex (wPip), Drosophila (wRi and wMel), Nasonia (wVitA and wVitB), and Laodelphax (wStr).

Aside from Wolbachia, the far less common (Weinert et al., 2015; Zchori-Fein and Perlman, 2004)

Figure 1. The three CI crossing relationships. (A) Unidirectional CI results in embryonic lethality when symbiont-containing males are crossed with

aposymbiotic females. Rescue of this embryonic lethality occurs if the female carries a compatible symbiont strain. (B) In some cases, unidirectional CI

can emerge when one strain can rescue another strain, but the other strain does not reciprocate the rescue. (C) Bidirectional CI occurs when

incompatible strains are present in a population. Rescue occurs if the female likewise harbors the same strain. Filled sex symbols indicate symbiotic

hosts. Different colors represent different symbiont strains. Skull symbols represent embryonic death.
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Bacteroidetes bacteria Cardinium were found to cause CI nearly three decades later (Hunter et al.,

2003; Yen and Barr, 1973). Additionally, unknown symbionts of Brontispa longissimi coconut bee-

tles and Lariophagus distinguendus parasitoid wasps cause CI, but they are not Wolbachia or Cardi-

nium (König et al., 2019; Takano et al., 2017). In addition, Gammaproteobacteria of the genus

Rickettsiella cause CI in Mermessus fradeorum spiders (Rosenwald et al., 2020). This review will

focus primarily on Wolbachia-induced CI, but other symbionts will be discussed when information is

available.

CI has attracted considerable, applied interest in the last decade from scientists, companies, and

governments because it is at forefront of efforts to reduce the spread of dengue, Zika, and other

arboviral infections (Caragata et al., 2016; Crawford et al., 2020; Ford et al., 2019;

Hoffmann et al., 2011; O’Connor et al., 2012; O’Neill, 2018; Rasgon, 2007; Rasgon, 2008;

Teixeira et al., 2008; WHO, 2016; Xi et al., 2005). Two CI-based vector control strategies are

deployed worldwide. First, the incompatible insect technique (IIT), also known as population sup-

pression, aims to reduce the population size of disease vectors through release of CI-inducing male

insects (Figure 2A; Ant et al., 2020; Caputo et al., 2020; Chambers et al., 2011; Crawford et al.,

2020; Fresno, 2018; Kyritsis et al., 2019; Laven, 1967; Mains et al., 2019; Mains et al., 2016;

O’Connor et al., 2012; Puggioli et al., 2016; Zheng et al., 2019a). Conversely, the population

replacement strategy (PRS) does not reduce population sizes, but instead it aims to convert a native

population that transmits arboviruses to humans with one that has reduced vectoral capacity

(Figure 2B; Caragata et al., 2016; Hoffmann et al., 2011; Moreira et al., 2009; O’Neill, 2018;

Tantowijoyo et al., 2020; Teixeira et al., 2008; van den Hurk et al., 2012). PRS uses two charac-

teristics of CI-Wolbachia: the ability to rapidly spread through populations using CI and the ability of

some strains to inhibit replication of arboviruses including dengue, Zika, chikungunya, and yellow

fever (Caragata et al., 2016; Moreira et al., 2009; Teixeira et al., 2008; van den Hurk et al.,

2012). When male and female mosquitoes bearing pathogen blocking Wolbachia are released to

sufficiently high frequencies, CI drives them to frequencies approaching fixation that significantly

alleviates the transmission of disease in the region. Both methods have been widely successful in

their respective approaches (Crawford et al., 2020; Fresno, 2018; O’Neill et al., 2018;

Tantowijoyo et al., 2020).

In addition to combatting arthropod-borne diseases, CI has attracted interest from evolutionary

biologists because it can cause reproductive isolation and thus be a contributor to speciation

(Figure 2C). The Biological Species Concept defines groups of individuals as different species if they

cannot interbreed (Dobzhansky, 1937; Mayr, 1963), and species emerge when reproductive isola-

tion between two populations prevents gene flow (Coyne, 2001). Bidirectional and unidirectional CI

can both reproductively isolate populations with different symbiont states, but to different degrees

(Brucker and Bordenstein, 2012). Since bidirectional CI restricts gene flow in both cross directions,

it can strongly reproductively isolate populations that harbor incompatible symbionts. This is indeed

the case between Nasonia parasitoid wasps that diverged between ~0.25 and 1 million years ago

(Bordenstein et al., 2001; Breeuwer and Werren, 1990). Alternatively, unidirectional CI restricts

gene flow in one direction and does not appear to contribute to speciation in some host-Wolbachia

symbioses such as in the D. yakuba clade (Cooper et al., 2017). However, North American popula-

tions of male symbiont-bearing D. recens cause unidirectional CI when mated with aposymbiotic D.

subquinaria (Jaenike et al., 2006; Shoemaker et al., 1999), reducing gene flow between popula-

tions. Intriguingly, Cardinium yields similar patterns of asymmetric unidirectional CI between lab

populations of Encarsia suzannae and its sister species E. gennaroi (Gebiola et al., 2017). Together,

these studies suggest a role for symbiont-induced CI in reproductive isolation and incipient

speciation.

In this review, we comprehensively synthesize the CI literature by discussing the rapid advances in

understanding CI’s genetic basis, biochemical properties associated with CI, CI-associated abnormal-

ities, CI strength variation, and host factors that correlate with CI expression. The reviewed works

provide a concrete foundation for new testable and robust models, hypotheses, and evidence. Thus,

we end with a description of the field’s models to explain the mechanistic underpinnings of CI and

place them into the framework of current literature. Under these models, we identify key predictions

and questions that motivate future areas of research to continue to build textbook knowledge on

one of the most widespread selfish adaptations of symbionts.

Shropshire et al. eLife 2020;9:e61989. DOI: https://doi.org/10.7554/eLife.61989 3 of 36

Review Article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.61989


Figure 2. CI is important to vector control and reproductive isolation between species. (A) The incompatible

insect technique is used to reduce population sizes (Crawford et al., 2020; Laven, 1967). Typically, two

aposymbiotic individuals will mate and produce viable offspring (left), but if males bearing CI-inducing symbionts

are released into the population, then they will cause unidirectional CI when they mate with aposymbiotic females

(right) or bidirectional CI when they mate with females harboring incompatible symbionts (not shown). This yields a

reduction in egg hatching and population size. (B) The population replacement strategy involves the release of

both males and females bearing CI-inducing and pathogen blocking symbionts (Hoffmann et al., 2011;

O’Neill, 2018). After a period of releases, CI will spread the symbiont to high frequencies where it can block the

Figure 2 continued on next page
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What is the genetic basis of CI?

Identifying the CI and rescue genes
Until the past decade, the genetic basis of CI remained elusive. The intangibility of the CI genes was

due in no small part to the inability to genetically engineer symbionts such as Wolbachia (Iturbe-

Ormaetxe et al., 2007; Thiem, 2014). Progress in CI genetics became possible with the genome

sequencing of the wMel Wolbachia of D. melanogaster in 2004 (Wu et al., 2004). wMel has a

streamlined genome with numerous mobile elements including phages (Wu et al., 2004). Notable

among these elements was Wolbachia’s phage WO, which was first identified in 1978 via transmis-

sion electron microcopy of viral-like particles in symbiont-bearing Cu. pipiens (Wright et al., 1978).

Prophage WO encodes a set of proteins termed the Eukaryotic Association Module that share

homology to eukaryotic proteins, likely due to lateral gene transfer from eukaryotes to the phage,

and they are predicted to interact with eukaryotic processes (Bordenstein and Bordenstein, 2016).

wMel’s genome is also enriched with ankyrin proteins that are involved in protein-protein interac-

tions in eukaryotes and are relatively rare in free living bacteria as compared to intracellular bacteria

and eukaryotes (Al-Khodor et al., 2010; Jernigan and Bordenstein, 2014). Conversely, genome

sequencing of the mutualistic wBm Wolbachia of Brugia malayia nematodes revealed it did not con-

tain phage WO nor an enrichment of ankyrins (Foster et al., 2005). These findings suggested a cor-

relation between reproductive parasitism and the presence of phage WO and/or ankyrin genes and

motivated hypotheses that phage WO may be involved in CI (Foster et al., 2005; Wu et al., 2004;

Yamada et al., 2011). Numerous additional genome sequencing projects would also be integral to

identifying candidate genes for CI and rescue, including wPip, wAu, wRi, wHa, and wRec

(Klasson et al., 2009; Klasson et al., 2008; Metcalf et al., 2014; Salzberg et al., 2009;

Sutton et al., 2014).

The first attempt to functionally dissect CI’s genetic basis generated a list of 12 gene candidates

in the wMel genome based on putative host interaction: nine ankyrin genes (WD0294, WD0385,

WD0498, WD0514, WD0550, WD0633, WD0636, WD0754, and WD0776), two virulence-related

genes (WD0579 and WD0580), and one phage-associated methylase gene (WD0594)

(Yamada et al., 2011). Since Wolbachia are not genetically tractable (Iturbe-Ormaetxe et al., 2007;

Thiem, 2014), D. melanogaster transgenic tools were used to test these gene candidates

(Duffy, 2002). However, transgenic expression of these genes in aposymbiotic male flies revealed

that none recapitulated CI (Yamada et al., 2011). Moreover, neither transcriptional nor genetic vari-

ation of Wolbachia’s ankyrin genes correlated with a strain’s ability to induce CI (Duron et al.,

2007b; Papafotiou et al., 2011).

Additional ‘omic studies would pave the way for identification of new gene candidates. First,

mass spectrometry and SDS-page analyses of spermatheca (the female sperm storage organ)

extracts from symbiont-bearing Cu. pipiens females revealed the prophage WO protein WPIP0282

(Beckmann and Fallon, 2013), thus elevating a new candidate for CI and/or rescue and providing

additional support to hypotheses that phage WO genes may contribute to CI. Second, genomic

comparisons of the wMel genome against the genome of the non-parasitic wAu strain of D. simulans

revealed nine genes absent in the non-parasitic strain that were present in wMel (Sutton et al.,

2014). These candidates included numerous genes from Wolbachia’s prophage WO including

WD0631 that is a wMel homolog of wPip’s WPIP0282, WD0632 which is adjacent to WD0631, and a

set of transcriptional regulators (Sutton et al., 2014). Thus, evidence continued to build around

phage WO genes as CI factors. Finally, sequencing of the wRec genome revealed a highly reduced

prophage WO with approximately one-quarter the number of genes in a close relative

(Metcalf et al., 2014). These genes contained several previously described candidates including the

wRec homolog of WPIP0282, four transcriptional regulators also absent in wAu, and a Wolbachia

Figure 2 continued

replication of human diseases. (C) CI-inducing symbionts can cause reproductive isolation through unidirectional

or bidirectional CI when different individuals, populations, or species have different incompatible symbiont states

(Bordenstein et al., 2001; Breeuwer and Werren, 1990; Gebiola et al., 2017; Jaenike et al., 2006). This

reproductive barrier reduces gene flow between hosts with different symbiont states, allowing for their divergence.
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transcriptional regulator gene wtrM linked to regulation of host meiosis in Cu. molestus

(Beckmann and Fallon, 2013; Pinto et al., 2013; Sutton et al., 2014).

The reduced wRec genome would later form the basis of an unbiased, comparative ‘omic study

assessing the genomes of CI-inducing Wolbachia, a genome of a non-parasitic strain and a transcrip-

tome and proteome of Wolbachia-carrying ovaries (LePage et al., 2017). This analysis revealed only

two phage WO genes in the Eukaryotic Association Module, WD0631 and the adjacent WD0632, as

CI candidate genes in the wMel strain of D. melanogaster (LePage et al., 2017). These genes would

also later be determined to be absent in the parthenogenesis-inducing wTpre strain of Trichog-

ramma wasps (Lindsey et al., 2018). WD0631 and WD0632 were named cytoplasmic incompatibility

factors A and B (cifA and cifB), respectively (LePage et al., 2017). The gene is referred to in lower-

case and italics (cifA and cifB), the protein is referred to in uppercase with no italics (CifA and CifB),

and the strain that the specific cif gene comes from can be defined with the strain name as a sub-

script (cifwMel or cifwPip). This gene nomenclature is consistent with guidelines from the American

Society for Microbiology (’The Journal of Bacteriology, 2018’).

With independent ‘omic identification of cifA and cifB as candidates for CI (Beckmann and Fal-

lon, 2013; LePage et al., 2017; Sutton et al., 2014), two studies simultaneously explored the rela-

tionship between cifwMel (LePage et al., 2017) and cifwPip (Beckmann et al., 2017) genes and CI

using transgenic expression systems in D. melanogaster. Singly expressing cifAwMel or cifBwMel in

aposymbiotic D. melanogaster males failed to induce CI, but dual expression of the genes caused

rescuable CI-like hatch rates and cytological embryonic defects (LePage et al., 2017), suggesting

that the cifwMel genes cause CI only when expressed together. Similar results were reported when

cifAwPip and cifBwPip were dually expressed in aposymbiotic D. melanogaster males, but rescue was

not achieved (Beckmann et al., 2017), indicating that some biological or technical limitation of the

system may have inhibited the ability to rescue transgenic cifwPip CI in a heterologous expression sys-

tem. Later, similar transgenic experiments revealed that cifAwMel expression in aposymbiotic D. mel-

anogaster females can rescue CI (Shropshire et al., 2018), motivating a Two-by-One genetic model

of CI wherein cifA and cifB cause CI unless cifA is expressed in the ovaries or embryo to rescue it

(Figure 3A). This model was further supported through transgenic expression of cifAwMel and cifBw-

Mel in aposymbiotic males to induce transgenic CI and through crossing them to cifAwMel-expressing

aposymbiotic females to show that transgenic CI can be rescued at levels comparable to symbiont-

bearing females (Shropshire and Bordenstein, 2019).

Notably, while the Two-by-One genetic model is most consistent with transgenic expression stud-

ies in D. melanogaster that achieve rescuable CI (Beckmann et al., 2017; Chen et al., 2019;

LePage et al., 2017; Shropshire et al., 2018; Shropshire and Bordenstein, 2019), transgenic

expression of cifBwMel and cifBwPip in yeast can cause temperature sensitive lethality that can be

inhibited by co-expression with cognate cifA (Beckmann et al., 2017). Although since yeast do not

have sperm or eggs, which are the targets of CI, the relevance of phenotypes observed in a heterol-

ogous yeast expression system need to be replicated in insect models. While a divergent cifB gene

variant from wPip can weakly reduce embryonic hatching when crossed to aposymbiotic females

(Chen et al., 2019), it remains unknown if this lethality can be rescued. These data lend support to

the possibility that some strains may employ a model of CI wherein cifB is the CI-causing factor and

cifA is only the rescue factor. However, interpretation of these results is significantly complicated by

the absence of rescue data for any cifB-associated reduction in embryonic hatching in insects. More-

over, mutagenesis analyses, described in further detail below, indicate that changing conserved resi-

dues across CifA can crucially prevent CI, lending additional support for CifA’s important role as a

CI-inducing factor (Shropshire et al., 2020). More functional genetic analyses will be necessary to

provide evidence for an alternative to the Two-by-One genetic model of CI. Hereafter, we will dis-

cuss relevant phenomena in the context of a Two-by-One genetic model.

Phylogenetics of the cifA and cifB genes that cause and rescue CI
Initial comparative sequence analysis of Cif proteins revealed that CifA and CifB have concordant

phylogenies with considerable divergence across several distinct phylogenetic clades (LePage et al.,

2017). Since then, the availability of additional genomes and Cif sequences have exposed at least

five clades referred to as Types 1–5 (Figure 3B; Bing et al., 2020b; Lindsey et al., 2018;

Martinez et al., 2020), and highly divergent Cif-like homologs in Orientia and Rickettsia bacteria

(Gillespie et al., 2018). It is likely that continued genomic sequencing will reveal additional Cif
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phylogenetic Types. The wMel Cif proteins belong to the Type 1 clade, and wPip has both Type 1

and Type 4 Cif proteins. The phylogenetic classification of a cif gene can be indicated with a T#

subscript in brackets to the right of the gene name (i.e. cifwMel[T1] or cifwPip[T4]).

While the cif genes are associated within the Eukaryotic Association Module of prophage WO or

WO-like islands (Bordenstein and Bordenstein, 2016), Cif phylogeny is not concordant with phage

WO or Wolbachia phylogeny, potentially reflecting the typically high rates of inter- and intragenic

recombination in phage genomes (Bordenstein and Wernegreen, 2004; LePage et al., 2017).

Some cif genes are flanked by ISWpi1 transposons which may assist horizontal transfer between

WO-associated regions or Wolbachia strains, but it remains unclear if they alone are responsible for

divergence between the phylogeny of the cif genes, Wolbachia, and phage WO (Cooper et al.,

2019; Madhav et al., 2020). To date, only cif genes belonging to the Type 1 and 4 clades have

been experimentally evaluated and confirmed to cause and rescue CI (Beckmann et al., 2017;

Chen et al., 2019; LePage et al., 2017; Shropshire et al., 2018; Shropshire and Bordenstein,

2019), but unpublished data suggest cif genes in the Type 2 clade can cause and rescue CI (JDS and

SRB, unpublished data). These studies indicate that despite considerable sequence divergence, pro-

teins across the phylogenetic landscape of the Cifs remain capable of causing and rescuing CI.

Though, the phenotypic output of the Type 3, Type 5, and Orientia/Rickettsia cif-like genes have not

been experimentally assessed, and it remains unknown if they can contribute to CI phenotypes.

However, the CI-inducing strains wNo of D. simulans and wStri of La. striatellus only have Type 3 or

Type 5 genes, respectively (Bing et al., 2020b; LePage et al., 2017), suggesting these genes may

cause CI and rescue. Since CI has not been reported in Orientia or Rickettsia species, it is less likely

these distant cif-like homologs contribute to CI (Gillespie et al., 2018). Alternatively, other yet iden-

tified gene sets may be CI-capable in CI-causing symbionts. Indeed, genomic and transcriptomic

sequencing of CI-inducing Cardinium reveals that they do not carry obvious homologs to the CI

Figure 3. Two-by-One genetic model of cif-induced CI and Cif phylogeny. (A) The Two-by-One genetic model of

CI surmises that both cifA and cifB must be expressed in males to cause CI, and cifA must be expressed in

females to rescue CI (Shropshire and Bordenstein, 2019). (B) CifA and CifB codiverge and are classified into at

least five different phylogenetic Types (1-5) (Bing et al., 2020b; LePage et al., 2017; Lindsey et al., 2018;

Martinez et al., 2020). To date, only Type 1 cifs from wMel and wPip, and Type 4 cifs from wPip, have been

experimentally confirmed to cause and rescue CI (Beckmann et al., 2017; Chen et al., 2019; LePage et al.,

2017; Shropshire et al., 2018; Shropshire and Bordenstein, 2019). Moreover, unpublished results from JDS and

SRB suggest that Type 2 cifs from wRi are CI and rescue-capable (denoted with an asterisk).
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genes (Mann et al., 2017). More functional genetic studies will be necessary to identify and assess

the landscape of cif-like genes and to identify alternative CI genes.

Relationships between cif sequence diversity and CI phenotypes
Theory predicts that selection should favor the maintenance of rescue, but not CI, when Wolbachia

are at equilibrium in the population since CI would no longer increase Wolbachia’s prevalence in the

population (Turelli, 1994). In this context, and under the Two-by-One genetic model of CI in which

cifA is involved in both CI and rescue while cifB is involved in CI, putative loss-of-function mutations

in CI will accumulate preferentially in cifB, though not universally, relative to cifA. Consistent with

this hypothesis, there are approximately twice as many putative loss-of-function mutations in cifB rel-

ative to cifA (Martinez et al., 2020), suggesting that CI is ablated more frequently than rescue. For

example, the wPanMK and wPanCI Wolbachia strains of D. pandora cause male and CI respectively,

but the male-killing strain has an early stop codon in CifB that putatively inhibits function and may

allow for the phenotypic switch from CI to male (Asselin et al., 2018). Additionally, the wMau Wol-

bachia of D. mauritiana encodes Type 3 Cif proteins (LePage et al., 2017; Meany et al., 2019) and

does not cause CI, but it can rescue CI caused by the closely related wNo of D. simulans

(Bourtzis et al., 1998; Rousset and Solignac, 1995; Zabalou et al., 2008). CifAwMau[T3] sequence is

identical to the CI and rescue-capable wNo Wolbachia strain, but CifBwMau[T3] has a frameshift that

introduces over ten stop codons that in turn associates with the loss of CI (Meany et al., 2019).

However, it is important to note that two CI-capable Wolbachia, wYak of D. yakuba and wRec of D.

recens (Cooper et al., 2017; Shoemaker et al., 1999), have putative loss-of-function mutations in

the form of truncations in all of their cifB genes (Martinez et al., 2020). These results suggest that

while the homologs appear pseudogene-like, they may be functional. Indeed, dual expression of

cifA;BwRec[T1] transgenes in aposymbiotic males yields a rescuable hatch rate reduction (JDS and

SRB, unpublished data). In sum, loss-of-function mutations are common in cifB, resulting in ablation

of CI while maintaining rescue. Moreover, evolution-guided mutagenesis assays across the Cif pro-

teins reveal that conserved residues in the CifA C-terminal domain of unknown function are crucial

for CI (Shropshire et al., 2020). Thus, it is plausible that seemingly innocuous amino acid changes

within this CifA region may ablate CI and yet maintain rescue. Higher resolution comparative geno-

mic analyses coupled with phenotypic data will be necessary to evaluate this hypothesis. More work

will also be necessary to functionally assess the impacts of putative loss-of-function mutations on CI

and rescue capabilities.

While the above examples clearly highlight a relationship between cif sequence variation and loss

of CI, there are other strains that are more difficult to explain. For example, wSuz of D. suzukii enco-

des both Type 1 and Type 2 cif genes that are highly similar to the strong CI-inducing strain of wRi,

but wSuz does not cause CI (Cattel et al., 2018; Conner et al., 2017; Hamm et al., 2014;

Lindsey et al., 2018). While CifAwSuz[T2] has been disrupted by the insertion of a transposase, the

CifwSuz[T1] gene pair remains intact and has only 2–4 amino acid substitutions relative to CifwRi[T1]
(Conner et al., 2017; Lindsey et al., 2018). In theory, the Type 1 gene set alone should be CI-capa-

ble (Lindsey et al., 2018); though CifwSuz[T1] mutations may be in key residues for CI expression.

Notably, wRi does not cause CI when transinfected into D. suzukii (Cattel et al., 2018). Thus, the

CifwSuz[T1] proteins may be able to cause CI, but their effects are inhibited by suppressors encoded

in the D. suzukii genome. In a separate example, the triple-strain infection of wAlbA, wAlbB, and

wMel in A. albopictus can cause CI but cannot self-rescue (Ant and Sinkins, 2018). Since each of the

individual Wolbachia strains in this triple-strain infection can cause CI and are self-compatible in A.

aegypti (Ant and Sinkins, 2018), neither genetic variation in the cif genes alone nor host suppres-

sors can explain the emergence of self-incompatibility. However, it is plausible that some Wolbachia

may inhibit the reproductive manipulations of other co-infecting strains, but this requires further test-

ing. In summary, the relationships between Wolbachia strains and their hosts are likely to have an

impact on CI. Additional work is necessary to answer these persistent questions: how does superin-

fection impact CI expression, how does the host act to suppress CI phenotypes, and what are the

evolutionary dynamics that govern these interactions?
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The genetic basis of bidirectional CI remains unknown
There is strong evidence for the genetic basis of unidirectional CI between Wolbachia-bearing and

aposymbiotic arthropods (Figure 1A; Beckmann et al., 2017; Chen et al., 2019; LePage et al.,

2017; Shropshire et al., 2018; Shropshire and Bordenstein, 2019). However, the genetic basis of

bidirectional CI between arthropods with different symbiont strains remains poorly understood

(Figure 1B,C). Sequence divergence in CI-associated factors has long been thought to be a contrib-

uting factor to these incompatibilities, namely that divergence in both CI-causing and rescue-causing

genes would be required for bidirectional CI to emerge (Charlat et al., 2001). Indeed, phylogenetic

analyses of cif genes reveal that strains carrying similar alleles tend to be compatible, strains with

more distantly related cif genes are not, and a single Wolbachia strain can have multiple unique cif

gene pairs (Bonneau et al., 2019; Bonneau et al., 2018a; LePage et al., 2017). For instance, when

wMel is transinfected into a D. simulans background, it is unidirectionally incompatible with the

native wRi strain, wherein wRi can rescue wMel-induced CI but the reciprocal cross is incompatible

(Poinsot et al., 1998). Intriguingly, wRi carries Type 1 cif genes closely related to wMel’s and a diver-

gent Type 2 gene pair. Thus, it is plausible that wRi can rescue wMel’s CI because of CifAwRi[T1],

whereas wMel cannot rescue wRi’s CI because it lacks a rescue gene for the Type 2 gene pair

(LePage et al., 2017). Additionally, population genetic analyses of cif genes in wPip reveal that

there are numerous unique strains, each strain carries multiple closely-related cif variants that belong

to Type 1 and Type 4 cif clades, and a single genetic variant of CifBwPip[T1] correlates with the inabil-

ity of one strain of wPip to rescue CI caused by a divergent wPip strain (Atyame et al., 2011b;

Bonneau et al., 2019; Bonneau et al., 2018a). However, while these data suggest that cif genetic

variation and/or copy number contributes to strain incompatibility, it remains possible that the con-

siderable host genotypic variation between these incompatible populations contributes to these

relationships in a way that also correlates with cif genotypic diversity (Atyame et al., 2011a). More

reductionist functional studies that control for variation in host genotype will be necessary to confirm

that cif sequence variation alone can explain CI relationships.

Historically, CI and rescue were thought to be caused by different genes, and that divergence in

both genes would be required for bidirectional CI to evolve relative to an ancestral strain

(Charlat et al., 2001). Thus, this model for bidirectional CI requires two steps: one mutation for CI

and one for rescue. A major limitation of this model is that the intermediate state, wherein only one

of the two phenotypes have shifted, is self-incompatible and represents a ‘maladaptive valley’

unlikely to persist as a rare variant. Given the abundance of bidirectionally incompatible strains

across the arthropod Wolbachia (Atyame et al., 2011b; Bordenstein and Werren, 2007;

Branca et al., 2009; O’Neill and Karr, 1990; Sicard et al., 2014), and the rarity of so-called ‘sui-

cidal’ self-incompatible strains (Zabalou et al., 2008), crossing this maladaptive valley may be an

unlikely evolutionary scenario. In contrast, since CifA is involved in both CI and rescue, it becomes

possible for a single mutation that affects CI to also impact rescue. Thus, a single mutation in CifA

may shift both CI and rescue phenotypes, yield bidirectional CI relative to an ancestor, and maintain

self-compatibility (Shropshire et al., 2018). Indeed, mutagenesis of highly conserved amino acids

across CifA reveal that sites within CifA’s N-terminal region are crucially important for the expression

of both CI and rescue, suggesting that residues in this single region are coopted for both pheno-

types (Shropshire et al., 2020). Notably while this one-step model of bidirectional CI avoids the

maladaptive valley, it may only spread if transferred into a new aposymbiotic (sub)population since

emergence of a new incompatibility type within a symbiont-bearing population would be immedi-

ately incompatible with the more common symbiont in the population. More research is needed to

fully understand the genetic basis of bidirectional CI and its evolution. For instance, theoretical

modeling will be necessary to evaluate additional routes of emergence as it relates to Cif sequence

variation, functional genetic assays can be used to unravel the correlation between cif sequence vari-

ation and (in)compatibility relationships, and population genetic surveys coupled with population

dynamics modeling would reveal when a novel variant would be likely to persist in a population.
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What is the mechanistic basis of Cif-induced CI?

CifA molecular function
Structural homology-based analyses suggest that Type 1 CifA have three putative domains: a cata-

lase-related (catalase-rel) domain involved in the degradation of reactive oxygen species, a domain

of unknown function (DUF) 3243 with homology to a Puf-family RNA-binding domain (RBD), and a

sterile-like transcriptional regulator (STE) (Figure 4A; Lindsey et al., 2018). While the catalase-rel

domain is unique to the CifA[T1], the STE is maintained in Type 1–4 genes (Lindsey et al., 2018), and

the Puf-family RBD exists in Type 1–5 genes (Bing et al., 2020b; Martinez et al., 2020). Importantly,

these annotations are of low predictive value (20–30% probability) and may not withstand experi-

mental testing (Lindsey et al., 2018). On the other hand, sliding window analyses of selection for

CifA[T1] suggest that while the full protein is under purifying selection, the catalase-rel domain and

the unannotated N-terminal region are under the strongest selection (Shropshire et al., 2018).

Indeed, CifA cannot contribute to transgenic CI or rescue when conserved amino acids are mutated

within the unannotated N-terminal region or in the putative catalase-rel domain of CifAwMel[T1]

(Shropshire et al., 2020). Conversely, when sites are mutated in CifA’s DUF domain, it maintains the

ability to contribute to rescue, but loses CI capability (Shropshire et al., 2020). Thus, CifA’s N-termi-

nal region is crucially important for both CI and rescue, whereas sites within the DUF domain are

only crucial for CI (Figure 4A). More work will be necessary to determine how and why these muta-

tions impact these phenotypes, but the annotations provided above afford a set of testable hypothe-

ses and questions. For instance, does CifA interact with reactive oxygen species both in the context

of CI and rescue, and/or does RNA-binding occur in the context of CI? Biochemical assays testing

for these functions will further elucidate how CifA contributes to CI and rescue phenotypes.

Additionally, how CifA is involved in both CI and rescue remains largely a mystery. The simplest

explanation is that CifA maintains the same function in both CI and rescue. Under this framework,

CifA would act on a pathway that can be modified during spermatogenesis and oogenesis to pro-

duce opposite affects (Shropshire et al., 2018). If CifA were to drive such a function, then CifB’s

role in CI would seemingly be auxiliary and perhaps only necessary for localization of CifA to particu-

lar targets or, since CifB acts as a deubiquitinase, to protect CifA from degradation by ubiquitin

pathways (Beckmann et al., 2017). Alternatively, CifA may be a multi-functional protein that

employs one set of functions to cause CI and another to cause rescue (Shropshire et al., 2018). For

Figure 4. Biochemical characterization of Cif proteins. (A) Annotated domains in the CifA and CifB proteins and the relative importance of conserved

residues in each domain for CI (black circles), rescue (gray circles) or neither phenotype (white circles) as determined by transgenic expression of

mutated proteins in aposymbiotic D. melanogaster (Beckmann et al., 2017; Shropshire et al., 2020). (B) CifB[T1] can cleave ubiquitin chains via its Ulp1

deubiquitinase domain in vitro (Beckmann et al., 2017). (C) CifB[T4] nuclease domains can cause DNA breaks in vitro (Chen et al., 2019). (D) CifA[T1]

and CifB[T1] bind each other in vitro (Beckmann et al., 2017). Domain architecture is based on homology-based analyses and is of low predictive value

(20–30% probability) for CifA (Lindsey et al., 2018), and CifB[T1] PDDEXK nuclease domains lack the canonical PD-(D/E)XK motif (Beckmann et al.,

2017), but remain structurally homologous to other PDDEXK nucleases (Lindsey et al., 2018).
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instance, if CifA targets sex-specific host pathways, CifA can only affect its host in a particular way if

that target is available. Additionally, CifA may be modified in some manner that differs between the

testes and the ovaries, unlocking unique biochemical functions by posttranslational modification,

localization differences, or the expression of different protein conformational isoforms

(Shropshire et al., 2018). In summary, little is known about CifA’s functional role in CI and rescue,

and considerable work is necessary not only to identify its enzymatic capabilities, but also to further

elucidate how it can act both to cause and prevent CI.

CifB molecular function
CifB[T1] from both wMel and wPip encode a single putative ubiquitin-like protease (Ulp1) domain

(Beckmann et al., 2017; LePage et al., 2017; Lindsey et al., 2018). The Ulp1 domain was later

expressed separate from the rest of the protein in E. coli and purified for downstream in vitro ubiqui-

tin cleavage assays (Beckmann et al., 2017). When exposed to a variety of ubiquitin chains, it was

revealed that the Ulp1 cleaves K6-, K11-, K27-, K29-, K33-, K48-, and K63-linked ubiquitin in vitro,

but with a preference for K63 chains (Figure 4B; Beckmann et al., 2017). K63 chains are associated

with NF-kB signaling which has diverse functions including innate immunity, DNA transcription, auto-

phagocytosis (Tan et al., 2008; Wertz and Dixit, 2010), and proliferation of cell nuclear antigen

(PCNA) (Ripley et al., 2020) that has previously been shown to act abnormally in CI-affected

embryos (Landmann et al., 2009). A single amino acid mutation in the catalytic site of the Ulp1 pre-

vents the breakdown of ubiquitin chains in vitro (Beckmann et al., 2017). Expressing the Ulp1 cata-

lytic mutant for CifBwPip[T1] and CifBwMel[T1] in male D. melanogaster alongside CifA did not induce

CI, suggesting that deubiquitilase activity is important for CI barring the occurrence of any potential

protein structural changes in the mutants (Figure 4A; Beckmann et al., 2017; Shropshire et al.,

2020). However, some caution is warranted as deubiquitinase assays have not been conducted using

the full-length protein, and it is unknown if this activity is maintained in vivo. Moreover, it remains

unknown what CifB deubiquitinates, if anything, inside reproductive tissue cells and how this deubi-

quitination contributes to CI. It is also interesting that nuclear localization of the male-killing protein

Spaid in the endosymbiont Spiroplasma poulsonii is impacted by a domain annotated as a deubiqui-

tinase, suggesting that host ubiquitin regulation or localization to host nuclei is important for repro-

ductive manipulation (Harumoto and Lemaitre, 2018). Future biochemical assays will help answer

these persistent questions.

While CifB’s Ulp1 is seemingly important for CI, only CifB[T1] have this domain. Moreover, addi-

tional mutagenesis assays reveal that other conserved sites across the CifB protein similarly ablate CI

function (Figure 4A; Shropshire et al., 2020), strongly suggesting other regions of the protein are

likewise important for CifB function. For instance, all CifB proteins (Type 1–5) are also annotated

with a dimer of PD-(D/E)XK (hereafter PDDEXK) nuclease domains (Bing et al., 2020b;

Lindsey et al., 2018; Martinez et al., 2020). Indeed, in vitro nuclease assays with CifBwPip[T4] confirm

that they can nick both double- and single-stranded DNA (Figure 4C; Chen et al., 2019). Moreover,

mutating PDDEXK catalytic sites in CifBwPip[T4] prevents nuclease activity in vitro and CI-inducibility

when expressed in D. melanogaster (Chen et al., 2019). Unlike the other phylogenetic Types,

CifB[T1] proteins do not have the canonical PDDEXK catalytic sites, thus lending doubt to the impor-

tance of these domains as nucleases in CifB[T1] (Beckmann et al., 2017). However, these domains

remain structurally homologous to other PDDEXK domains (Lindsey et al., 2018), and many func-

tional PDDEXK-like domains lack the canonical PD-(D/E)XK catalytic motifs, opting instead for alter-

native catalytic residues and structural folds. PDDEXK-like domains without catalytic sites are still

involved in other DNA-associated processes (Knizewski et al., 2007). Mutating conserved amino

acid residues in either of the PDDEXK domains of CifBwMel[T1] inhibits its ability to contribute to CI

(Shropshire et al., 2020). Additionally, despite wPip containing both Type 1 and 4 genes, there are

no notable differences in cytological embryonic defects caused when both genes are expressed as

compared to other strains that only have CifB[T1], suggesting that these genes yield similar cytologi-

cal outcomes (Bonneau et al., 2018b). Biochemical assays will be necessary to evaluate the nuclease

activity of a diverse array of CifB proteins including CifB[T1] because the conserved areas in and

around the PDDEXK domains across all Cif Types likely persist because of a common function that

underpins CifB’s involvement in CI.
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Cif interacting partners
A list of putative Cif protein-binding partners have recently been reported. While CifA[TI] and CifB[T1]

bind in vitro (Figure 4D; Beckmann et al., 2017), it does, however, remain unknown if CifA binds

CifB in vivo in the testes to cause CI or if maternal CifA binds to paternal CifB in the embryo to cause

rescue (Beckmann et al., 2019a; Beckmann et al., 2019b; Shropshire et al., 2019). More work on

the localization, co-localization, and binding profiles of these proteins will elucidate this question.

Additionally, Cifs appear to bind to a suite of host proteins that differ based on if CifA and CifB are

expressed alone or together. Sixty-seven host proteins were identified as Cif binding partners under

co-expression of CifA and CifB, whereas 45 proteins were identified with CifB expression alone in

pools of male and female D. melanogaster (Beckmann et al., 2019c). Karyopherin-a (Kap-a) is nota-

ble among these proteins. It bound to singly expressing CifB extracts, and its overexpression in apo-

symbiotic females yielded partial rescue (~20% hatch rate improvement) when crossed to transgenic

CI males (Beckmann et al., 2019c). Kap-a is a nuclear import receptor and a regulator of p53 which

has roles in the protamine-histone exchange process (Beckmann et al., 2019c; Emelyanov et al.,

2014). Intriguingly, delayed H3 histone deposition is a hallmark of CI during early embryogenesis

(Landmann et al., 2009), suggesting a relationship between CifB, Kap-a, p53 and histone-associ-

ated abnormalities in CI. However, it is important to emphasize that Kap-a was only pulled down

when CifB was singly expressed (Beckmann et al., 2019c), suggesting that while Kap-a overexpres-

sion may influence rescue-efficiency, it is unclear how it would be part of the rescue mechanism since

CifB is not necessary for rescue to occur. More work is essential to determine if CifB’s binding to

Kap-a contributes to CI and how Cif binding to other host proteins relates to CI and rescue

phenotypes.

What is the cytological basis of CI?
Decades of research have characterized an in-depth understanding of CI-associated cytological

abnormalities. These studies broadly define alterations during spermatogenesis (Figure 5A) and

embryogenesis (Figure 5B), suggesting that CI is associated with a sperm modification prior to fertil-

ization that results in embryonic defects and death. Importantly, the causes of the reported sperm

and embryonic abnormalities remain unknown and, in most studies, it is unclear if these observations

are directly related to the Cif proteins or are a byproduct of Wolbachia symbionts in the testes.

However, these findings provide insight into the ways in which Wolbachia and CI influence host

reproduction and fertility. Below, we review the cytological changes that occur in spermatogenesis

and embryogenesis during CI and rescue, and we highlight areas where future research is crucially

needed with reductionist assays to disentangle effects of Wolbachia symbiosis and CI.

CI-associated abnormalities prior to fertilization
Spermatogenesis is a highly regulated process. It begins with cells of the germline stem cell niche

(GSCN) replicating into spermatogonia that subsequently undergo mitosis to yield a spermatocyst

with 16 spermatocytes (Fuller, 1993; Hackstein, 1987; Lindsley, 1980). Each spermatocyte in the

cyst then undergoes two rounds of meiosis to form four spermatids, for a total of 64 spermatids in

each cyst. The spermatids then undergo elongation where the sperm tail forms, and histones are

replaced with protamines for tight packaging of DNA in the nucleus within the sperm head

(Rathke et al., 2014). In the final stages of sperm maturation, spermatids undergo individualization

to remove excess cytoplasm before becoming mature sperm to enter the seminal vesicle for storage

before mating. Impacts of Wolbachia on spermatogenesis can result in downstream sperm defects

that may be connected to CI (Figure 5A). For example, symbiont-bearing D. simulans flies and

Ephestia moths produced fewer sperm, and stronger CI was associated with more sperm transfer

during copulation in D. simulans (Awrahman et al., 2014; Lewis et al., 2011; Snook et al., 2000).

When D. simulans females mated with Wolbachia-bearing and aposymbiotic males, the sperm of

aposymbiotic males were more likely to fertilize eggs (Champion de Crespigny and Wedell, 2006),

suggesting that Wolbachia-modified sperm are less competitive. Wolbachia-affected sperm cysts

exhibit abnormal morphology with some sperm fused together and other sperm exhibiting ran-

domly-oriented, axoneme-mitochondrial complexes that are responsible for sperm motility

(Riparbelli et al., 2007), perhaps explaining fertility defects and variation in sperm competition.

However, key questions remain. Are cif gene products responsible for the aforementioned sperm
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abnormalities? If these defects are not caused by the cif genes, and are instead a byproduct of other

Wolbachia-host associations, what is their significance, if any, to reproductive parasitism? In sum-

mary, a deeper investigation of these defects as they relate to CI products is needed to confirm their

link to CI.

Interestingly, Wolbachia are not symmetrically distributed in testes, with only some spermatocysts

harboring symbionts in the strong CI-inducing wRi strain of D. simulans (Clark et al., 2003). Indeed,

wRi is almost exclusively localized to the GSCN, and some GSCN remain aposymbiotic, suggesting

that the Cif proteins must either act early in spermatogenesis or are diffusible factors that can stably

travel into later stages of spermatogenesis (Clark et al., 2003; Clark et al., 2002; Riparbelli et al.,

2007). Wolbachia are stripped during the individuation process and moved into waste bags where

they are presumably degraded (Riparbelli et al., 2007). Not only does this suggest that Wolbachia

create a diffusible factor that interacts with sperm or spermatogonia to cause CI, but it also helps to

explain why paternal Wolbachia transfer has not been observed (Yeap et al., 2016) with rare excep-

tions such as in hybrid Nasonia wasps and in transinfected A. aegypti (Chafee et al., 2011;

Ross et al., 2020a). Future work investigating the localization of CifA and CifB will determine when

Figure 5. CI-associated defects occur pre- and post-fertilization. (A) In males harboring Wolbachia, there are several types of sperm abnormalities when

compared to their aposymbiotic counterparts. (B) When fertilized with sperm derived from Wolbachia-carrying males, embryonic nuclear defects result

in the form of delayed paternal nuclear envelope breakdown, abnormal histone deposition and other early mitotic events. These defects then cause

embryonic phenotypes observed in CI including chromatin bridging and regional mitotic failures.
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and where the Cif proteins act to cause CI and whether they are transferred to the embryo for the

potential to directly cause defects during embryogenesis.

CI-defining abnormalities after fertilization
Abnormalities that define the post-fertilization events underpinning CI are observed during embryo-

genesis (Figure 5B). In chronological order, CI-affected embryos experience abnormal maternal

H3.3 histone deposition on the male pronucleus, delayed activation of the DNA polymerase cofac-

tors PCNA and cell cycle regulator Cdk1 resulting in incomplete DNA replication, delayed nuclear

envelope breakdown prior to the first mitosis, and a delay in the first mitotic event

(Landmann et al., 2009; Tram and Sullivan, 2002). These defects often culminate in a chromatin

bridging phenotype during the first mitosis, shredding the paternal nuclei and leading to embryonic

arrest (Breeuwer and Werren, 1990; Callaini et al., 1996; Lassy and Karr, 1996; Reed and Wer-

ren, 1995; Ryan and Saul, 1968; Tram et al., 2006). Notably, it remains unknown what the most

proximal event is during CI. It is plausible that abnormal histone deposition is the first CI-causing

event during embryogenesis that leads to a cascade of effects culminating in the other embryonic

abnormalities, but there remain open questions. For instance, how do the Cif proteins interact with

the host to cause abnormal histone deposition? Are the Cif proteins even transferred with the sperm

so that they can cause these defects directly, or are these defects caused by an initial Cif interaction

occurring during spermatogenesis? Finally, if Cifs do directly cause abnormal histone deposition,

how are these affects rescued by the presence of CifA expressed in the embryo? A combination of

cytological, transgenic, and biochemical assays may be necessary to evaluate these questions.

Defects in the first mitotic division are traditionally viewed as a key cytological outcome of CI, but

abnormalities later in embryogenesis are also common and increasingly appreciated

(Bonneau et al., 2018b; Callaini et al., 1997; LePage et al., 2017; Ryan and Saul, 1968). There are

three distinct phenotypes: early mitotic failures whereby embryonic arrest occurs after several suc-

cessful rounds of division, regional mitotic failures where some regions of the embryo appear to be

dividing without issue, and widespread chromatin bridging in later stages of division (LePage et al.,

2017). The cause of these defects remains unknown, but at least two hypotheses can be proposed.

First, late stage embryonic defects are caused by the same cascade of abnormalities that often cause

arrest during the first mitosis. Under this scenario, the difference in the cytological outcomes of the

embryo may be explained by the magnitude of the proximal CI-causing affect. For instance, strong

male pronuclear delay can result in complete exclusion of the male pronucleus from early develop-

ment, yielding an embryo that may attempt to undergo haploid development (Callaini et al., 1997;

Tram et al., 2006). In N. vitripennis where haploid individuals become males and diploids become

females, exclusion of the male pronucleus during CI can manifest in haploidization where even fertil-

ized eggs develop as haploids (Bordenstein et al., 2003; Ryan and Saul, 1968; Tram et al., 2006;

Vavre et al., 2001; Vavre et al., 2000). Thus, the intensity of pronuclear delay may correspond with

the resulting phenotypic profile during embryogenesis, but more work is necessary to determine if

these effects translate to late stage embryonic defects. Second, these later stage abnormalities may

be independent from the defects preceding the first mitotic failure. Indeed, it has been proposed

that different phylogenetic Types of Cif proteins may contribute to different cytological outcomes

(Bonneau et al., 2018b). However, wPip, which encodes both Type 1 and 4 genes, display both

early and late stage embryonic abnormalities comparable to wMel which encodes only Type 1 genes

(Bonneau et al., 2018b; LePage et al., 2017). Despite presumably having different mechanistic

bases, Cardinium and Wolbachia both have converged on similar outcomes during early embryogen-

esis, including chromatin bridging and abnormal number of chromosomes after the first division

(Gebiola et al., 2017). It remains unknown if Cardinium CI yields comparable molecular defects and

sperm abnormalities to Wolbachia-induced CI. Clearly, there are a diverse set of cytological out-

comes associated with CI in both Wolbachia and Cardinium. Additional cytological and reductionistic

studies will be necessary to evaluate the cause of this variation and determine how the Cif proteins

contribute to these phenotypes.

What is the host’s contribution to CI?
It is common that researchers leverage correlations between Wolbachia symbiont state and host

expression phenotypes (RNA, protein, etc.) to understand how Wolbachia impact their host. When
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differential expression is correlated with CI phenotypes, these data can yield valuable insights

regarding CI’s mechanism. Significant correlations between Wolbachia symbiont state and host

expression have been measured in D. melanogaster (Biwot et al., 2020; He et al., 2019;

LePage et al., 2014; Liu et al., 2014; Ote et al., 2016; Xi et al., 2008; Yuan et al., 2015;

Zheng et al., 2019b; Zheng et al., 2011), D. simulans (Brennan et al., 2012; Clark et al., 2006;

Xi et al., 2008), La. striatellus (Huang et al., 2019; Ju et al., 2017; Liu et al., 2019), T. urticae

(Bing et al., 2020a; Zhang et al., 2015), Cu. pipiens (Pinto et al., 2013), and A. albopictus

(Baldridge et al., 2017; Baldridge et al., 2014; Brennan et al., 2012; Brennan et al., 2008). Chal-

lengingly, as many as 1613 transcripts are differentially expressed between Wolbachia symbiont

states (Bing et al., 2020a), and as with the cytological abnormalities described above, it is difficult

to untangle the effects of Wolbachia and CI on host expression profiles.

However, the most promising candidates associated with CI are those that can be experimentally

over- or under-expressed to recapitulate CI-like hatch rates and cytological defects. For example,

overexpression of the tumor suppressor gene lethal giant larvae [l(2)gl] and myosin II gene zipper in

aposymbiotic D. simulans induces a considerable reduction in hatching that is accompanied with CI-

associated cytological defects (Clark et al., 2006). However, CI is not just associated with hatch rate

defects, but also the ability to rescue those defects. When l(2)gl and zipper over-expressing males

were mated to symbiont-bearing females, no change in hatching was observed (Clark et al., 2006),

suggesting that hatch rate reductions associated with these factors cannot be rescued and thus are

not CI-associated. Nevertheless, there have been numerous studies that have identified host factors

that contribute to CI-like embryonic abnormalities and can be rescued by symbiont-bearing females:

the aminotransferase iLve which mediated branched-chain amino acid biosynthesis in La. striatellus

(Ju et al., 2017), the sRNA nov-miR-12 which negatively regulates the DNA-binding protein pip-

squeak (psq) in chromatin remodeling in D. melanogaster (Zheng et al., 2019b), cytosol amino-pep-

tidase-like which are in the sperm acrosome and involved in fertilization in La. striatellus

(Huang et al., 2019), two seminal fluid proteins (CG9334 and CG2668) with unknown function in D.

melanogaster (Yuan et al., 2015), the histone chaperone Hira in D. melanogaster and D. simulans

(Zheng et al., 2011), a Juvenile Hormone protein (JHI-26) involved in development in D. mela-

nogaster (Liu et al., 2014), and the immunity-related gene kenny (key) in D. melanogaster

(Biwot et al., 2020). Since misexpression of these host products in aposymbiotic males mimic CI-like

embryonic defects in a way that can be rescued by symbiont-bearing females, there is support that

these products or their pathways are involved in CI, but how these factors relate to cause CI remains

unknown, and there is no current evidence that these are binding partners with Cif proteins.

In addition to RNA and/or protein expression differences, changes in host physiology and cell

biology are correlated with CI. For example, Wolbachia-bearing D. melanogaster, D. simulans, A.

albopictus, A. polynesiensis, and T. urticae males often have higher reactive oxygen species (ROS) in

their testes than aposymbiotic males (Brennan et al., 2012; Brennan et al., 2008; Zug and Ham-

merstein, 2015). It has been hypothesized that this variation in ROS expression patterns is due to an

elevated host immune response to Wolbachia symbiosis (Zug and Hammerstein, 2015). However,

multiple lines of evidence link ROS expression with CI. For example, increased ROS levels are consis-

tently observed among CI-inducing strains (Zug and Hammerstein, 2015), and ROS leads to DNA

damage in spermatocytes in D. simulans (Brennan et al., 2012). Additionally, lipid hydroperoxide

markers of ROS-induced oxidative damage are higher in symbiont-bearing D. melanogaster

(Driver et al., 2004), and PCNA retention is another marker for DNA damage and is observed dur-

ing the first mitosis of CI-affected embryos (Landmann et al., 2009). Interestingly, overexpression of

the D. melanogaster gene key increases ROS levels and DNA damage in males when mimicking res-

cuable CI-like hatching and embryonic defects (Biwot et al., 2020). Together, these data support a

role for ROS in CI’s mechanism, but direct connections remain unclear. One hypothesis is that CifA’s

putative catalase-related domain does indeed function to interact with ROS (Lindsey et al., 2018).

Though, alternatively, ROS may be a byproduct of the host immune response (Zug and Hammer-

stein, 2015). Biochemical and immunological assays will unravel these relationships.

What causes variation in CI strength?
Some Wolbachia strains exhibit CI that can vary between 10–100% embryonic death

(Awrahman et al., 2014; Clark et al., 2003; Cooper et al., 2017; Hoffmann, 1988; Layton et al.,
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2019; Reynolds and Hoffmann, 2002; Turelli et al., 2018; Yamada et al., 2007; Zabalou et al.,

2004). In fact, a number of Wolbachia, including wMel of D. melanogaster and wYak of D. yakuba,

were initially characterized as non-parasitic since they had minimal to no impact on embryonic hatch-

ing (Charlat et al., 2004; Holden et al., 1993; Zabalou et al., 2004). Later studies would correct

these early reports to suggest they can indeed cause CI, but their CI strength is highly dependent

on a variety of factors including the age of fathers and grandmothers (Cooper et al., 2017;

Layton et al., 2019; Reynolds and Hoffmann, 2002). Generally speaking, the work reviewed below

describes a complex relationship between biotic and abiotic factors that influence CI strength. Nota-

bly, the bacterial density model of CI, whereby Wolbachia densities positively correlate with CI

strength, is likely the major factor driving most of these relationships (Breeuwer and Werren,

1993). Phage WO lysis, host suppressors, and other undescribed interactors may control the varia-

tion in Wolbachia titers (Figure 6; Awrahman et al., 2014; Bordenstein and Bordenstein, 2011;

Funkhouser-Jones et al., 2018; Layton et al., 2019; Poinsot et al., 1998; Walker et al., 2011).

However, there are instances where CI strength variation does not correlate with Wolbachia densi-

ties (Yamada et al., 2007). Below, we review these works and describe what is known and unknown

about the proximal basis of CI strength variation.

Temperature
Temperature is often correlated with CI strength and is likely to contribute to the dynamics that gov-

ern Wolbachia’s spread (Foo et al., 2019). High temperatures, usually exceeding 27˚C, can have a

significant negative impact on CI strength in Wolbachia-carrying A. aegypti (Ross et al., 2020b;

Ross et al., 2019), T. urticae (van Opijnen and Breeuwer, 1999), D. simulans (Hoffmann et al.,

1986), D. melanogaster (Reynolds and Hoffmann, 2002), A. scutellaris (Trpis et al., 1981;

Wright and Wang, 1980), A. albopictus (Wiwatanaratanabutr and Kittayapong, 2009), and Naso-

nia (Bordenstein and Bordenstein, 2011). There

is considerable evidence that high temperature

impacts Wolbachia densities in various species

including A. albopictus and A. aegypti

(Foo et al., 2019; Ross et al., 2020b;

Ross et al., 2019), N. vitripennis

(Bordenstein and Bordenstein, 2011), and T.

urticae (Lu et al., 2012). High temperatures

even cure hosts of Wolbachia (Jia et al., 2009).

In natural populations of the butterfly Zizeeria

maha, Wolbachia densities vary with season, and

climate change may be contributing to a

decrease in symbiont frequencies in the tropics

(Charlesworth et al., 2019; Sumi et al., 2017).

Notably in N. vitripennis and T. urticae,

decreased Wolbachia densities and CI strength

have also been correlated with an increase in

phage WO lytic activity with higher temperatures

(Bordenstein and Bordenstein, 2011; Lu et al.,

2012). Cooler temperatures at or below 19˚C

have also been associated with decreased CI in

D. simulans and N. vitripennis (Bordenstein and

Bordenstein, 2011; Reynolds and Hoffmann,

2002). As with warm temperatures, cooler tem-

peratures also yield increased phage WO densi-

ties, decreased Wolbachia densities, and

decreased CI strength in N. vitripennis

(Bordenstein and Bordenstein, 2011). These

data suggest a phage density model of CI

wherein phage WO may respond to temperature

extremes by increasing its replication and lysing

Figure 6. An expanding Wolbachia density model of CI

strength variation. The proximal cause of CI is likely

CifA and CifB, whose transcriptional level has been

connected with intensity in transgenic studies

(LePage et al., 2017). Wolbachia densities have often

correlated with factors that influence CI strength

variation (Werren, 1997). In many cases, it remains

unknown how these factors influence Wolbachia

densities. Phage WO lysis (Bordenstein and

Bordenstein, 2011) and host suppressors are well

documented correlates or causes of density changes

(Funkhouser-Jones et al., 2018; Poinsot et al., 1998;

Walker et al., 2011).
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bacterial cells, thus lowering overall Wolbachia densities and resultantly CI levels.

However, while robust support of this model is available in N. vitripennis (Bordenstein and Bor-

denstein, 2011), more work is necessary to test if it is generalizable to other Wolbachia strains. For

instance, in contrast to the relationships described above, Wolbachia in some D. simulans lines

(Clancy and Hoffmann, 1998) and Leptopilina heterotoma wasps (Mouton et al., 2006) replicate

more quickly at warmer temperatures, and yet CI strength decreases. Thus, it is plausible that phage

WO in these species have a different relationship with temperature than in N. vitripennis, and other

yet undescribed factors inhibit CI. Moreover, in E. suzannae bearing Ca. hertigii, high temperatures

also yield reduced Cardinium densities and lower CI strength (Doremus et al., 2019). However, Car-

dinium do not harbor a phage, and thus phage lysis cannot explain this relationship. Additionally, in

this same system, cooler temperatures yield reduced Cardinium densities, but an increase in CI

strength (Doremus et al., 2019). Thus, here, it seems that bacterial densities alone do not explain

the cause of CI strength variation. It is plausible that the factors contributing to CI strength variation

in Wolbachia and Cardinium differ, and comparative phenotypic studies will be necessary to evaluate

the differences between these two systems. However, in systems where symbiont density correlates

with CI strength, it is plausible that the proximal cause is a shift in CI gene expression that correlates

with symbiont densities. Transcript and protein abundance assays of Wolbachia’s cif genes will help

elucidate this relationship when accompanied with measurements of variable CI strength.

Host behavior and development
Other correlates of CI strength variation are related to male and paternal grandmother age

(Awrahman et al., 2014; Layton et al., 2019; Reynolds and Hoffmann, 2002), male mating rate

(Awrahman et al., 2014; de Crespigny et al., 2006), male developmental timing (Yamada et al.,

2007), rearing density (Yamada et al., 2007), and nutrition (Clancy and Hoffmann, 1998). All

of these factors are significantly impacted by the structure of the population, resource availability, or

behavior. Below, we will systematically discuss what, if anything, is known about how each of these

factors impact CI strength.

First, male age can be negatively correlated with CI strength. For example, wMel of D. mela-

nogaster has nearly no impact on embryonic hatching when males are 3–5 days of age, but can

induce significant CI when males are less than 2 days of age (Reynolds and Hoffmann, 2002). Simi-

lar results have been observed with Wolbachia in D. simulans and N. vitripennis, but to varying

degrees (Breeuwer and Werren, 1993; Karr et al., 1998). Since Wolbachia densities decrease with

male age in D. melanogaster, D. simulans, and N. vitripennis hosts (Binnington and Hoffmann,

1989; Breeuwer and Werren, 1993; Bressac and Rousset, 1993; Clark et al., 2002; Karr et al.,

1998; Reynolds and Hoffmann, 2002; Riparbelli et al., 2007; Turelli and Hoffmann, 1995;

Veneti et al., 2003; Weeks et al., 2007), it is perhaps unsurprising that age also correlates with CI.

Moreover, of the factors associated with CI strength, age is also the only one that has been investi-

gated in the context of cifA and cifB transcription, and does indeed decrease with age alongside

Wolbachia densities (LePage et al., 2017).

Interestingly, while older males have fewer Wolbachia, older virgin females have more

(Layton et al., 2019). In fact, when females are aged longer prior to mating, their male offspring are

laid with higher Wolbachia densities and resultantly induce stronger CI (Layton et al., 2019). This

phenomena has been termed the paternal grandmother age effect (PGAE) (Layton et al., 2019). It

is unclear why age’s impact on Wolbachia density is sex-specific. However, the relationship between

male age, symbiont densities, and CI strength may not be generalizable across all CI-inducing sym-

bionts and their hosts. For instance, Cardinium of E. pergandiella cause CI that is unaffected by male

age (Perlman et al., 2014), and studies disagree about the significance of the impact of age on CI

caused by wRi of D. simulans (Awrahman et al., 2014; Binnington and Hoffmann, 1989;

Bressac and Rousset, 1993). Thus, the impacts of age on symbiont densities and CI may be limited

to some Wolbachia or alternatively, to particular host backgrounds. More comparative phenotypic

work will be needed to understand the broader context of the relationship between age, CI

strength, and cif expression.

Additionally, male mating rate is also negatively correlated with CI strength. For instance, symbi-

ont-bearing D. simulans males mate more frequently than aposymbiotic males, and the increased

mating rate yields weaker CI in later matings (Awrahman et al., 2014; de Crespigny et al., 2006).

Symbiont-bearing males also transfer more sperm during copulation than aposymbiotic males during
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the first mating encounter, and decreased sperm transfer in subsequent matings corresponds with

weaker CI (Awrahman et al., 2014). As such, the increased mating frequency may be a behavioral

adaptation employed by some hosts to restore reproductive compatibility between symbiont-bear-

ing males and aposymbiotic females (Awrahman et al., 2014). As with temperature and age

(Bordenstein and Bordenstein, 2011; Layton et al., 2019; Reynolds and Hoffmann, 2002), it has

likewise been hypothesized that Wolbachia densities may decrease upon remating

(Awrahman et al., 2014), but this hypothesis has not been tested. Alternatively, it has also been

hypothesized that the amount of time that sperm remains in contact with Wolbachia corresponds

with how strong CI can be (Karr et al., 1998), thus remating may contribute to high sperm turnover

that limits Wolbachia-sperm exposure. These hypotheses can be tested via Wolbachia density assays

and microscopy of reproductive tissues upon remating.

Male development time is likewise correlated with CI strength. Here, wMel-bearing male D. mela-

nogaster induce stronger CI when they are the first emerging males of a clutch (Yamada et al.,

2007). The younger brothers, which take longer to develop but are approximately the same age,

cause weaker CI. This phenotype has been termed the younger brother effect (YBE) (Yamada et al.,

2007). The YBE is an outlier in phenotypes associated with CI strength variation in that younger and

older brothers have comparable adult Wolbachia densities (Yamada et al., 2007), suggesting an

alternative mechanism for the relationship between developmental timing and CI strength. However,

it is also plausible that while younger and older brothers have similar bacterial densities, their locali-

zation may shift such that cells more important to CI expression have higher densities than other

cells in the testes (Clark et al., 2002). Alternatively, Wolbachia densities of the adult male may be

less informative than density differences during embryonic or larval development. For instance, the

PGAE, as described above, revealed that sons of older females caused stronger CI and while their

sons did not have higher Wolbachia densities as adults, they did have higher densities during

embryogenesis (Layton et al., 2019). Intriguingly, Wolbachia densities rapidly declined in aged

females after mating and embryo laying, suggesting that many Wolbachia were transferred from the

ovaries to the developing egg and ultimately embryo. Thus, it is plausible that Wolbachia densities

would correlate with deposition order such that first laid older brothers would have higher densities

than younger brothers laid soon after (Layton et al., 2019). While these hypotheses remain associ-

ated and to be formally tested, it is also notable that the YBE does not appear to apply to wRi of D.

simulans (Yamada et al., 2007), other studies have failed to replicate these results in other wMel-

bearing D. melanogaster lines (LePage et al., 2017), and the opposite phenotype is observed with

Cardinium of Encarsia where older brothers cause weaker CI (Perlman et al., 2014). Thus, additional

work is necessary to replicate the YBE in D. melanogaster and other symbiont-host combinations

and to evaluate its cause via longitudinal developmental studies of Wolbachia densities. Moreover,

understanding why Cardinium and Wolbachia CI are differentially impacted by these factors is

important in determining how symbiont dynamics relate to reproductive manipulation.

Finally, rearing density and nutrition can also impact CI strength relationships. For instance, when

wMel-bearing D. melanogaster are reared in high densities, CI strength is lower than if they are

reared in low densities (Yamada et al., 2007). The initial hypothesis behind this correlation was that

high-density rearing led to nutritional stress which translated to less Wolbachia (Yamada et al.,

2007). While this hypothesis has not been explicitly tested, there is a reasonable logical framework

behind it. Indeed, multiple studies have shown that D. simulans males exposed to nutritional stress

have weaker CI than males with abundant resources (Clancy and Hoffmann, 1998; Sinkins et al.,

1995). Notably, nutritional stress is also correlated with reduced Wolbachia densities, supporting

models, as above, where Wolbachia densities and cif expression are the proximal factors driving the

relationship to CI strength. That said, it is important to note that recent microscopy studies have

shown that standard qPCR-based measures of Wolbachia densities may not be adequate under

nutritional stress since host ploidy is subject to variation based on diet (Christensen et al., 2019).

Thus, it is plausible that qPCR-based variation in Wolbachia densities under nutritional stress may in

fact be driven by variation in host ploidy and not Wolbachia density. Replication of these studies will

be necessary to confidently link nutrition, rearing density, and Wolbachia densities to CI strength.

Importantly, rearing density does not influence CI strength in wAlbA and wAlbB A. albopictus

(Dutton and Sinkins, 2004), suggesting that even if wMel CI is impacted by rearing-density, this

effect is perhaps not generalizable across Wolbachia-host combinations.
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The factors described above do not work on CI in isolation but instead seem to be mingled in a

state of perpetual complexity. For instance, the impact of temperature on CI strength in D. mela-

nogaster is dependent on male age, where 1-day-old males reared at 25˚C induce stronger CI than

those reared at 19˚C, but the inverse is true with 3- and 5-day-old males (Reynolds and Hoffmann,

2002). Moreover, age has a variable impact on CI strength in different host backgrounds, suggesting

that genotypic variation in either the host or Wolbachia strain may impact these relationships

(Duron et al., 2007a; Reynolds and Hoffmann, 2002). These studies highlight the complexity of

Wolbachia-host-environment interactions and should motivate additional investigation to resolve the

factors that underpin these variations and the host genetic loci that influence how impactful each

factor might be in each host.

Host genetics
Relationships between Wolbachia phenotypes and host genotypes are frequently investigated

through transinfections of a Wolbachia strain into a non-native background via injection

(Hughes and Rasgon, 2014) or introgression of one species cytoplasm into another host’s back-

ground via repeated backcrossing (Chafee et al., 2011). For example, wMel Wolbachia of D. mela-

nogaster traditionally cause weak CI (Holden et al., 1993), but induce consistently strong CI when

transinfected into either D. simulans or A. aegypti (Poinsot et al., 1998; Walker et al., 2011). Simi-

lar results were also observed when wTei which induce weak or no CI in the D. yakuba complex

(Charlat et al., 2004; Cooper et al., 2017; Martinez et al., 2020; Zabalou et al., 2004), are trans-

ferred into D. simulans (Zabalou et al., 2008). Moreover, despite seemingly carrying the same Wol-

bachia, different genetic lineages of the wasp N. longicornis express different compatibility

relationships with other strains (Raychoudhury and Werren, 2012), and wVitA of N. vitripennis

causes weak CI in its native host but strong CI when introgressed into N. giraulti (Chafee et al.,

2011). Intriguingly, this affect is only observed with wVitA and does not apply to wVitB, which also

causes CI, suggesting that both host and Wolbachia genetics play a role in CI phenotypes. These

studies support models that predict hosts will be selected to develop resistance against CI

(Prout, 1994; Turelli, 1994), and raise many questions about an evolutionary arms race between

Wolbachia and its host to control reproductive parasitism.

There are at least two broad models for the mechanisms of host suppression of CI: divergence of

host products that are targets for CI (defensive model) or evolution of host products that inhibit and

suppress Wolbachia or CI products (offensive model). First, a defensive model would predict that

the pathway(s) that CI act(s) on in the host must be conserved enough for CI to be transferable

between species, but also malleable enough for the pathway(s) to become resistant to CI. The host

genes, transcripts, and proteins described earlier in this review are excellent candidates since they

can mimic CI phenotypes (Biwot et al., 2020; Huang et al., 2019; Ju et al., 2017; Yuan et al.,

2015; Zheng et al., 2011). However, studies are necessary to investigate genetic variation in these

host products to assess the possibility that they are under selection to suppress CI. Other candidates

would be direct binding partners of CifA and CifB (Beckmann et al., 2019c), but nothing is known

about how natural variation in these products may relate to CI suppression. Conversely, an offensive

model could yield the evolution of host genes involved in Wolbachia density regulation or some

other target with indirect effects on CI strength. Notably, since these products may not be involved

in the CI mechanism, they would not necessarily be expected to be conserved. For instance, the

Wolbachia density suppressor (Wds) gene of Nasonia acts to suppress densities of wVitA, is taxon

restricted to bees and wasps, and is under positive selection as would be expected for a suppressor

acting in an evolutionary arms race with Wolbachia (Funkhouser-Jones et al., 2018). Since Wds is

only present in Hymenoptera, it clearly is not generalizable as a standard mechanism of Wolbachia

and CI suppression. However, it is plausible that other hosts have converged on comparable mecha-

nisms of CI suppression. Additional research will be needed to reveal the diversity of mechanisms

surrounding CI suppression and to understand the dynamics controlling their evolution.

What are the models for Wolbachia-induced CI and rescue?
Numerous models have been proposed to explain CI and rescue mechanisms. First, we discuss the

utility of the classical phenotype-based modification/rescue (mod/resc) model in a post-genomic

world (Shropshire and Bordenstein, 2019; Werren, 1997). Additionally, despite considerable
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advances in the genetics and biochemistry of CI, numerous mechanistic models are used to describe

CI and rescue (Beckmann et al., 2019a; Poinsot et al., 2003; Shropshire et al., 2019). These mod-

els divide into two discrete categories: host-modification (HM) (Figure 7A) and toxin-antidote (TA)

(Figure 7B; Beckmann et al., 2019a; Shropshire et al., 2019). HM-based models assume that the

CI-inducing factors act directly to modify host male products and that rescue occurs through either

removal of these modifications or otherwise reversing the effects through a separate host-modifica-

tion in the female. TA-based models assume that the CI-inducing factors are transported into the

embryo via the sperm and are toxic after fertilization unless the rescue factor is present, binds to the

CI toxin, and inhibits its toxicity. We discuss each of these models and their variants in the context of

a Two-by-One genetic framework (Shropshire and Bordenstein, 2019), but it is crucial to reempha-

size that while both CifA and CifB proteins are required to induce CI, the specific biochemical mech-

anism underlying each protein’s contribution to CI and rescue remains unknown and there remains

insufficient data to confirm any of these models.

The mod/resc model
The mod/resc model defines a mod factor as a CI-inducing product produced in males and a resc

factor as a rescue-inducing product produced in females (Werren, 1997). The mod/resc model is

agnostic to the genetic, biochemical, enzymatic, or cytological basis of CI. Instead, the mod/resc

model provides a framework for describing the phenotypic expression of different Wolbachia strains.

For example, a standard CI-inducing strain that can self-rescue would be denoted as mod+/resc+.

Less common phenotypes include so-called suicidal Wolbachia (mod+/resc-) and Wolbachia that do

not cause CI but can rescue CI induced by other strains (mod-/resc+) (Ant and Sinkins, 2018;

Meany et al., 2019; Zabalou et al., 2008). Wolbachia that do not cause CI or rescue are designated

mod-/resc-.

The mod/resc model assumes that for bidirectional CI to occur, the mod and resc factors would

differ in such a way that they remain functional but are incompatible with each other (Charlat et al.,

2001; Werren, 1997). As such, a strain can carry multiple mod or resc factors that determine the

compatibility relationships with other strains, and the mod/resc model can be used to estimate the

number of mod and resc factors within a host (Zabalou et al., 2008). To do this, Wolbachia strains

are transinfected or introgressed into the same genetic background and then crossed to determine

the incompatibility relationships between strains or against aposymbiotic flies. A strain that causes

CI against an aposymbiotic female is considered to have at least one mod factor. If it can rescue

itself then it has at least one resc factor. If two CI-inducing and self-compatible strains are bidirec-

tionally incompatible, then it is assumed that each carry at least one set of mod and resc factors but

that they are not the same. Indeed, crossing experiments between various Wolbachia strains have

revealed unidirectional and bidirectional incompatibilities which have led to agreement that Wolba-

chia frequently carry multiple mod and resc factors (Poinsot et al., 1998; Zabalou et al., 2008).

With the identification of the CI and rescue genes (Beckmann et al., 2017; Chen et al., 2019;

LePage et al., 2017; Shropshire et al., 2018; Shropshire and Bordenstein, 2019), it is compelling

to abandon the mod/resc model in favor of a purely genetic description of CI relationships. With the

ever-growing availability of genomic datasets, acceptance of a gene-centric analysis of CI may be

the simplest way to predict CI of a symbiont. However, while sequence information can indeed yield

informed hypotheses about a strain’s CI, some hosts suppress their symbiont’s CI (Chafee et al.,

2011; Poinsot et al., 1998; Walker et al., 2011), and some symbiont strains exhibit different forms

of reproductive parasitism based on their host background (Fujii et al., 2001; Jaenike, 2007;

Sakamoto et al., 2005; Sasaki et al., 2002; Zabalou et al., 2008). Thus, we propose that a modern

framework for describing CI relationships should involve both phenotypic data described under the

mod/resc model and genetic data described under the Two-by-One model. For example, if genomic

sequencing of a novel Wolbachia precedes phenotypic observations, then a genetic analysis could

reveal cifA and cifB homologs that are either comparable to those in CI-inducing strains or contain

putative loss-of-function mutations. Phenotypic data is of course necessary to confirm the hypothe-

sis. Indeed, wYak of D. yakuba and wRec of D. recens cause CI, but they have cifB genes with stop

codons that truncate the proteins relative to the wMel and wPip cifB (Cooper et al., 2017;

Martinez et al., 2020; Shoemaker et al., 1999). As such, a genetic description of these strains alone

could result in mischaracterization of wYak and wRec as non-parasitic strains with putative cifB pseu-

dogenes. It is only with knowledge of both cif gene sequence and phenotypic data that a complete
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Figure 7. The Host-Modification and Toxin-Antidote models of CI mechanism. (A) The Host-Modification (HM) model predicts that the Cif proteins

impart a modification on male-derived products that result in CI unless CifA is available in the embryo to reverse or otherwise inhibit the male-derived

modification (Shropshire et al., 2019; Werren, 1997). (B) The Toxin-Antidote (TA) model predicts that CifB is the primary toxin that is transferred to

the embryo via the sperm, and that rescue occurs when CifA binds CifB in the embryo and inhibits its toxicity (Beckmann et al., 2019a; Hurst, 1991;

Shropshire et al., 2019; Werren, 1997).
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understanding of the basis of CI in these strains is possible. Thus, both the Two-by-One and mod/

resc models will serve as a useful framework to describe these systems.

HM-based mechanistic models
HM models (Figure 7A) make at least two key predictions. First, male host products are modified by

Cifs (Shropshire et al., 2019). There are numerous, pre-fertilization defects associated with CI-induc-

ing Wolbachia including changes in sperm morphology and competitive ability (Champion de Cres-

pigny and Wedell, 2006; Riparbelli et al., 2007), supporting that the host is modified prior to

fertilization. It is unknown, however, whether these outcomes are due to pre-fertilization defects

causally related to CI or general responses to Wolbachia in the testes. Second, and most crucially,

the proximal CI modifications causing death of the fertilized embryo is rescued (e.g., replaced or

otherwise negated) by CifA in the embryo (Shropshire et al., 2018; Shropshire and Bordenstein,

2019). CifA does not rescue through binding with male-transferred CifB products since Cif protein

yields the modification prior to fertilization in testes and thus does not need to be transfered with

the sperm to the embryo. Instead, CifA may interact with host processes to reverse or otherwise

stop the effects of CI caused by CifA and CifB protein expression in males. As such, assessment of

the location of CifA and CifB binding (testes or embryo), the transfer of Cif products, if any, with the

sperm, and the interactions that Cif have with the host will further inform this model. We discuss

three additional non-exclusive HM-based models below: titration-restitution, mistiming, and

goalkeeper.

The titration-restitution model (a.k.a. the ‘sink’ hypothesis) was originally proposed by Wer-

ren, 1997 and posits that CI is induced by over- or under-expression of host products or pathways

in the testes/sperm and rescue occurs when the same products are misregulated in the opposite

direction in the ovaries/embryo (Figure 8A; Kose and Karr, 1995; Poinsot et al., 2003; Wer-

ren, 1997). Indeed, Wolbachia have a considerable impact on expression profiles, some host genes

are differentially expressed in male and female reproductive tissues, and numerous host factors

meet these criteria (Baldridge et al., 2017; Baldridge et al., 2014; Bing et al., 2020a; Yuan et al.,

2015), as described in the section above. There are at least two ways in which CifA and CifB proteins

can underpin the titration-restitution model. First, since CI and rescue would occur through titration

of the same host product or pathway, it is feasible that CifA, which acts on both sides of the pheno-

type (Shropshire and Bordenstein, 2019), may drive these expression changes. Under such a

model, CifB may act as an ‘accessory protein’ that enables CifA to target a paternally derived prod-

uct that it would otherwise not be able to reach on its own. Second, CifA may act on its own to up-

or down-regulate host products but has the opposite impact on that product when CifB is present.

As such, rescue would occur through CifA’s lone action which counteracts the misregulation caused

by CifA and CifB dual expression.

Notably, titration-restitution models can explain bidirectional CI if Cif products from different

strains have variable impacts on multiple host expression pathways. Thus, rescue would not be possi-

ble from a second strain since it could be targeting the wrong host factor or pathway. Indeed, diver-

gent CI genes may differentially impact host pathways. For example, only the CifB[T1] sequences

maintain a functional Ulp1 domain while the other four CifB clades have a dimer of PDDEXK nucle-

ases that is also present in CifB[T1] (Beckmann et al., 2017; Bing et al., 2020b; Lindsey et al., 2018;

Martinez et al., 2020). It is feasible that CifB with different domains impact different host pathways.

Alternatively, Cif proteins may have differential impacts on the level of misregulation instead of or in

addition to impacting multiple host pathways which may influence incompatibility relationships.

More work will be necessary to understand if cif expression influences transcriptional and transla-

tional variation and how that variation corresponds to CI.

The mistiming model (a.k.a. the ‘slow motion’ hypothesis) was first explicitly proposed by

Tram and Sullivan, 2002 and is based on the observation that the paternal pronucleus has slowed

development relative to the female pronucleus in CI crosses, the rescue cross has normal cell cycle

timing, and the female pronucleus continues development despite the slowdown in both Drosophila

and Nasonia species (Figure 8B; Callaini et al., 1996; Ferree and Sullivan, 2006; Ryan and Saul,

1968; Tram and Sullivan, 2002). This established the hypotheses that delayed male pronuclear

development is responsible for emergent defects in early embryogenesis, and that resynchronization

of the development may occur by comparably slowing down the development of the female pronu-

cleus or slowing the cell cycle in rescue. Since the cell cycle timing of the female pronucleus is what
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establishes the timing for the first mitosis (Bossan et al., 2011), symbiont-bearing females do not

induce CI because the male pronucleus reach apposition prior to the female pronucleus. Though,

the reciprocal cross would be incompatible because the female pronucleus finished development

prior to the male, and the first mitosis would have initiated before the male pronucleus arrives.

Importantly, this model predicts that CI crosses are subject to haploidization of diploid offspring

since the male pronucleus could be completely excluded from mitosis if it was significantly slowed.

This is indeed the case in N. vitripennis where CI often manifests as only male offspring since haploid

offspring are viable in this species but develop as males (Bordenstein et al., 2003).

The mistiming model proposes that CI and rescue have comparable impacts on the development

of male and female gametes, respectively. As such, a single gene could in theory be responsible for

both CI and rescue (Poinsot et al., 2003). Under this paradigm, CifA may enact a slowdown in both

tissues since it is involved in both phenotypes (Shropshire and Bordenstein, 2019). However, if this

were the case, then what would be the purpose of CifB? It is possible that CifB is responsible for

localizing CifA to a male-specific target where it imposes the same outcomes on its host. Since this

hypothetical male product would not be available in the embryo, CifB would not have a role in res-

cue. However, an alternative model for mistiming is that rescue may not occur through slowing

down the female pronucleus but may instead work by removing the slowdown agents from the male

pronucleus. Together, these models would help to explain the proximal cause (misregulation) and

culminating effects (mistiming) of CI. More work will be necessary to understand if rescue occurs via

slowdown of the female pronucleus or from speeding-up the male pronucleus.

A major limitation of the mistiming model is that it cannot explain bidirectional CI. Since mistim-

ing proposes that rescue happens through delaying the female pronucleus as much as or greater

Figure 8. Extensions of the Host-Modification model. (A) The Titration-Restitution Model posits that an element within mature sperm is either over- or

under-expressed in males due to Cif protein expression, but this alteration is then remedied in the female as a result of CifA through a reconstitution of

the required element (Werren, 1997). (B) The Mistiming Model posits that a modification in the male sperm causes a delay in the formation of the

male pronucleus that results in CI if CifA does not cause a concurrent delay in the maternal pronucleus, resynchronizing mitosis between the two

pronuclei (Tram and Sullivan, 2002). (C) The Goalkeeper Model expands on the Mistiming Model and posits that the male product modification occurs

in a strain-specific quantity, and may involve multiple modifications that need to be remedied to rescue the lethality (Bossan et al., 2011).
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than the male pronucleus, a sufficiently strong delay should yield compatibility with any strain that

has a weaker male delay. As such, only unidirectional CI should manifest between strains where the

strain inducing the stronger delay is capable of rescue. The goalkeeper model was proposed in 2011

as a way to address this limitation (Figure 8C; Bossan et al., 2011). In addition to the expectations

of the mistiming model, goalkeeper suggests that a secondary factor unassociated with this mistim-

ing may also be involved in CI. The combined contributions of these two mod factors leads to CI.

Under this paradigm, CifA and CifB may contribute to different kinds of defects during spermato-

genesis, each contributing in somewhat independent ways to CI. Rescue must then negate the

impacts of both factors. Thus for CifA to rescue CI, it would not only need to contribute to a delay in

the pronuclear development but also reverse the impacts of a secondary source of modification.

Notably, since the titration-restitution model does not make predictions about the developmental

timing of the male and female pronuclei, it is compatible with both mistiming and goalkeeper mod-

els and can help explain mistiming through misregulation of host factors in a manner that leads to

slowed development. More functional genetic, biochemical, and cytological studies are necessary to

understand how a goalkeeper model and/or a combination of these HM-based models may contrib-

ute to CI.

TA-based mechanistic models
Since Wolbachia are not paternally inherited, Hurst proposed in 1991 that Wolbachia make a CI-

inducing toxin that diffuses into the sperm cytoplasm and is transferred to the egg during fertiliza-

tion and causes death (Hurst, 1991). Rescue then occurs when Wolbachia in the egg produce an

antidote that binds to the toxin and prevents it from killing the embryo (Hurst, 1991). This TA model

(Figure 7B) makes two key predictions (Beckmann et al., 2019a; Shropshire et al., 2019). First, the

Cif proteins are transferred to the embryo. Mass spectrometry of spermatheca from symbiont-bear-

ing Cu. pipiens females mated with symbiont-bearing males revealed fragments of CifA

(Beckmann and Fallon, 2013). These later data have been used to support this prediction, but since

these females harbor Wolbachia (Beckmann and Fallon, 2013) and CifA is also the rescue protein

(Chen et al., 2019; Shropshire et al., 2018), the most parsimonious explanation for CifA’s presence

in symbiont-bearing spermatheca is related to Wolbachia in females and potentially rescue, not CI. It

remains possible that Cif proteins are transferred, but this is not the simplest interpretation of cur-

rently available data. Second, if the proteins are transferred, then maternal CifA must bind to the CI

toxin to prevent function. In vitro biochemical assays reveal that CifA and CifB are capable of bind-

ing (Beckmann et al., 2017), but it remains unknown if they bind as a toxin complex to induce CI or

if CifA binds to CifB in the embryo to rescue CI. Moreover, while CifB’s Ulp1 domain is an in vitro

deubiquitinase, CifA’s binding to CifB does not inhibit deubiquitinase activity, suggesting that if

binding is for the purpose of rescue it is not inhibiting one of CifB’s biochemical functions

(Beckmann et al., 2017). As such, assays investigating if the Cif products are transferred to the

embryo at all and where the Cif proteins bind each other in reproductive tissue cells will inform the

foundation of this hypothesis.

The TA model traditionally states that the toxin and antidote are separate factors (Poinsot et al.,

2003). However, our genetic understanding is that CifA is involved in both CI and rescue. There are

two ways to update the model to be consistent with a Two-by-One genetic

framework (Shropshire and Bordenstein, 2019) while maintaining the key assumptions of the TA

model (Hurst, 1991). First, CifB may be the sole toxin but requires CifA as an antidote even during

spermatogenesis to prevent overly defective sperm (Beckmann et al., 2019a). For this to work, CifA

is expected to degrade faster than CifB, leaving CifB alone to enter the egg as a toxin unless it binds

to maternally-derived CifA (Beckmann et al., 2019a). Alternatively, CifA and CifB could work

together as a toxin complex that enters the embryo and is then rescued by maternallyA. Binding

assays coupled with microscopy and localization studies will reveal when and where CifA acts relative

to CifB.

As described above, the TA model aims to explain unidirectional CI between symbiont-bearing

and aposymbiotic individuals. A modification of the TA model, called lock-and-key, expands the TA

model to explain incompatibilities between Wolbachia strains. The lock-and-key model, like TA, pro-

poses that a toxin is transferred from symbiont-bearing males to the embryo and will cause embry-

onic death unless an antidote is supplied. Toxins in this case are called locks, and antidotes are keys.

The toxin lock is proposed to bind to or otherwise interfere with factors associated with proper
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embryonic development unless the antidote key is available to remove the lock. Bidirectional CI can

then be explained by one strain carrying a set of locks and keys that are not compatible with the

other strains’ locks and keys because of differences in binding affinity. This model leveraged predic-

tions of the mod/resc model that strains can have multiple sets of mod/lock and resc/key factors and

that a key is more likely to bind to its associated lock than to a divergent lock. Indeed, Wolbachia

exhibit considerable cif polymorphism (Bing et al., 2020b; Bonneau et al., 2019; LePage et al.,

2017; Lindsey et al., 2018; Martinez et al., 2020) and binding of CifA and CifB is strongest

between cognate partners (Beckmann et al., 2017). However, the lingering questions with the TA

model also apply with the lock-and-key model. Additionally, validation that divergent Cif proteins

are functional, that they have differential impacts on the host, and contribute summatively to incom-

patibilities are lacking.

Conclusion
Wolbachia were first discovered in Cu. pipiens mosquitoes in 1924 and later linked to CI in 1973

(Hertig and Wolbach, 1924; Yen and Barr, 1973). Since then, advances have significantly expanded

our recognition of Wolbachia’s incredible and complex toolset. In particular, biologists now appreci-

ate CI as a common form of reproductive parasitism that symbionts, including Wolbachia and

Cardinium, use to rapidly spread through populations (Hunter et al., 2003; Rosenwald et al., 2020;

Takano et al., 2017; Turelli, 1994; Weinert et al., 2015; Zug and Hammerstein, 2012). CI is asso-

ciated with reproductive isolation (Bordenstein et al., 2001; Gebiola et al., 2017; Jaenike et al.,

2006) and is leveraged as a successful tool in the prevention of arboviral diseases that infect humans

(Crawford et al., 2020; O’Neill, 2018; Tantowijoyo et al., 2020). The last decade has seen a rapid

expansion in our understanding of phage WO’s role in CI genetics (Beckmann et al., 2019c;

Chen et al., 2019; LePage et al., 2017; Shropshire et al., 2018; Shropshire and Bordenstein,

2019), phylogenetics (Bing et al., 2020b; LePage et al., 2017; Lindsey et al., 2018;

Martinez et al., 2020), and mechanism (Beckmann et al., 2019c; Beckmann et al., 2017;

Chen et al., 2019; Shropshire et al., 2020). Moreover, considerable effort has been made to

describe CI-defining cytological defects (Ferree and Sullivan, 2006; Landmann et al., 2009), link

variation in host expression with CI phenotypes (Biwot et al., 2020; Liu et al., 2014; Zheng et al.,

2011), and untangle factors that influence CI strength such as Wolbachia densities and phage WO

lytic activity (Bordenstein and Bordenstein, 2011; Layton et al., 2019; Reynolds and Hoffmann,

2002; Yamada et al., 2007). Together, this significant body of literature has motivated models to

explain how CI works (Beckmann et al., 2019a; Bossan et al., 2011; Poinsot et al., 2003;

Shropshire et al., 2019). These studies have stone-by-stone erected a steady foundation that will

serve as a launching point for exciting new discoveries to fully appreciate the complexity of this pow-

erful form of reproductive manipulation. Looking forward, key areas of investigation will involve the

relative roles of CifA and CifB in the induction of CI, the cell biology of the Cif proteins, the genetic

basis of bidirectional CI, the cytogenetic basis of CI strength variation, linkage of Cif expression with

cytological abnormalities pre- and post-fertilization, Cif-induced CI’s molecular and biochemical

basis, and mechanisms of host suppression of CI.
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Baton LA, Pacidônio EC, Gonçalves DS, Moreira LA. 2013. wFlu: characterization and evaluation of a native
Wolbachia from the mosquito aedes fluviatilis as a potential vector control agent. PLOS ONE 8:e59619.
DOI: https://doi.org/10.1371/journal.pone.0059619, PMID: 23555728

Beckmann JF, Ronau JA, Hochstrasser M. 2017. A Wolbachia deubiquitylating enzyme induces cytoplasmic
incompatibility. Nature Microbiology 2:17007. DOI: https://doi.org/10.1038/nmicrobiol.2017.7, PMID: 282482
94

Shropshire et al. eLife 2020;9:e61989. DOI: https://doi.org/10.7554/eLife.61989 26 of 36

Review Article Evolutionary Biology Genetics and Genomics

https://orcid.org/0000-0003-4221-2178
https://orcid.org/0000-0001-5668-9925
https://orcid.org/0000-0001-7346-0954
https://doi.org/10.1016/j.tim.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/19962898
https://doi.org/10.1111/imb.12604
https://doi.org/10.1111/imb.12604
http://www.ncbi.nlm.nih.gov/pubmed/31194893
https://doi.org/10.1186/s13071-018-2870-0
https://doi.org/10.1186/s13071-018-2870-0
http://www.ncbi.nlm.nih.gov/pubmed/29751814
https://doi.org/10.1007/s00248-018-1210-4
http://www.ncbi.nlm.nih.gov/pubmed/29931623
https://doi.org/10.1128/AEM.02290-18
https://doi.org/10.1093/molbev/msr083
https://doi.org/10.1093/molbev/msr083
http://www.ncbi.nlm.nih.gov/pubmed/21515811
https://doi.org/10.1111/j.1365-294X.2010.04937.x
http://www.ncbi.nlm.nih.gov/pubmed/21114563
https://doi.org/10.1111/jeb.12270
http://www.ncbi.nlm.nih.gov/pubmed/24164708
https://doi.org/10.1111/mmi.12768
http://www.ncbi.nlm.nih.gov/pubmed/25155417
https://doi.org/10.1016/j.resmic.2017.04.005
http://www.ncbi.nlm.nih.gov/pubmed/28435138
https://doi.org/10.1371/journal.pone.0059619
http://www.ncbi.nlm.nih.gov/pubmed/23555728
https://doi.org/10.1038/nmicrobiol.2017.7
http://www.ncbi.nlm.nih.gov/pubmed/28248294
http://www.ncbi.nlm.nih.gov/pubmed/28248294
https://doi.org/10.7554/eLife.61989


Beckmann JF, Bonneau M, Chen H, Hochstrasser M, Poinsot D, Merçot H, Weill M, Sicard M, Charlat S. 2019a.
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Caution does not preclude predictive and testable models of cytoplasmic incompatibility: a reply to shropshire
et al. Trends in Genetics 35:399–400. DOI: https://doi.org/10.1016/j.tig.2019.03.002, PMID: 30979535

Beckmann JF, Sharma GD, Mendez L, Chen H, Hochstrasser M. 2019c. The Wolbachia cytoplasmic
incompatibility enzyme CidB targets nuclear import and protamine-histone exchange factors. eLife 8:e50026.
DOI: https://doi.org/10.7554/eLife.50026, PMID: 31774393

Beckmann JF, Fallon AM. 2013. Detection of the Wolbachia protein WPIP0282 in mosquito spermathecae:
implications for cytoplasmic incompatibility. Insect Biochemistry and Molecular Biology 43:867–878.
DOI: https://doi.org/10.1016/j.ibmb.2013.07.002, PMID: 23856508

Betelman K, Caspi-Fluger A, Shamir M, Chiel E. 2017. Identification and characterization of bacterial symbionts
in three species of filth fly parasitoids. FEMS Microbiology Ecology 93:fix107. DOI: https://doi.org/10.1093/
femsec/fix107

Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z. 2013. Wolbachia invades anopheles
stephensi populations and induces refractoriness to plasmodium infection. Science 340:748–751. DOI: https://
doi.org/10.1126/science.1236192, PMID: 23661760

Bing XL, Lu YJ, Xia CB, Xia X, Hong XY. 2020a. Transcriptome of Tetranychus urticae embryos reveals insights
into Wolbachia-induced cytoplasmic incompatibility. Insect Molecular Biology 29:193–204. DOI: https://doi.
org/10.1111/imb.12620, PMID: 31596027

Bing XL, Zhao DS, Sun JT, Zhang KJ, Hong XY. 2020b. Genomic analysis of Wolbachia from Laodelphax
striatellus (Delphacidae, hemiptera) Reveals insights into its "Jekyll and Hyde" Mode of Infection Pattern.
Genome Biology and Evolution 12:3818–3831. DOI: https://doi.org/10.1093/gbe/evaa006, PMID: 31958110

Binnington KC, Hoffmann AA. 1989. Wolbachia-like organisms and cytoplasmic incompatibility in Drosophila
simulans. Journal of Invertebrate Pathology 54:344–352. DOI: https://doi.org/10.1016/0022-2011(89)90118-3

Biwot JC, Zhang HB, Liu C, Qiao JX, Yu XQ, Wang YF. 2020. Wolbachia-induced expression of kenny gene in
testes affects male fertility in Drosophila melanogaster. Insect Science 27:869–882. DOI: https://doi.org/10.
1111/1744-7917.12730, PMID: 31617302

Bonneau M, Atyame C, Beji M, Justy F, Cohen-Gonsaud M, Sicard M, Weill M. 2018a. Culex pipiens crossing
type diversity is governed by an amplified and polymorphic operon of Wolbachia. Nature Communications 9:
02749. DOI: https://doi.org/10.1038/s41467-017-02749-w
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