
Research Article
Differentiating Central Lung Tumors from Atelectasis with
Contrast-Enhanced CT-Based Radiomics Features

Rui Chai ,1 Qi Wang ,1 Pinle Qin ,1 Jianchao Zeng ,1 Jiwei Ren ,2 Ruiping Zhang ,2

Lin Chu ,2 Xuting Zhang ,2 and Yun Guan 1

1School of Data Science, North University of China, 3 Xueyuan Road, Taiyuan, Shanxi 030051, China
2Shanxi Province Cancer Hospital, 3 Zhigong New Street, Taiyuan, Shanxi 030013, China

Correspondence should be addressed to Qi Wang; qiwangnuc@foxmail.com and Jiwei Ren; jiwei_ren@163.com

Received 1 March 2021; Accepted 20 October 2021; Published 15 November 2021

Academic Editor: Marco Rengo

Copyright © 2021 Rui Chai et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objectives. To evaluate the utility of radiomics features in differentiating central lung cancers and atelectasis on contrast-enhanced
computed tomography (CT) images. This study is retrospective. Materials and Methods. In this study, 36 patients with central
pulmonary cancer and atelectasis between July 2013 and June 2018 were identified. A total of 1,653 2D and 2,327 3D
radiomics features were extracted from segmented lung cancers and atelectasis on contrast-enhanced CT. The refined
features were investigated for usefulness in classifying lung cancer and atelectasis according to the information gain, and
10 models were trained based on these features. The classification model is trained and tested at the region level and pixel
level, respectively. Results. Among all the extracted features, 334 2D features and 1,507 3D features had an information
gain (IG) greater than 0.1. The highest accuracy (AC) of the region classifiers was 0.9375. The best Dice score, Hausdorff
distance, and voxel AC were 0.2076, 45.28, and 0.8675, respectively. Conclusions. Radiomics features derived from contrast-
enhanced CT images can differentiate lung cancers and atelectasis at the regional and voxel levels.

1. Introduction

Central lung cancer is a type of cancer that may cause atelec-
tasis, and atelectasis regions may be present around the
tumor in central lung cancer [1]. Enhanced computed
tomography (CT) imaging is a method recommended by
NCCN for imaging examinations in patients with lung can-
cer [2]. In enhanced CT images, tumor regions and the atel-
ectasis regions have a similar visual appearance; therefore, it
is difficult to distinguish the two accurately, which can affect
the delineation of the tumor boundary. Accurate delineation
of the tumor boundary is of great significance in tumor diag-
nosis, staging, and treatment [3, 4].

Kovalev et al.’s study showed that statistical significance
scores cannot effectively distinguish tumors from atelectasis
regions on plain CT images, but methods such as general-
ized gradients can effectively enhance the distinction
between tumor regions and atelectasis regions [5, 6]. Flech-
sig et al.’s study showed that the density analysis of plain

CT images has a reference value for distinguishing tumors
from atelectasis [7]. These findings prove the feasibility of
distinguishing tumors and atelectasis on plain CT. Since
the NCCN guidelines believe that enhanced CT is a stronger
method of distinguishing tumors and atelectasis than plain
CT, these studies also indirectly support the feasibility of dis-
tinguishing tumors and atelectasis on enhanced CT.

To study the distinguishability of tumors and atelectasis
while avoiding the inefficiency and omissions of a manual
feature analysis, we performed radiomics analysis of tumors
and atelectasis on enhanced CT. Radiomics is a rapidly
developing emerging field in medical imaging research and
has great potential in analyzing medical images [8–12].
Radiomics has been proven to be an effective method in
medical imaging research of the lungs and has been used
in many applications [13–15]. Flechsig et al. explained the
significance of density measurement in FDG PET/CT
images for the N staging of lung cancer based on imaging
omics methods [16]. Ahn et al. used imaging omics to
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predict the survival rate of patients after non-small-cell car-
cinoma tumor resection [17]. Li et al. explored the predictive
ability of radiomics features based on 18F-FDG PET/CT
images on the EGFR mutation status of non-small-cell lung
cancer [18]. For diagnosis using clinical radiological imag-
ing, there is often no manual delineation of suitable candi-
date regions, and only pixels (or voxels) are available for
analysis. Therefore, studying the differentiation at the pixel
level is of great significance in automated CT image analysis.

In this study, it is assumed that the features valid at the
region level are still valid at the pixel level (or voxel level).
Therefore, the region level is analyzed first, and then, the
region-level method is transferred to the pixel level for veri-
fication. To measure the effectiveness of features and classi-
fication models, information gain (IG) [19–21] and machine
learning methods are introduced.

In the clinical radiotherapy target delineation, the diffi-
culty in distinguishing between atelectasis and tumor
regions will lead to the need for patients to take multiple
CT images. Even for some patients, nuclear magnetic image
or positron emission tomography (PET) image other than
CT image is necessary. The results of this research can be
used as a reference for clinical radiotherapy target delinea-
tion and improve the delineation accuracy only based on
single contrast-enhanced CT image. Therefore, the number
of radiation exposures to patients can be reduced, and the
diagnosis cost of patients can also be saved.

2. Materials and Methods

This retrospective study protocol was reviewed and
approved by the institutional review board of our hospital.
Written informed consent was waived.

2.1. Study Population. A total of 36 patients (4 females and
32 males; mean age 61:30 ± 7:66 years; range 43 to 73 years,
as shown in Table 1) with central lung cancer and atelectasis
between July 2013 and June 2018 were selected from the
Shanxi Province Cancer Hospital.

The inclusion criteria were as follows: (1) diagnosis of
central lung cancer, according to the standard diagnosis cri-
teria [2]; (2) CT image showing atelectasis; (3) contrast-
enhanced CT taken during the arterial phase; and (4)
patients who were not receiving radiotherapy when the
contrast-enhanced CT was obtained. Those with artifacts
or poor image quality were not included in the study.

2.2. Image Acquisition. This section describes the scanning
protocol.

Before scanning, we informed the patient and family
members of the precautions during scanning and the risk
of contrast injection. The scan will only be performed after
the patient or family members have signed the informed
consent form. Before the start of the scan, we will perform
breathing exercises on the patient to reduce the influence
of scanning motion artifacts. The patient took a supine posi-
tion during the scan, with his hands raised above the top of
his head, and was scanned from the entrance of the thorax to
the bottom of the lung.

All contrast-enhanced chest CT images were acquired
(on two GE Healthcare CT scanners) with the following
parameters: 120 kV tube voltage, 300mA effective power of
tube, 1.375 pitch, 0.6 s/cycle rotation speed, 5mm recon-
struction slice thickness, 5mm reconstruction slice interval,
and 512 × 512 matrix. All images were scanned in a cranio-
caudal sense. Intravenous contrast media (1mL/kg) was
injected at a rate of 3.5mL/s. The iodine contrast medium
concentration used during CT scanning was 300mg/mL.
During the CT scanning, the bolus tracking was used, and
the ROI was positioned on the descending aorta.

According to the position and size of the chest in the
image, the field of view was uniformly set to 400 × 300.

2.3. Segmentation and Annotation. Two trained radiology
physicians with more than 7 years of experience indepen-
dently performed segmentation using the 3D Slicer (version
4.10.2, https://www.slicer.org/) [22]. The software interface
of 3D Slicer is shown in Figure 1. The 3D Slicer can view
DICOM format images and allows users to mark the images
with voxel masks. The color patches on the enhanced CT
image in Figure 1 are the results of the annotation.
Difficult-to-identify lesions on contrast-enhanced CT were
labeled with reference to the corresponding nuclear mag-
netic image or PET image. The identified tumor regions
and the atelectasis regions were marked as masks separately.
The region where the tumor and atelectasis are mixed was
not specially marked but could be inferred from the con-
firmed tumor and atelectasis masks. Normal tissues and
organs were not marked.

All masks are marked layer by layer and can be used
directly in 2D analysis. The 3D masks are reconstructed
from the 2D mask sequence. An example of data and masks
is shown in Figure 2.

2.4. Radiomics Feature Extraction. The physicians per-
formed segmentation mainly based on the 2D transverse
plane of CT, but tumor regions and atelectasis regions are
3D objects. In cancer-related radiomics studies, the 3D
shape features of a tumor are commonly used [23–26].
Kovalev et al.’s study explored the significance of 3D general-
ized gradient in tumor imaging research [6]. Guan et al.’s
study showed that 3D radiomics features have certain refer-
ence values in distinguishing difficult-to-recognize bound-
aries [27]. To evaluate the effect of feature extraction in the
two modes, features are extracted in 2D or 3Dmodes. In each
mode, region-level feature extraction and pixel-level (or
voxel-level) feature extraction were performed separately.

Table 1: Population’s characteristics.

Characteristics Values

Mean age 61:30 ± 7:66
Age range 43 to 73

Sex ratio∗ 4 : 32

Total patients 36
∗Indicates the ratio of women to men.
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When extracting voxel-level features from 3D images, since
the ratio of the layer thickness to the pixel distance in the
layer is not 1, the image data are resampled and corrected

according to the actual ratio to prevent deviations in the
radiomics analysis, therefore eliminating the anisotropy of
the data format itself.

(a) (b)

(c) (d)

Figure 2: An example of data and masks. (b, c, d) Red indicates tumor, green indicates atelectasis. (a) Original image. (b) Contours of tumor
and atelectasis drawn by the physicians. (c) The masks generated from the contour. (d) 3D masks reconstructed from the 2D mask sequence.

Figure 1: 3D Slicer software interface.
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The extraction of radiomics features is divided into two
steps: image transformation and feature calculation. The
purpose of the image transformation step is to construct a
feature map that is not linearly related to the original image.
The feature calculation step calculates statistical features and
texture features both on the original image and the trans-
formed image. Extracting features from the transformed
image essentially generates a large number of feature extrac-
tors through a nonlinear combination, which can make
radiomics analysis more likely to obtain valuable features.
The image transformation method used in this experiment
is shown in Table 2, and the feature extraction methods used
are shown in Table 3.

As some feature extraction operators cannot work with
specific feature maps, the final number of features extracted
is not equal to the product of the number of feature maps
and feature extraction operators. Finally, 1,653 features were
extracted based on 2D images and 2,327 features were
extracted based on 3D images for analysis. The feature
extraction program is based on Pyradiomics (version 3.0.1,
https://pyradiomics.readthedocs.io/) [28].

To measure the significance of features in distinguishing
tumors and atelectasis, the IG of each feature in the region
classification problem was calculated using the following
equations:

H Yð Þ = −〠
yi∈Y

p yið Þ log p yið Þ,

H Y ∣ Xð Þ = − 〠
x j∈X,yi∈Y

p xj, yi
� �

log
p xj, yi
� �

p xj
� � ,

IG Y ∣ Xð Þ =H Yð Þ −H Y ∣ Xð Þ,

ð1Þ

where X and Y represent random variables and IGðY ∣ XÞ
represents the IG from X to Y . The greater the IG, the greater
the effect of known X as a condition in determining Y .

Therefore, features with greater IG are considered to
contribute more to classification. Theoretically, till the IG
is nonzero, the features are related to the classification prob-
lem. To prevent errors caused by calculation and sampling

Table 2: Image transformation operations.

Transformation Feature maps

Original Original image

Wavelet Wavelet decomposition subband∗

Log Log processing results∗∗

Square Square image

Square root Square root image

Logarithm Logarithm image

Exponential Exponential image

Gradient The gradient of the original image
∗Enhanced CT image data has 3 dimensions, and each dimension has two
options of low-pass wavelet convolution and high-pass wavelet
convolution, so there are 8 subbands in total. ∗∗Set the value of σ of the
Log operator to 0.01, 0.1, 0.5, 1.0, 2.0, 3.0, and 5.0 to get 7 different
processing results.

Table 3: Feature extraction operators.

Group Feature extractor

Shape

VoxelVolume

MeshVolume

SurfaceArea

SurfaceVolumeRatio

Sphericity

Max3DDiameter

Max2DDiameterSlice

Max2DDiameterColumn

Max2DDiameterRow

MajorAxisLength

MinorAxisLength

LeastAxisLength

Elongation

Flatness

Firstorder

Energy

TotalEnergy

Entropy

Min

10Percentile

90Percentile

Max

Mean

Median

InterquartileRange

Range

MAD

RobustMAD

RootMeanSquared

Skewness

Kurtosis

Variance

Uniformity

GLCM

Autocorrelation

JointAverage

ClusterProminence

ClusterShade

ClusterTendency

Contrast

Correlation

DifferenceAverage

DifferenceEntropy

DifferenceVariance

JointEnergy

JointEntropy

Imc1

Imc2

Idm

Idmn
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from affecting the experimental results, in the classification
problem (data distribution is uniform and the total entropy
is close to 1), 0.1 is selected as the threshold (refer to the
practice of Kim et al. [19]). Features with an IG less than
0.1 are considered irrelevant to classification.

2.5. Statistical Analysis and Machine Learning. Machine
learning is a set of tools for understanding and modeling
complex data [29]. Commonly used machine learning algo-
rithms include random trees and random forests, support
vector machines, and logistic regression. At present, various
machine learning algorithms have been widely used in
medical imaging-related research [30–36]. Machine learn-
ing algorithms are also often used as classifiers for radio-
mics research or as a means of evaluating radiomics
analysis [37–39].

To verify whether the features selected according to the
IG threshold are valuable for the classification of tumor
regions and atelectasis regions, 10 machine learning models
were trained based on features with an IG greater than 0.1.
The indicators of these classifiers can illustrate the effective-
ness of the selected features.

Pixel-level (or voxel-level) classifiers are trained on
nonshape pixel-level (or voxel-level) features for further
verification and to explore the feasibility of segmenting
tumor regions from atelectasis regions. As each lesion
region contains hundreds to thousands of pixels, the train-
ing cost of pixel classification is relatively large. For this
reason, a commonly used data dimensionality reduction
method, the principal component analysis algorithm
(PCA), was adopted to reduce the dimension of data fea-
tures and eliminate the correlation between data features.
The main idea of PCA is to transform the data in the n
-dimensional space into a new k-dimensional coordinate
system. The k coordinate axes in the new coordinate sys-
tem are the directions of the first k largest variance in
the original data. When performing PCA, first, the m data
is arranged into matrix X with n rows m column and the
covariance matrix C is calculated using Equation (2).
Then, the eigenvalues and eigenvectors of C are identified,
and the eigenvectors are arranged into a matrix from top
to bottom according to the size of the corresponding
eigenvalues. Finally, the first k rows are taken to form a

Table 3: Continued.

Group Feature extractor

Id

Idn

InverseVariance

MaxProbability

MCC

SumEntropy

SumSquares

GLRLM

ShortRunE

LongRunE

GrayLevelNU

GrayLevelNUN

RunLengthNU

RunLengthNUN

RunPercentage

GrayLevelVariance

RunVariance

RunEntropy

LowGrayLevelRunEntropy

HighGrayLevelRunEntropy

ShortRunLowGrayLevelEntropy

ShortRunHighGrayLevelEntropy

LongRunLowGrayLevelEntropy

LongRunHighGrayLevelEntropy

GLSZM

SmallAreaE

LargeAreaE

GrayLevelNU

GrayLevelNUN

SizeZoneNU

SizeZoneNUN

ZonePercentage

GrayLevelVariance

ZoneVariance

ZoneEntropy

LowGrayLevelZoneEntropy

HighGrayLevelZoneEntropy

SmallAreaLowGrayLevelEntropy

SmallAreaHighGrayLevelEntropy

LargeAreaLowGrayLevelEntropy

LargeAreaHighGrayLevelEntropy

GLDM

SmallDE

LargeDE

GrayLevelNU

DNU

DNUN

GrayLevelVariance

DVariance

DEntropy

Table 3: Continued.

Group Feature extractor

LowGrayLevelEntropy

HighGrayLevelEntropy

SmallDLowGrayLevelEntropy

SmallDHighGrayLevelEntropy

LargeDLowGrayLevelEntropy

LargeDHighGrayLevelEntropy

NGTDM

Coarseness

Contrast

Busyness

Complexity
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matrix P (generally select the eigenvalues with energy
99%), and the transformed data Y is calculated according
to Equation (3).

C = 1
m
XXT , ð2Þ

Y = PX: ð3Þ

To reduce the randomness of machine learning algo-
rithms, all machine learning models have undergone five-
fold cross-validation. Cross-validation is a method to
verify the classifier, which can effectively reduce the false
high phenomenon of the classifier index caused by model
overfitting or accidental factors. That is, the data set is
equally divided into five subsets, and five experiments are
performed. Each time, a subset is selected as the test set,
and the remaining subsets are combined as the train set
for model training. After all experiments are completed,
the results of five experiments are summarized to evaluate
the model.

2.6. Model Validation. The indicators used to evaluate the
pixel-level (or voxel-level) classifier are Hausdorff distance
(HD), Dice score (DSC), and accuracy (AC). Suppose X is
the real tumor region, Y is the tumor region predicted by
the network, d represents the distance between two points,
and N represents the number of pixels in the entire image.
The calculation formula of HD is shown in Equation (4).
The calculation formula of DSC is shown in Equation (5).
The calculation formula of AC is shown in Equation (6).

HD X, Yð Þ =max supx∈X inf y∈Y d x, yð Þ, supy∈Y inf x∈X d x, yð Þ
� �

,

ð4Þ

DSC X, Yð Þ = X ∩ Yj j
Xj j + Yj j , ð5Þ

AC X, Yð Þ = ∣ X ∩ Yð Þ ∪ −X ∩ −Yð Þ ∣
N

: ð6Þ

3. Results

Lei et al.’s study explored the separability of tumors and atel-
ectasis on contrast-enhanced ultrasound images [40]. There
are similar studies on magnetic resonance imaging [41, 42].
Due to image differences, the results of these studies and
ours are not comparable. Yang et al.’s study involves the dis-
tinction between tumors and atelectasis on CT images, but
their study focuses on manual recognition and our research
focuses on automatic detection [41]. Their study and ours
are in different fields. Therefore, there is no comparability
between Yang et al.’s study and ours. As far as we know,
our study has no comparable study of its kind for now.

The data set of this study contains contrast-enhanced CT
images of 36 patients with arterial stage central lung cancer.
The patients included 4 females and 32 males. The age range
of the patients is 43 to 73 years, and the average age is
61:30 ± 7:66. All contrast-enhanced chest CT images were
acquired on two GE Healthcare CT scanners. Images with
artifacts or poor quality were not included in this study.

3.1. Feature Information Gain. The distributions of the IG of
features from 2D and 3D images are shown in Tables 4 and
5, respectively. To clarify the influence of the window level
and window width on the experimental results in data prepro-
cessing, a control experiment was carried out. CT images of
the lungs are generally processed under the lung window.
However, according to the experience of radiology physicians,
a narrower window width can help distinguish tumors from
atelectasis. Therefore, standard lung window (window width:
1,500Hu, window level: -600Hu) and empirical window (win-
dow width: 150Hu, window level: 150Hu) data were proc-
essed separately. In addition, data normalization is also used
as an experimental variable to study the impact of data nor-
malization on the results of radiomics analysis. Considering
that the region shape features are important region features,
but the shape features cannot be extracted at the pixel (or
voxel) level, each experiment counts the total feature number
and the number after removing the shape features.

Experimental results show that a large number of effec-
tive features (IG greater than 0.1) are extracted from both
2D and 3D data, but there are more effective features
extracted from 3D data. Without normalization, it is easier
to obtain valid data through the empirical window than

Table 4: Feature number under different threshold of information gain on 2D images.

With shape features Without shape features
LW LW, N EW EW, N LW LW, N EW EW, N

Total 1,653 1,653 1,653 1,653 1,638 1,638 1,638 1,638

0 1,564 1,193 1,483 1,317 1,551 1,180 1,470 1,304

0.1 139 170 344 170 134 165 339 165

0.2 4 4 14 4 0 0 10 0

0.3 0 0 0 0 0 0 0 0

0.4 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0

0.6 0 0 0 0 0 0 0 0

LW: lung window; EW: experience window; N: normalized.
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the lung window. The impact of normalization on IG is
more complicated. On the one hand, it will make the origi-
nal data more regular, reduce abnormal and error values,
and enlarge some feature differences. On the other hand, it
also eliminates the physical meaning of the original data
and causes the loss of some feature differences. Experimental
results show that the effect of normalization on the empirical
window is not as obvious as that of the lung window, which
may be due to reducing the window width partly played a
role in min–max normalization.

After weighing, the experience window data without
normalization that can retain the physical meaning of the
data were used for subsequent classifier training.

3.2. Building Region Classification Models. 10 common
machine learning models are trained on extracted features
from 2D and 3D data (experience window, without normal-
ization). In multiple comparative experiments, the IG
threshold of the selected features was changed to study the
influence of the IG threshold on the classification effect.
The AC of the model under different conditions is shown
in Table 6, and the maximum AC is 0.9305.

3.3. Building Voxel Classification Models. The effective fea-
tures with IG higher than 0.1 are extracted at the voxel level
(experience window, without normalization). These features

are used to train the voxel classifier after principal compo-
nent analysis. The experimental results of the voxel classifier
are shown in Table 7.

4. Discussion

This retrospective study is a radiomics analysis of the tumor
region and atelectasis region on the enhanced CT image.
The results of this study can be used as references for the
delineation of the radiotherapy target to improve the accu-
racy of target delineation based on enhanced CT. This will
help reduce the patient’s radiation exposure while saving
treatment costs.

In the current literature that we know, there is no similar
study that can be compared numerically with our study. At
present, the study on the difference between atelectasis and
tumor imaging features mainly focuses on the field of mag-
netic resonance imaging [41, 42]. There are few studies regard-
ing the difference between tumor and atelectasis on enhanced
CT images. Yang et al. explored the difference between tumors
and atelectasis on CT images from the perspective of manual
annotation [41]. Their study lacks an objective evaluation of
imaging features, and our study objectively evaluated the dif-
ferentiation effect of various imaging features on tumors and
atelectasis through IG. In addition, we have also built machine
learning models that can automatically classify tumors and

Table 5: Feature number under different threshold of information gain on 3D images.

With shape features Without shape features
LW LW, N EW EW, N LW LW, N EW EW, N

Total 2,327 2,327 2,327 2,327 2,275 2,275 2,275 2,275

0 2,199 1,896 2,196 1,937 2,184 1,881 2,181 1,922

0.1 1,289 1,193 1,507 1,148 1,275 1,179 1,493 1,134

0.2 439 510 533 477 426 497 520 464

0.3 207 280 207 234 196 269 196 223

0.4 56 81 48 49 49 74 41 42

0.5 12 22 12 14 7 17 7 9

0.6 6 8 4 4 2 4 0 0

LW: lung window; EW: empirical window; N: normalized.

Table 6: The classification model accuracy result.

2D 3D
0 0.1 0.2 0 0.1 0.2 0.3 0.4 0.5

Multilayer perceptron 0.3995 0.7493 0.6866 0.3458 0.3972 0.3319 0.3625 0.6694 0.6763

Decision tree 0.7352 0.7484 0.7045 0.8055 0.8472 0.7916 0.8333 0.8333 0.9166

Random forest 0.7845 0.7924 0.7361 0.8041 0.8375 0.8305 0.8527 0.8958 0.9111

AdaBoost 0.8122 0.7825 0.7132 0.8736 0.8708 0.8805 0.8805 0.8916 0.9375

Gradient boosting 0.7814 0.7831 0.71 0.8291 0.818 0.8333 0.8055 0.8319 0.8694

Bagging 0.7911 0.8143 0.7442 0.8375 0.8597 0.8486 0.8625 0.8708 0.8902

Bernoulli naive Bayes 0.6604 0.6603 0.3232 0.4166 0.5138 0.5694 0.125 0.8333 0.4583

Gaussian naive Bayes 0.7937 0.6942 0.7437 0.6805 0.6944 0.6805 0.6805 0.875 0.9305

Support vector machine 0.1129 0.1184 0.6628 0 0 0 0 0 0.1527

K-nearest neighbor 0.498 0.7209 0.6616 0.625 0.625 0.625 0.625 0.7222 0.8333
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atelectasis regions. Kovalev et al. demonstrated the value of
generalized gradients for distinguishing tumors and atelectasis
on CT images [5, 6]. However, their study only involves one
image feature, while we tested thousands of features.

This study shows the following: whether it is 2D mode
or 3D mode, a large number of effective features are
extracted from contrast-enhanced CT images. The classi-
fiers trained based on these effective features have reached
a high AC rate, and the highest accuracy rate reached
0.9375. Since each patient has a tumor region and an atel-
ectasis region, the ratio of the two regions is close to 1 : 1.
Therefore, the region classification AC rate is considerably
higher than 0.5, and a large number of effective features
(measured by IG) can prove the differentiation of the
tumor regions and the atelectasis regions on the contrast-
enhanced CT image.

In the 3D mode, more effective features are extracted,
and the classifier scores are higher. Therefore, the 3D mode
is better than the 2D mode commonly used by radiology
physicians when distinguishing tumors and atelectasis
regions. As shown in Table 6, the score of some classifiers
increases as the IG threshold increases. This could be
because there are more significant associations that are eas-
ier to learn by machine learning models between features
with higher IG and classification labels. Increasing the IG
threshold enhances the effect of removing random factors
to a certain extent.

After the experimental parameters obtained in the region
analysis are transferred to the voxel level, sufficient effective
features are obtained. The voxel classifier trained based on
these features can achieve an AC rate of 0.8675. This proves
the feasibility of using machine learning algorithms to seg-
ment tumors and atelectasis on contrast-enhanced CT.

The pathological types of central lung cancer are mostly
small cell lung cancer and squamous cell carcinoma, and the
same pathological type will have different degrees of differ-
entiation. The main limitation of this experiment is that
there is no distinction between pathological types. In the
future, we will do further study on this.

The number of radiomics features tested in this study is
very large but still cannot cover all possible features. Finding
a more efficient feature test method to distinguish tumors
from atelectasis is also the future direction of this study.

This study is based on enhanced CT images. Due to
the change of CT value, when it comes to nonenhanced
CT, the effective features on enhanced CT images do not
necessarily remain effective. Due to the similar imaging
methods, there is still a certain degree of similarity
between contrast-enhanced CT and unenhanced CT

[43–46]. Therefore, there is the possibility of migrating
the effective features on enhanced CT to nonenhanced
CT. However, the effect of migration needs to be verified
by experiments.

5. Conclusions

This study analyzed the separability of lung tumor and atel-
ectasis in contrast-enhanced CT, which directly facilitates
CT diagnosis. Experimental data shows that tumors and
atelectasis are separable at the region and pixel levels. It
was found that tumors and atelectasis are easier to distin-
guish in 3D mode experience window (window width:
150Hu, window level: 150Hu) without data normalization.

A series of machine learning models that distinguish
between tumors and atelectasis at the regional level and pixel
level are constructed, establishing a theoretical foundation
for artificial intelligence-assisted CT diagnosing and radio-
therapy target delineation. This will help shorten the waiting
time of patients, reduce unnecessary patient radiation expo-
sure, reduce inspection costs, and improve the prognosis.

Abbreviations

CT: Computed tomography
AC: Accuracy
DSC: Dice score
HD: Hausdorff distance
IG: Information gain
NCCN: National Comprehensive Cancer Network.

Data Availability

The raw/processed data required to reproduce these findings
cannot be shared at this time as the data also forms part of
an ongoing study.

Additional Points

Key Points. Radiomics features are valuable in distinguishing
atelectasis and central lung tumors on contrast-enhanced
CT. Instead of manually selecting features one by one, we
extract a large number of radiomics features and select
effective features from them based on information gain.
This method can cover as many feature types as possible
and evaluate their values from the perspective of statistical
information. Employing information gain and machine
learning models, the accuracy rates of recognizing tumor

Table 7: The voxel classifier experiment results.

DSC HD AC
Tumor Atelectasis Average Tumor Atelectasis Average Tumor Atelectasis Average

Decision tree 0.1886 0.2267 0.20765 78.6 40.63 59.615 0.8688 0.8217 0.84525

Random forest 0.1397 0.2244 0.18205 54.35 36.21 45.28 0.8988 0.8363 0.86755

K-nearest neighbor 0.1383 0.2059 0.1721 57.73 37.92 47.825 0.8875 0.8245 0.856

Gaussian naive Bayes 0.1305 0.1639 0.1472 63.08 40.23 51.655 0.727 0.6842 0.7056

8 BioMed Research International



regions and tumor region voxels reached 93.75% and
86.75%, respectively.
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