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Abstract
Background: The aim of this study was to investigate the influence of convolu-
tion kernel and iterative reconstruction on the diagnostic performance of radio-
mics and deep learning (DL) in lung adenocarcinomas.
Methods: A total of 183 patients with 215 lung adenocarcinomas were included
in this study. All CT imaging data was reconstructed with three reconstruction
algorithms (ASiR at 0%, 30%, 60% strength), each with two convolution kernels
(bone and standard). A total of 171 nodules were selected as the training-
validation set, whereas 44 nodules were selected as the testing set. Logistic regres-
sion and a DL framework-DenseNets were selected to tackle the task. Three logi-
cal experiments were implemented to fully explore the influence of the studied
parameters on the diagnostic performance. The receiver operating characteristic
curve (ROC) was used to evaluate the performance of constructed models.
Results: In Experiments A and B, no statistically significant results were found
in the radiomic method, whereas two and six pairs were statistically significant
(P < 0.05) in the DL method. In Experiment_C, significant differences in one
and four models were found in the radiomics and DL methods, respectively.
Moreover, models constructed with standard convolution kernel data out-
performed that constructed with bone convolution kernel data in all studied
ASiR levels in the DL method. In the DL method, B0 and S60 performed best in
bone and standard convolution kernel, respectively.
Conclusion: The results demonstrated that DL was more susceptible to CT
parameter variability than radiomics. Standard convolution kernel images seem
to be more appropriate for imaging analysis. Further investigation with a larger
sample size is needed.

Introduction

Lung cancer is one of the leading causes of cancer-related
death both in males and females.1 How to achieve an early
and better prognosis has constantly received enormous

attention of researchers in the past decades. In the battle of
fighting lung cancer, medical imaging modalities including
computed tomography (CT), magnetic resonance (MR),
and positron emission tomography (PET) have played a
critical role and infiltrate each process of clinical practice
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such as disease detection, evaluation, diagnosis, surveil-
lance.2 Buoyed by the recent innovations in statistical
methodology and imaging data-driven technologies, more
and more researchers agree that diversified medical images
encompass not only hand-crafted descriptors which could
be easily evaluated by radiologists’ eyes, but also innumera-
ble agnostic representatives reflecting the tumor heteroge-
neity, biological process or gene-expression patterns.3–5 On
the basis of this theory, utilizing these invisible features
derived from routine medical images to diagnose disease,
monitor treatment response and make tailored therapy,
has sprung up rapidly with the initial intention to facilitate
precision medicine.
Radiomics, referring to converting imaging data into

mineable high-dimensional data with the use of large num-
ber of automatic algorithms, is one of the emerging imag-
ing analysis strategies.6 Radiomics-based researches have
been increasingly applied to various clinical contexts and
outperformed previous studies in several domains, includ-
ing lung cancer domain.7,8 Of note, while clinically promis-
ing, radiomics-based analysis has initially struggled with
many challenges related to technical variability across
imaging modalities, scanners, and parameters, highlighting
that the published results or models in clinical practice due
to the replicability should be carefully utilized.9,10 Several
studies have investigated the influence of different CT
acquisition parameters on radiomic features, e.g., thickness,
radiation dose, and reconstruction algorithm.9–12 However,
only a few studies have investigated the test-retest analyses
on patients due to the ethical and logistical issues, whereas
phantoms and different materials were usually used as the
surrogate subjects.9,10 Therefore, substantial discrepancies
between real lung nodules and phantoms may limit the
clinical utility of radiomics. Moreover, how the variability
among parameters affects the diagnostic performance is yet
to be investigated in depth.
Deep learning, a subset of machine learning that con-

tains sophisticated sets of algorithms, has recently made
substantial strides in interpreting and approximating very
complex data and is starting to take off in medical and
radiology fields.2,13,14 It has been reported that deep learn-
ing has already matched and even outperformed humans
in task-specific applications,15,16 including medical applica-
tions.17,18 These encouraging research results are because of
recent advances in artificial intelligence (AI) research, and
the massive amounts of data now available to train algo-
rithms and modern, powerful computational hardware. It
is important to note that the quality of data, including the
sample size, homogeneity, integrity and purity, is the life-
line of deep learning. Data whitening and normalization,
essential data preprocessing steps, may mitigate the influ-
ence of the non-normalization data in deep learning.3

However, little is known about whether and to what extent
the CT scanning parameters affect the performance and

robustness of deep learning. To the best of our knowledge,
no previous studies have investigated the issue.
The standardization of CT parameters in image

processing research has increasingly received attention.
The same slice thickness, manufacture, and scanning
parameters are carefully applied in current clinical
researches, with the aim being to obtain more reliable and
reproducible results. However, some parameters still need
to be tailored for patients due to their specific clinical pur-
pose (e.g., dose reduction) and necessity of the study itself.
In view of this, we aimed to carry out a clinical study to
investigate the influence of convolution kernel and adap-
tive statistic iterative reconstruction (ASiR GE Healthcare,
Waukesha, Wisconsin) on the diagnostic performance of
radiomics and deep learning in lung adenocarcinomas.

Methods

This study was approved by the Institutional Review Board
(Grant No.2017K062), which waived the requirement for
patients’ informed consent referring to the CIOMS
guideline.

Patients

A total of 284 consecutive patients with suspected lung can-
cers from November 2017 to July 2018 were selected as eli-
gible to undergo the same scanning parameters on one CT
scanner in our institution. The inclusion criteria were:
(1) Patients who had undergone thin-slice chest CT imag-
ing, (2) patients with pathologically confirmed lung adeno-
carcinoma and its precancer status and (3) patients with no
treatment prior to surgery. Exclusion criteria were: (1) Pul-
monary nodules without pathological diagnosis, (2) pulmo-
nary nodules pathologically confirmed with other kinds of
lung cancers and (3) patients who had received treatment
prior to surgery. Finally, a total of 183 patients (118 female
and 65 male; mean age, 56.4 years � 13.0 [standard devia-
tion]; range, 23–92 years) with 215 pathologically con-
firmed pulmonary nodules (26 patients had more than one
nodule) were enrolled in the study. The average size of
included nodules was 13.74 mm � 9.81 (standard devia-
tion), range, 3.61–70.77 mm. According to 2011 new classi-
fication, nodules were divided into four categories: atypical
adenomatous hyperplasia (AAH), adenocarcinomas in situ
(AIS), minimally invasive adenocarcinomas (MIA) and
invasive adenocarcinomas (IAC). We randomly divided the
nodules into two independent sets: 171 lesions constituted
the training and validation set, whereas 44 lesions consti-
tuted the testing set. The distribution of our study popula-
tion is summarized in Table 1.
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CT imaging acquisition

All studies were performed with a 64-detector row CT scan-
ner (Discovery CT750 HD; GE Healthcare, Waukesha, WI,
USA) with the following acquisition parameters: 40 mm
(64 × 0.625 mm) detector collimation, 120 kVp tube voltage,
automatic tube current modulation (Smart mA, GE
Healthcare) to achieve a preset noise index of 12 HU
(corresponding thickness: 5 mm), 0.5 second rotation time;
50 cm scan field of view and 512 × 512 imaging matrix. All
images were reconstructed with a section thickness of
1.25 mm (corresponding NI: 24HU) by using three recon-
struction algorithms: ASiR at 0% strength, ASiR at 30%
strength, and ASiR at 60% strength each with two convolu-
tion kernels: bone and standard. ASiR, iteratively refining
each pixel value measured with filtered back projection (FBP)
to an idealized estimate, is an image reconstruction algorithm
introduced for CT in 2008, with gains in image quality com-
pared to noise filtering techniques.19,20 Consequently, all the
CT imaging data was divided into six groups (ASiR at 0%
strength and bone, B0; ASiR at 30% strength and bone, B30;
ASiR at 60% and bone, B0; ASiR at 0% strength and standard,
S0; ASiR at 30% strength and standard, S30; ASiR at 60% and
standard, S60). Images with 1.25 mm (NI = 24 HU) thickness
were used for analysis.

Data annotation and preparation

The ASiR 30% with standard kernel images (good for pre-
senting the tumor-lung boundary) were selected as refer-
ence image set for delineation based on our experience.
One radiologist with five-years experience in chest CT
imaging manually and independently delineated all
included nodules at the voxel level using a medical image
processing and navigation software 3D Slicer (version
4.8.0, Brigham and Women’s Hospital). The volume of
interests (VOIs) of nodules were subsequently confirmed
(modified or redelineated) by another radiologist with
12-years experience in chest CT imaging. The image mask
was propagated to all other image sets such that all images
had the same annotation applied. Each segmented nodule
was assigned a specific pathological label (AAH, AIS, MIA
and IAC) based on pathological report. Due to the

unbalance distribution of four categories (AAH = 1,
AIS = 24, MIA = 107, IAC = 83), dividing the data set into
preinvasive lesions (AAH + AIS = 25) and invasive lesions
(MIA + IAC = 190) was clearly too low for fairly training
the radiomic models or the deep neural networks. To avoid
overfitting, the study merged the samples labelled as AAH,
AIS and MIA into a single class “AAH-AIS-MIA”, also
named as non-IAC class. Fortunately, it is still reasonable
in the clinical context, and these three subtypes of lesions
(≤3 cm) are reported to have a 100% or near 100%
disease-specific survival, if completely resected.21 Therefore,
a binary classification of IAC nodules and non-IAC nod-
ules was used in the further training and validation.

Invasiveness prediction with radiomics in
different parameter groups

Pyradiomics,22 an open source python toolkit for extracting
radiomic features, was used to extract a total of 1301 fea-
tures from first order statistics, shape-based features, gray
level co-occurrence matrix (GLCM), gray level run length
matrix (GLRLM), gray level size zone matrix (GLSZM),
neighboring gray tone difference matrix (NGTDM), gray
level dependence matrix (GLDM) in our study. Detailed
information on these predefined features is described in
Supplementary Information.
The principal component analysis (PCA) was used to

perform the dimension reduction and avoid the overfitting
problem. Logistic regression with L2 regularization
(to avoid the overfitting problem) was used to model the
relation between the radiomic features and invasiveness of
lung adenocarcinomas with the widely used scikit-learn
library in Python.23 Ten-fold cross validation search was
performed on the training set with 1 000 randomly sam-
pled values of regularization term C. To fully explore the
influence of convolution kernel and ASiR on diagnostic
performance of radiomics in lung adenocarcinomas, three
logical experiments were investigated in our study:
Experiment_A (Exp_A): constructing and testing the

model in six groups individually (controlling the parameter
as the same for both model and tested data);
Experiment_B (Exp_B): constructing the model by using

all six groups training data (n = 215*6 = 1290), and testing
the model on six groups tested data individually (control-
ling the model as the same);
Experiment_C (Exp_C): constructing the model by using

six groups training data individually, then testing one of
the six models on the rest of five groups tested data and
testing five different models on the rest of one group tested
data (cross-testing).
Three experiments are illustrated in the Supporting

information. Invasiveness Prediction with Deep Learning
in Different Parameter Groups.

Table 1 Number of nodules for training, validation, and testing

Groups Training and validation Testing Total

AAH 0 1 1
AIS 19 5 24
MIA 86 21 107
IAC 66 17 83
AAH-AIS-MIA 105 27 132
Total 171 44 215
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In this study, a deep learning framework based on
DenseNets24 with a multi-task strategy, which was pro-
posed in our previous study18 and could simultaneously
and automatically predict IAC nodules and non-IAC nod-
ules, as well as nodule segmentation masks, was selected to
model the task. The multi-task design was inspired by con-
sidering the medical relevance of the two tasks-
classification (IAC, non-IAC) and nodule segmentation. Of
note, the segmentation worked as an auxiliary task in the
multi-task learning architecture, with the aim to guide the
network to attend the nodule part. Such an ingenious
architecture gave DenseNets the ability to perform the clas-
sification and segmentation tasks end-to-end efficiently.
Briefly, the input of the multi-task model was a 3D cubic

patch of 48 × 48 × 48 mm (voxels, 1 voxel denotes 1 mm),
generated by a (preprocessed) chest CT scan and the posi-
tion c = (z, y, x), i.e., the mass center (roughly) of the nod-
ule, and the output was the categorical probability for the
two categories (IAC, non-IAC), as well as the model-
generated mask of the nodule segmentation. The
preprocessing followed “standard” procedure for chest CT:
the input CT scans were converted into Hounsfield units,
followed by resizing of volumetric data into spacing of
1 × 1 × 1 mm by trilinear interpolation, clipping the
voxel intensity into IHU 2 [−1024, 400], quantifying the
density into grayscale, and transforming the values to I 2
[−1, 1) by a mapping I = IHU + 1024

400 + 1024 × 255
� �

=128−1. During
the training process, several data augmentation techniques
(random offset, rotation, flipping, slight affine transforma-
tion) were used to increase the training data size and regu-
late the model.18 The multi-task model had two output
heads. The classification head could enforce the network to
extract salient representatives for diagnosis and the seg-
mentation head was able to teach the networks to attend
the VOIs. The multi-task loss could be expressed as lmulti,

lmulti = alcls + blseg

lcls was binary cross-entropy loss of the classification task,
and lseg was dice loss of the segmentation task. The study
chose a = 0.7, b = 0.3, since classification worked as a main
task and segmentation works as an auxiliary task. When
training the networks, all the network parameters were well
initialized using “he uniform” method.25 To avoid potential
bias, the proposed neural network in the study did not
pretrain on any database. During optimization, the study
sampled the training data with a ratio of 1: 1 for the two
classes with a batch size of eight.
The network was implemented by using Python 3.6 based

on TensorFlow 1.4.026 and Keras 2.1.527 deep learning library
and trained the neural networks on a workstation with
1 NVIDIA GeForce GTX 1080 Ti GPU. The detailed training
process is presented in Supplementary information.

Again, the aforementioned three experiments (Exp_A,
Exp_B and Exp_C) were investigated by using the pro-
posed deep learning system.

Statistical analysis

The receiver operating characteristic curve (ROC) was used to
evaluate the performance of constructed models. The ROC
comparison analysis was performed to assess the statistical dif-
ferences between AUCs by using the method developed by
DeLong et al.28 P < 0.05 was considered statistically significant.
All statistical analysis was performed with MedCalc 18.2.1.

Results

Experiment_A: Results of radiomics and
deep learning

To investigate whether the studied parameters could affect
the invasiveness prediction performance of radiomics and
deep learning, we first individually constructed six models
based on six groups using 171 nodules of training and valida-
tion set and tested the invasiveness prediction performance
on corresponding group using 44 nodules of testing set, also
named as Exp_A (controlling the parameter as the same for
both model and tested data). While presenting differences
between six models in the radiomic method, in term of the
predicting performance (AUC value), no statistically signifi-
cant results were found after performing the ROC compari-
son analysis. In contrast, the differences in predicting
performance between B60 and S60, as well as between S30
and S60, were statistically significant in ROC comparison
analysis when using the deep learning method (P < 0.05)
(Table 2, Fig 1). Note that a trend demonstrated that models
constructed by radiomic method outperformed those con-
structed by the deep learning method; model S60 was an
exception. However, no statistical differences were found
after comparing the AUCs in the two methods (Table 2).

Experiment_B: Results of radiomics and
deep learning

The results of Exp_A appeared to draw the conclusion that
the studied parameters could only affect the invasiveness
prediction performance of the deep learning method. To
further verify the assumption, we implemented the Exp_B,
testing the predicting performance of the model fed by six
groups mixed-parameters data (controlling the model as the
same) on six groups testing data. Integrating six groups data
into one mixed-parameters group and then modeling on it
may be more appropriate in real clinical practice context,
considering that substantial variability among CT scanning
parameters were presented in different institutions. With
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regard to the radiomic method, the obtained results in
Exp_B were surprisingly similar to that in Exp_A, which
depicted that no statistically significant results were found
after performing ROC comparison analysis. In terms of the
deep learning method, as we expected, more pairs in ROC
comparison analysis (six pairs vs. two pairs in Exp_A) were
statistically significant (P < 0.05) (Table 2, Fig 1). Again, the
performance of models constructed by the radiomic method
were potentially superior to that of models constructed by
the deep learning method (Table 2). However, the perfor-
mance of two methods had no statistical differences.

Experiment_C: Results of radiomics and
deep learning

Inspired by the results of Exp_A and Exp_B, we hypothe-
sized that more striking distinctions would be presented

Table 2 The invasiveness predicting performance of radiomics and
deep learning in Exp_A and Exp_B

Model AUC (radiomics) AUC (deep learning) P

Exp_A
B0 0.928 0.830 0.1734
B30 0.863 0.828 0.632
B60 0.874 0.800 0.3914
S0 0.919 0.845 0.3006
S30 0.911 0.780 0.144
S60 0.885 0.911 0.6508
Exp_B
B0 0.950 0.928 0.5972
B30 0.941 0.850 0.1906
B60 0.948 0.913 0.4553
S0 0.930 0.810 0.1311
S30 0.928 0.763 0.0653
S60 0.908 0.868 0.5848

P < 0.05 was considered statistically significant.

Deep learning (a) Radiomic (a) 

Radiomic (b) Deep learning (b)

B0      vs B30       
B0      vs B60
B0      vs S0
B0      vs S30
B0      vs S60
B30    vs B60
B30    vs S0
B30    vs S30
B30    vs S60
B60    vs S0
B60    vs S30
B60    vs S60  
S0       vs S30
S0       vs    S60
S30     vs S60  

B0      vs B30       
B0      vs B60
B0      vs S0   *
B0      vs S30  *
B0      vs S60
B30    vs B60
B30    vs S0
B30    vs S30  *
B30    vs S60
B60    vs S0   *
B60    vs S30  *
B60    vs S60  
S0  vs S30
S0      vs S60
S30    vs S60  *

B0      vs B30       
B0      vs   B60
B0      vs S0
B0      vs S30
B0      vs S60
B30    vs B60
B30    vs S0
B30    vs S30
B30    vs S60
B60    vs S0
B60    vs S30
B60    vs S60  
S0      vs S30
S0      vs S60
S30    vs S60  

B0      vs B30       
B0      vs B60
B0      vs   S0
B0      vs S30
B0      vs S60
B30    vs B60
B30    vs S0
B30    vs S30
B30    vs S60
B60    vs S0
B60    vs S30
B60    vs S60  *
S0      vs S30
S0      vs S60
S30    vs S60  *

Figure 1 The two methods’ results of ROC comparison analysis in Exp_A and Exp_B. The performance of six models constructed with two methods
was performed with ROC comparison analysis in Exp_A and Exp_B. There were 15 pairs ROC comparison analysis in each method, specifically
depicted in the right of the AUCs. The significant differences are marked as *. ( ) B0, ( ) B30, ( ) B60, ( ) S0, ( ) S30, ( ) S60.
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after performing Exp_C, constructing the model by using
six groups training data individually, and testing one of the
six models in the rest of five groups tested data or testing
five different models in the rest of one group tested data
(cross-testing). Exp_C could actually be considered as a
strategy to investigate the generalization ability of a model.
Among the six models, one radiomics-based model and
four deep learning-based models we found significant dif-
ferences in ROC comparison analysis (Figs 2 and 3). Of
note, there were eight pairs in four testing data sets (radio-
mics method) and 33 pairs in six testing data sets (deep
learning method) were statistically significant after compar-
ing the AUCs of different models (Figs 4 and 5). These find-
ings further supported the results of Exp_A and Exp_B.
After comprehensively and thoroughly analysing the

results, it was not hard to come to several conclusions. Firstly,
the cross-testing performance of bone-kernel models (B0, B30
and B60) and S30 constructed by radiomic method out-
performed the corresponding performance of models con-
structed by the deep learning method (Table 3). Moreover,
the testing performance of model B60 on B0 data set had sig-
nificant difference between two methods (Table 3 marked as
*). Secondly, standard-kernel models (S0, S30 and S60) con-
structed by the deep learning method were more stable and
generalized, since the models constructed on S30 and S60
groups found no significant differences in ROC comparison
analysis (Fig 3) and an incremental performance was pres-
ented after testing these models on bone-kernel groups

(Table 3). Thirdly, focusing on ASiR, B0 and S60 seemed to
have the best performance in bone-kernel and standard-
kernel models, respectively when performing the deep learn-
ing method (Table 3). This trend was analogous to the results
depicted in Exp_A and Exp_B. Lastly, when we compared the
performance of different convolution kernel models by con-
trolling the ASiR level as the same, an interesting circum-
stance was observed. Models constructed with standard
convolution kernel data outperformed those constructed with
bone convolution kernel data in all studied ASiR levels – 0%,
30% and 60% in deep learning method. A similar trend was
also found in the radiomic method, except for testing on the
B0 and bone 30 data set (Table 3).

Discussion

Radiomics and deep learning are the most frequently used
imaging analysis strategies in radiology discipline. However,
a non-negligible drawback faced by both strategies is that
the diagnostic performance is susceptible to CT scanning
parameters, and therefore it might limit their use in clinical
practice. To tackle this issue, we have implemented three
logical experiments to investigate the influence of two rep-
resentative CT parameters: convolution kernel and strength
of iterative reconstruction (ASiR in specific), on the diag-
nostic performance of radiomics and deep learning in lung
adenocarcinomas. The current study has demonstrated that
the invasiveness prediction performance of deep learning

B0      vs    B30       
B0      vs    B60
B0      vs    S0
B0      vs    S30
B0      vs    S60
B30    vs    B60
B30    vs    S0
B30    vs    S30
B30    vs    S60
B60    vs    S0
B60    vs    S30
B60    vs    S60  
S0      vs    S30
S0      vs    S60
S30    vs    S60  

B0      vs    B30       
B0      vs    B60
B0      vs    S0
B0      vs    S30
B0      vs    S60
B30    vs    B60
B30    vs    S0
B30    vs    S30
B30    vs    S60
B60    vs    S0
B60    vs    S30
B60    vs    S60  
S0      vs    S30
S0      vs    S60
S30    vs    S60  

B0      vs    B30       
B0      vs    B60
B0      vs    S0
B0      vs    S30
B0      vs    S60
B30    vs    B60  *
B30    vs    S0    *
B30    vs    S30  *
B30    vs    S60  *
B60    vs    S0
B60    vs    S30
B60    vs   S60  
S0      vs    S30
S0      vs    S60
S30    vs    S60  

B0      vs    B30       
B0      vs    B60
B0      vs    S0
B0      vs    S30
B0      vs    S60
B30    vs    B60
B30    vs    S0
B30    vs    S30
B30    vs    S60
B60    vs    S0
B60    vs    S30
B60    vs    S60  
S0      vs     S30
S0      vs     S60
S30    vs    S60  

B0      vs    B30       
B0      vs    B60
B0      vs    S0
B0      vs    S30
B0      vs    S60
B30    vs    B60
B30    vs    S0
B30    vs    S30
B30    vs    S60
B60    vs    S0
B60    vs    S30
B60    vs    S60  
S0      vs    S30
S0      vs    S60
S30    vs    S60  

B0      vs    B30       
B0      vs    B60
B0      vs    S0
B0      vs    S30
B0      vs    S60
B30    vs    B60
B30    vs    S0
B30    vs    S30
B30    vs    S60
B60    vs    S0
B60    vs    S30
B60    vs    S60  
S0      vs    S30
S0      vs    S60
S30    vs    S60  

B0 B30 B60

S0 S30 S60

Figure 2 The radiomics method’s results of ROC comparison analysis in Exp_C when comparing the AUCs of testing one model on six testing data
sets. The performance of six models constructed with two methods was performed with ROC comparison analysis. There were 15 pairs ROC compar-
ison analysis in each method, specifically depicted in the right of the AUCs. The significant differences are marked as *. Note that the phrases such
as B0 below the AUCs represent the corresponding model. ( ) B0, ( ) B30, ( ) B60, ( ) S0, ( ) S30, ( ) S60.
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was more likely to be affected by the convolution kernel
and the strength of ASiR and inferior to radiomics. More-
over, models constructed with standard convolution kernel

data potentially outperformed those constructed with bone
convolution kernel data, especially in the deep learning
method.

B0      vs B30       
B0      vs B60
B0      vs S0   *
B0      vs S30  *
B0      vs S60  *
B30    vs B60
B30    vs S0   *
B30    vs S30  *
B30    vs S60
B60    vs S0
B60    vs S30
B60    vs S60  
S0      vs S30
S0      vs S60
S30    vs S60  

B0      vs  B30       
B0      vs B60
B0      vs S0   *
B0      vs S30  *
B0      vs S60
B30    vs B60
B30    vs S0   *
B30    vs   S30  *
B30    vs S60
B60    vs S0   *
B60    vs S30  *
B60    vs   S60  
S0      vs S30
S0      vs S60
S30    vs S60  

B0      vs B30       
B0      vs B60
B0      vs S0   *
B0      vs S30  *
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Figure 3 The deep learning method’s results of ROC comparison analysis in Exp_C when comparing the AUCs of testing one model on six testing
data sets. The performance of six models constructed with two methods was performed with ROC comparison analysis. There were 15 pairs ROC
comparison analysis in each method, specifically depicted in the right of the AUCs. The significant differences are marked as *. Note that the phrases
such as B0 below the AUCs represent the corresponding model. ( ) B0, ( ) B30, ( ) B60, ( ) S0, ( ) S30, ( ) S60.
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Figure 4 The radiomics method’s results of ROC comparison analysis in Exp_C when comparing the AUCs of testing six models on one testing data
set. The performance of six models constructed with two methods was performed with ROC comparison analysis. There were 15 pairs ROC compari-
son analysis in each method, specifically depicted in the right of the AUCs. The significant differences are marked as *. Note that the phrases such
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It is well established and accepted that the variability
due to CT scanning parameters is one of the vital factors
affecting the robustness and reproducibility of radiomic
features. On the contrary, deep learning, characterized by
minimizing the efforts and optimizing the efficiency, is
generally and initially expected to achieve a better and
more stable performance than radiomics with respect to
the task studied in the research. However, an opposite con-
clusion has been drawn in the current study. This may be

partially explained by the insufficient data included in our
study. Deep learning is a data-driven strategy which
requires a large amount of data in the whole process of
training and validation, as well as testing. Insufficient data
may cause the inadequate learning by the deep learning
networks, followed by the inferior performance than radio-
mics and unstable diagnostic performance. On the other
hand, ASiR, one of the studied parameters, may actually
have relatively less impact on the robustness of radiomic
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Figure 5 The deep learning method’s results of ROC comparison analysis in Exp_C when comparing the AUCs of testing six models on one testing
data set. The performance of six models constructed with two methods was performed with ROC comparison analysis. There were 15 pairs ROC
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Table 3 The invasiveness prediction performance of radiomics and deep learning in Exp_C

AUC (model) B0 B30 B60 S0 S30 S60

Radiomics
AUC (B0) 0.928 0.930 0.915 0.869 0.876 0.830
AUC (B30) 0.911 0.863 0.847 0.828 0.810 0.800
AUC (B60) 0.924* 0.935 0.874 0.852 0.852 0.845
AUC (S0) 0.904 0.906 0.919 0.919 0.926 0.911
AUC (S30) 0.898 0.893 0.926 0.915 0.911 0.911
AUC (S60) 0.880 0.885 0.906 0.915 0.898 0.885
Deep learning
AUC (B0) 0.830 0.845 0.869 0.749 0.752 0.760
AUC (B30) 0.793 0.828 0.839 0.715 0.715 0.712
AUC (B60) 0.765* 0.786 0.800 0.691 0.695 0.702
AUC (S0) 0.961 0.961 0.954 0.845 0.852 0.861
AUC (S30) 0.880 0.874 0.867 0.769 0.780 0.784
AUC (S60) 0.972 0.963 0.959 0.902 0.906 0.911

*Indicated statistically significant difference between two AUC values (0.924 vs 0.765). B0 in parentheses in the first column was the name of
corresponding models and B0 in first row represents the corresponding testing data set. This explanation applies to all models and data sets.
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features than other previous studied parameters, such as
thickness, noise index and tube current, which has already
been proved to substantially affect the robustness of radio-
mic features by affecting pixel-by-pixel intensity variabil-
ity.10,29 Research performed by Abhishek et al.9 concluded
that radiomic features were influenced by acquisition
parameters (noise index and tube current) more than
ASiR. The study by Justin et al. also demonstrated that
ASiR affected fewer radiomic features than radiation
dose.30 Moreover, each nodule in the six different groups
used the identical segmentation mask for further analysis
in our study; substantially eliminating the variability related
to the segmentation. This approach may also mitigate the
effect on the radiomic features. In this context, the radiomic
method may desrve the better performance and more stable
results.
Note that no significant differences were found between

models for radiomics method in Exp_A and Exp_B,
whereas Exp_C demonstrated significant differences. This
may be explained by the following: (1) In Exp_A, since the
diagnostic performance was evaluated by testing one
parameter model on the same parameter tested data, the
constructed six models could learn the respective impor-
tant representatives for differentiating non-IAC from IAC,
and thus obtain similar performance; even the value of
extracted features is different in six groups data. Therefore,
the differences between models are either absent or not so
obvious. (2) In Exp_B, the mixed model was trained by the
data from the six groups and may potentially learn all the
important representatives for differentiating non-IAC and
IAC in each parameter data. In this context, when we
tested the mixed model on six group tested data, it was also
difficult to see the differences (e.g., in the radiomics
method). However, the differences would be more obvious
than Exp_A due to the mixed data for training the model,
which was proven in the deep learning method. (3) In
Exp_C, we tested models fed by one parameter on another
tested parameter data, considered as a strategy to evaluate
the generalization ability. In this way, the tested data with
a specific parameter was really unknown to its tested
model and the important representatives in one parameter
data may not so vital for differentiating non-IAC form
IAC in another. Therefore, the differences were without
doubt obvious compared with Exp_A and Exp_B, which
was proved in both the radiomics and deep learning
methods.
Instead of using high-pass filter algorithms such as bone

convolution kernel, standard convolution kernel, which
uses low-pass filter algorithms, reduces the higher fre-
quency contribution with decreasing noise and spatial reso-
lution.31 Imaging noise may play a vital role in influencing
the extraction of radiomic features and confusing the rep-
resentatives learned by deep learning networks, indicating

that a smoother reconstruction algorithm (i.e., standard
convolution kernel) is supposed to achieve better reputa-
tion in stability and reproductivity. Previous studies have
shown that smoother reconstruction algorithms are more
favorable for reproducibly extracting quantitative features32

and perform better in diagnosis.33 Our study obtained the
same results in Exp_C regarding the deep learning method
and a similar trend was found in the radiomics method
(see detailed explanations in “Results” section). It is hard
to explain why deep learning performed better in standard
convolution kernel images than in bone convolution kernel
images to date. We speculate that deep learning networks
give their promising performances by learning more dis-
criminative and higher-level representatives and analysing
more comprehensive associations within the tumor. Also,
decreasing imaging noise (i.e., using a standard convolu-
tion kernel algorithm) may be more important for deep
learning networks to learn these higher-level representa-
tives, instead of increasing spatial resolution (i.e., using
bone convolution kernel algorithm). Further validation is
necessary to confirm this supposition.
Another interesting finding was that B0 and S60 seemed

to have the best performance in bone-kernel and standard-
kernel models, respectively in the deep learning method. It
is well established that the imaging noise decreases logi-
cally, as the ASiR strength level increases. This may be the
reason why S60 model, the model with minimized imaging
noise in our study, achieved the best performance in
Exp_C for deep learning. In contrast, B0 model performed
better than the other two bone-kernel models (B30 and
B60) in the deep learning method. The bone convolution
kernel is famous for being able to better assess tumor het-
erogeneity (brightness details or textures) than a smoother
reconstruction algorithm (i.e., standard convolution kernel)
at the sacrifice of increased imaging noise. Of note, the study
by Abhishek et al. showed that the increase in blurring of
images was observed with increasing ASiR strength level,
resulting in the decreased number of reproducible radiomic
features.9 In view of this, retaining a high spatial resolution
is more important for facilitating the comprehensive learn-
ing of networks than reducing imaging noise-increasing the
ASiR level in the bone convolution kernel.
There were several limitations to our study. First, the

sample size was insufficient to perfectly train the model,
resulting in the presence of overfitting and instability of the
proposed model. Both radiomics and deep learning will
benefit from more data in terms of reproducibility and gen-
erality, as well as predicting performance. Hence, care
should be taken when interpreting these results. Further
prospective investigation with an increased sample size is
warranted to reach a more persuasive and fairer conclusion.
However, the data collected in our study (using the same
CT scanner, scanning protocol and reconstructed

Thoracic Cancer 10 (2019) 1893–1903 © 2019 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd 1901

W. Zhao et al. CT parameters affect radiomics and deep learning



parameters) is very valuable and rare in clinical practice.
Moreover, the included sample size is acceptable for tack-
ling this issue and is greater than in previous studies.9,11,34

Second, the distribution of pathological subtypes of lung
adenocarcinomas included in this study was unbalanced. Of
note is that only one AAH and 24 AIS were included in the
current study. However, these lesions are usually diagnosed
as benign or indolent and rarely require surgical treatment.
To address this dilemma, we categorized AAH, AIS and
MIA as one group, which mitigated the influence of data
bias. Third, only the GE scanner was used. Hence, variabil-
ity with other manufacturers’ reconstruction algorithms
was not included as a comparison in this study. Potential
distinctions may be highlighted between two manufac-
turers, even those with identical scanning parameters. Fur-
ther investigation is therefore warranted in the future.

Conclusion

In summary, in our study we demonstrated that the diag-
nostic performance of deep learning was more susceptible
to convolution kernel and iterative reconstruction than
radiomics. CT images reconstructed with the standard con-
volution kernel seem to be more appropriate for imaging
analysis. Further investigation with a larger sample size is
required.
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