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Abstract: Immediate assessment of structural integrity of important civil infrastructures, like bridges,
hospitals, or dams, is of utmost importance after natural disasters. Currently, inspection is performed
manually by engineers who look for local damages and their extent on significant locations of
the structure to understand its implication on its global stability. However, the whole process
is time-consuming and prone to human errors. Due to their size and extent, some regions of
civil structures are hard to gain access for manual inspection. In such situations, a vision-based
system of Unmanned Aerial Vehicles (UAVs) programmed with Artificial Intelligence algorithms
may be an effective alternative to carry out a health assessment of civil infrastructures in a
timely manner. This paper proposes a framework of achieving the above-mentioned goal using
computer vision and deep learning algorithms for detection of cracks on the concrete surface
from its image by carrying out image segmentation of pixels, i.e., classification of pixels in an
image of the concrete surface and whether it belongs to cracks or not. The image segmentation
or dense pixel level classification is carried out using a deep neural network architecture named
U-Net. Further, morphological operations on the segmented images result in dense measurements
of crack geometry, like length, width, area, and crack orientation for individual cracks present in
the image. The efficacy and robustness of the proposed method as a viable real-life application was
validated by carrying out a laboratory experiment of a four-point bending test on an 8-foot-long
concrete beam of which the video is recorded using a camera mounted on a UAV-based, as well as
a still ground-based, video camera. Detection, quantification, and localization of damage on a civil
infrastructure using the proposed framework can directly be used in the prognosis of the structure’s
ability to withstand service loads.
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1. Introduction

Condition assessment of civil engineering structures for its safety and remaining lifetime has
been in focus for the past couple of decades. Mostly, it consisted of harnessing dynamic response by
attaching acceleration and displacement sensors with further post-processing of the data to evaluate
the presence of damage in those structures. This method provides the global behavioral pattern of the
structure which may sometimes provide local damage indications depending on the kind of structure
and the spatial density of the sensors.
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On the other hand, local assessment of structural damage is mostly carried out by visual inspection
by experts. Otherwise, by placing contact-based strain sensors or by carrying out acoustic-based
non-destructive testing. Sun et al. [1] present a detailed review of structural health monitoring
methods based on the big data and artificial intelligence algorithms for bridges, as well as identifies
challenges associated with them. However, given the size of the structure itself, the whole process
becomes time-consuming and prone to human errors. In addition, in some regions of the structure,
it is difficult for human beings to gain access. Contact-based sensors also suffer from high maintenance
due to the wrath of the exterior environment they are exposed to.

Recent advances in the application of non-contact camera-based structural health monitoring
got huge incentive with the development in high-resolution cameras coupled with robust computer
vision algorithms. Some of the real-life applications of such computer vision algorithms include face
detection in mobile cameras, motion detection for surveillance, traffic sign, and pedestrian detection
in autonomous cars. Similar technologies can be customized to detect local damages on structural
surfaces using video measurements. Video acquired from surveillance cameras installed on important
structures, like bridges, is a valuable source of data for damage detection. Moreover, fast and automatic
damage inspection of large scale structures can be performed using the unmanned aerial vehicle (UAV)
equipped with a digital camera and onboard microprocessor. Koch et al. [2] present a review of
computer vision algorithms that have been used for damage detection and condition assessment of
civil infrastructure.

The previously reported methods for detecting cracks on concrete surfaces from its image can be
broadly classified into two categories: image processing and machine learning. Some of the earlier
works involve application of image processing techniques to identify the edges in the image which
corresponds to presence of crack patterns. Among various methods of edge detection from images,
like Sobel filter, Canny edge detector, Fast Fourier Transform (FFT), and Fast Haar Transform (FHT),
Abdel-Qader et al. [3] found FHT to be superior among them. Yamaguchi and Hashimoto [4] identified
crack pixels in an image using the technique of iterative percolation. Hutchinson and Chen [5] obtained
the optimal thresholding parameters of Canny edge detection and FHT using Bayesian decision theory.

Methods based on only image processing rely on the efficient extraction of predefined visual
crack features, which does not require supervised learning using extensive labeled image data.
Image processing involves extracting preset features from an image that can visually identify damages
in structures in a qualitative sense. However, the methods are less robust as the preset features
that are looked for do not encompass extensive variability that real images offer, like luminescence,
surface texture, shadow, scale, and rotation invariance, as well as noise content. A large amount
of dataset in form of images of both cracked and uncracked concrete surfaces is utilized to extract
quantitative features. Such a bag of features, along with the binary labels of cracked or uncracked,
are used to train a classification model that can predict whether an image of the concrete surface has
the presence of cracks or not. Jahanshahi et al. [6] trained nearest-neighbor model, a polynomial kernel
support vector machines (SVMs) model, and an artificial neural network model for binary image
classification using morphological features of the detected objects. Chen et al. [7] trained an SVMs
binary classification model using local binary patterns (LBP) as features. Concrete surfaces consist of
minor cracks due to its thermal expansion. Several kinds of superficial breathing cracks are also present
on its surface which opens and closes due to varying loads. The continuous monitoring of structures
subjected to cyclic loadings [8] will provide valuable insights not only regarding deterioration and
fracture processes but also in the planning of maintenance and repair. Therefore, the mere detection of
cracks is not sufficient for damage detection. It is imperative to constantly monitor concrete surfaces
for crack initiation and its propagation. Yang and Nagarajaiah [9] proposed the method of dynamic
tracking of damages on concrete surfaces. Bhowmick and Nagarajaiah [10] further developed the
method to detect and quantify multiple damages on concrete surface from its video.

The previously described methods of binary classification using machine learning depend on
the extraction of relevant features from the images. This step of feature engineering is skipped



Sensors 2020, 20, 6299 3 of 19

while using methods based on deep convolution neural network (D-CNN) as it can adaptively learn
relevant features of the images in its training phase.But, the main benefit of D-CNN models is the
significant improvement of the accuracy they provide over the other machine learning methods [11–13],
given large labeled image dataset is available. Cha et al. [14] trained a D-CNN model using 40 k
manually annotated images of dimension 256× 256× 3 for detecting the presence or absence of cracks
in images of concrete surfaces. Chen and Jahanshahi [15] used 5326 manually annotated images of
pixel size 120× 120× 3 which were extensively augmented to increase the data size to more than 250 k
by rotating, flipping and varying brightness of the images to train D-CNN which was augmented with
Naive Bayes classifier to separate out cracks from non-cracks using results of consecutive frames of a
video. In both the methods, the trained network takes as input an image of the concrete surface of
the specific pixel size as it is trained for and outputs a label of crack or non-crack. For an image of a
concrete surface larger than the image size with which the network is trained, the method first extracts
cropped image patches of required dimension using the technique of sliding window. The individual
extracted patches are further predicted as damaged or not; if damaged, then a square bounding box is
drawn around the patch in the original image. Thus, for a large image of a concrete surface or video
sequence, the detected cracks are marked with a bounding box. The results on the validation set show
excellent performance of the classification algorithm, but the method fails to reveal more information
such as length, width, and area of the crack apart from its detection.

Although the technique of image classification using CNN could satisfactorily detect the presence
of cracks by generating a bounding box, further information required to quantify the damage could
not be processed from the obtained bounding box. Hence, the technique of image segmentation is
utilized to classify the presence of cracks in the pixel level of an image. Very recently, deep neural
network architectures are trained using pixel-level annotated images of concrete cracks to obtained
an image segmentation model of concrete cracks. Ni et al. [16] trained a modified GoogLeNet
architecture [17] with hand-labeled images of concrete cracks to propose a crack segmentation model.
Kim and Cho [18] trained a mask region-based CNN with hand-labeled concrete crack images to obtain
a crack segmentation model and further measured the crack width of cracks present in a concrete wall
using the output of the model. Liu et al. [19] proposed DeepCrack, a deep neural network architecture
for segmentation of concrete cracks. Liu et al. [20] used U-Net architecture [21] for image segmentation
and showed that U-Net can achieve higher accuracy score of crack segmentation with less number of
training images compared to previously reported segmentation networks. The pixel-level labeling
of cracks from the concrete surface image is time-consuming and labor-intensive work. Hence, it is
beneficial to use a CNN algorithm that requires less training set images to achieve high accuracy in
segmentation score. In this study, the U-Net architecture is chosen for obtaining an image segmentation
model that needs less number of pixel-annotated ground truth images to achieve high segmentation.
The model is trained using only 346 images obtained from two different sources which include both
the training and validation set, but the dataset is expanded using data augmentation to add variability
in the training images. The efficacy and robustness of the trained model are experimentally verified on
an 8-foot-long concrete beam pseudo-statically loaded till its failure. The whole experiment is video
recorded using a camera mounted on a UAV. The video is processed using the trained segmentation
model which detects the initiation and propagation of multiple cracks at different instants of time
on the concrete beam. The image of the concrete beam used in experimental verification does not
form part of the dataset used to train and validate the U-Net segmentation model. This makes the
trained U-Net model completely unbiased towards the outcome of the segmentation results, as well as
confirms the robustness of the model in segmenting unseen images of concrete surfaces in different
environmental conditions. The segmented images of cracks are further processed to obtain geometric
measurements of the cracks as they evolve with time.

The output of an image segmentation model to detect crack is also an image.
Hence, further processing of the predicted image is needed to obtain the geometrical quantities which
are essential for addressing condition assessment of concrete structures. Zhu et al. [22] proposed
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morphological operations on crack map of concrete surface to obtain geometrical properties of cracks.
Jahanshahi et al. [6] proposed similar morphological operations to compute crack properties on concrete
surface. Adhikari et al. [23] proposed a method of retrieving crack length and width from its image.
The geometrical properties of cracks are converted to physical units using a scaling factor obtained from
a known dimension of a structural element within the acquired image [6,18]. However, the proposed
operations are designed to compute length and the maximum width of single crack from an image of
crack present in the concrete surface. In this paper, the crack quantification methodology extends to
detect multiple cracks in each frame of the UAV video of the concrete surface. The length of individual
cracks is measured, as well as the dense measurement of its width, along the length of the crack.
The maximum crack width and its location in the image are identified in the image from the spatially
dense measurement of crack width, along its length. The previous studies have fitted a straight line to
the skeleton of the crack to measure its orientation. But, in real-life scenarios for concrete structures,
one crack may divide to form multiple others, or several small cracks may join together to form a single
crack. During the inspection of concrete structures, an expert infers the nature of crack from its dominant
orientation, i.e., whether it is flexure or shear crack. Hence, the simple fitting of a straight line to those
complex cracks does not provide a dominant orientation of the cracks, in turn, it does not provide
required inference about the nature of the crack. In this study, the dominant orientation of multiple
cracks are extracted individually and quantified such that proper inference about the cracks nature
is possible. The method could track the evolution and propagation of multiple cracks by quantifying
individual crack’s length, width, area, and dominant orientation. The qualitative nature of cracks is
inferred using the measured dominant orientation of cracks throughout the course of the experiment,
which confirms the evolution of initial flexure cracks to the formation of shear cracks near failure. To the
best knowledge of the authors, such dense quantitative and qualitative inference of multiple crack
propagation and evolution on a concrete surface from UAV video has not been presented before.

The final aim of implementing damage detection algorithms where input is an image of the
concrete surface is to automate the process of structural inspection using Unmanned Aerial Vehicle
(UAV) equipped with a video camera. But, some practical considerations need to be addressed in
the overall framework from video acquisition to the quantification of damage. The video frames will
not only capture the concrete surface but also contain other objects and background. In addition,
mere detection of damages will not be enough if its quantification is required to complete the condition
assessment of the structure. We propose the following steps for automatic detection of cracks and
quantification of damage of concrete structure as an efficient substitute to manual inspection:

1. Monitoring of concrete structure using video measurements from high resolution camera
mounted on UAV equipped with LiDAR (Light Detection and Ranging) system which can
be used to create 3D mapping of the whole structure.

2. Segmentation of pixels belonging to structural surface from non-structural objects in each frame
of the video.

3. Within pixels belonging to concrete surface, further segmentation of damages, like crack or
spalling of concrete from non-damaged concrete surface pixels.

4. Quantification of the geometric properties of damages, along with its localization from the 3D
mapping of the structure, will provide sufficient information to assess condition of the structure.

The suggested steps detect the presence of damage, localizes it with respect to the overall structure,
further quantifies the damage based on its dimensions and location. This paper address steps 3 and
4 of the suggested framework instead of proposing a solution for the whole presented framework.
The paper proposes a methodology to automatically detect and geometrically quantify cracks on the
concrete surface from its video captured using UAV. The first two steps of the framework are beyond
the scope of this study and are the subject of a future study. Hence, the concrete surface is tracked over
subsequent frames of the video to automatically select the region of interest (ROI). The ROI is selected
from the first frame of the video and the region is tracked over multiple frames of the UAV video
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even when the UAV is translated. The outline of the proposed framework is illustrated in Figure 1
which uses video recorded using UAV for automatic bridge inspection to detect cracks, as well as
quantify its geometric features. The paper proposes a Convolution Neural Network (CNN)-based
segmentation algorithm to classify pixels belonging to cracks from images of concrete surface which
only uses 205 images, along with its pixel-level annotated ground truth binary image, for its training
and validation. The algorithm takes as input the image of the concrete surface and yields a binary
image as output with pixels belonging to cracks, if present, having values of ones, and pixels containing
uncracked concrete surface having zero values. The obtained binary image of the crack is required to
obtain the geometric characteristics of the cracks, like length, area, width, and orientation of individual
cracks, using image processing techniques. The obtained geometrical features are in pixel units which
are converted to physical units using a scaling factor obtained using the known physical dimension
of the structural element. The method extends beyond mere detection of cracks as it quantifies the
amount of damage depending on its geometric properties. The proposed method is successfully able
to detect and quantify cracks on the beam used for experimental validation from its recorded video.

Figure 1. Outline of the proposed framework: Each frame of video acquired using the Unmanned
Aerial Vehicle (UAV) is processed using U-Net to detect presence of crack at pixel level, which is further
processed to obtain the geometric properties of the detected crack.

The key contribution of the paper consists of experimentally validating the proposed method of
detecting and quantifying cracks on the concrete surface from video obtained using UAV. The proposed
methodology consists of training U-Net deep network architecture with a small number of the
dataset obtained from two different sources. Then, the segmented image of the crack is processed
to obtain spatially dense geometric measurements of cracks consisting of length, width, area and
dominant orientation of individual cracks. The initiation, propagation, and evolution of individual
cracks of the pseudo-statically loaded 8-foot-long beam for experimental validation are quantified
at the pixel level, as well as in time. The obtained information is further used to infer the nature of
crack formation. The method validates the formation of initial flexure cracks and then its evolution
to shear cracks. To the best knowledge of the authors, this is the first instance of presenting the
efficacy of crack detection, quantification, and inference of its propagation and evolution, using UAV
videos. First, an image segmentation deep neural network is trained with a very small number
of concrete surface images (346 pixel-annotated images). The binary crack image is processed to
compute its geometrical properties, like length, width, area, and dominant orientation of the cracks,
which helps in recognizing the nature of the crack, i.e., whether the crack is flexure or shear crack.
Further, experimental validation of the proposed method includes the application of the trained image
segmentation algorithm to detect the presence of cracks on a concrete beam using video recordings
from UAV, as well as using a ground-based camera. The images used for training the segmentation
network does not contain the images of the beam experiment. Hence, the result of the experiment
validates the robustness of the trained model in detecting cracks at a pixel scale of different images
of the concrete surface obtained using different sources and under a different condition that is not
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part of training data. Section 2 describes the deep learning algorithm used for the segmentation
of cracks from images of concrete surface. The deep neural network is trained using images of the
concrete surface, along with its pixel-level annotated ground truth, the details of which are provided in
Section 3. Hyperparameters of the network are tuned using images from the validation set, which are
kept separate from the training set as discussed in Section 4. The quantification of the geometric
properties of a crack is proposed in Section 5 using morphological operations on binary images of crack
objects. The details of the experimental validation of the suggested method are provided in Section 6.

2. Deep Segmentation Network

The Deep Learning architecture used in this paper, U-Net [21], has proved effective in segmenting
biomedical images where the amount of pixel annotated images are limited. It is a difficult and
time-consuming process to gather images of concrete cracks, as well as manually construct ground truth
of each image. But, the number of images used during training is further expanded by augmenting the
dataset with random rotations and flipping both horizontally and vertically each original image as
suggested in Reference [21]. The details of the network architecture are shown in Figure 2. The unique
part of this CNN architecture consists of a contracting path followed by an expansive path. The adopted
architecture is almost similar to the one suggested by Ronneberger et al. [21] with small modifications.
The input to the original U-net architecture consists of a grayscale image, or D = 1 for input image
shape of [W × H × D] where W, H, and D are the width, height, and depth of the image. But, in the
modified architecture, the RGB image is used as input where D = 3. In addition, W = D = 256 for
input image in the modified architecture instead of W = D = 572 in the original one. The contracting
part starts off with two 3× 3 zero padded convolutions such that the output spatial dimension remains
the same as the input but a number of feature map is extended to 64. Each convolution is followed by
a rectified linear unit (ReLU) non-linear activation function. The feature maps are downsampled by
carrying out 2× 2 max pooling operation with stride 2. The steps are further repeated and each time
after downsampling spatial dimension by max pooling, the number of feature maps is doubled in the
subsequent convolution step. At the last two steps of the contraction side, drop out layer is added.
In the expansive path, at each step, the spatial dimension is doubled by upsampling followed by 2× 2
convolution

(
up-convolution

)
, then the feature maps are doubled by concatenating corresponding

feature maps from the contracting path, further carrying out 3× 3 convolutions two times with ReLU
activation. The final layer consists of 1× 1 convolution layer with sigmoid activation to reduce the
number of feature maps from 64 to a number of classes for pixel level classification. The zero padded
convolutions ensure the output segmentation map is of the same size as that of the input image.

Figure 2. Deep Convolution Neural Network architecture, U-Net, with sample RGB input image and
output segmentation maps which denotes probability of crack and non-crack pixels.
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Both the input images and their pixel-level annotated ground truth are needed to optimize binary
cross-entropy loss function which is computed by pixel-level softmax over the final feature map
computed as.

pk(x) =
exp(ak(x))

∑K
k′=1

exp(a′k(x))
, (1)

where ak(x) is the activation in the kth feature map at the pixel position x and K is the total number of
classes. The cross entropy loss function is computed using the ground truth of the image as

Lce = ∑
x∈Ω

ok(x)log(pk(x)), (2)

where Ω = {1, 2, . . . , K}, and ok(x) is the ground truth of kth class at pixel x. Lce is minimized using
Adam optimization with adaptive learning rate. The weights of the convolution layers are initialized
using He normal [24].

3. Dataset

Images of the concrete surface with cracks are obtained from a partial crack dataset [25].
The dataset consists of 136 RGB images of cracks in the concrete surface having a pixel resolution of
768× 768. It also contains hand-labeled pixel-level annotated ground truth of the cracks which are
binary images having zeros in the pixels belonging to the crack and ones in the rest of the concrete
surface. The images are cropped to 4 different images re-scaled to 256× 256 pixels, as well as flipped
horizontally and rotated by 180 degrees. Sixty-nine RGB images of cracked concrete surface are
randomly selected from concrete crack images for classification [26] each of size 385× 385 pixels.
Those pixel-level ground truth images of cracks are hand-labeled using the Image Labeler app in
MATLAB 2018a [27]. The RGB images, along with the corresponding ground truths, are re-scaled
to 256× 256 pixels, along with augmenting the dataset by rotating the images at an angle of 90, 180,
and 270 degrees, along with flipping it horizontally and vertically. The final size of the dataset consists
of 2046 augmented images, out of which 1700 are randomly selected for training the segmentation
network, and the remaining 346 images form a validation set which is used to search for optimal
hyper-parameters. Further, during the training of the network in batches, the images are randomly
rotated by a maximum of 20 degrees, shifted horizontally, vertically and zoomed by 5 percent of actual
dimension, as well as undergone sheer transformation by 0.05 radians. This random transformations
during training in batches of a small number of images not only augment the training data size but also
brings in the real-life variability, which helps in making the model robust. Some of the images from the
training set are shown in Figure 3, along with its corresponding binary pixel-level ground truth. In total,
only 205 RGB images with its corresponding pixel-level annotated ground truth images are used to
train and validate the network with the help of extensive data augmentation. The U-Net deep neural
network architecture is implemented in Tensorflow [28] using one of its API, Keras [29]. The model is
trained using the NVIDIA GTX 1070 Ti Graphical Processing Unit (GPU) with 8 GB memory.
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Figure 3. Sample RGB images from training set and their pixel-level annotated binary ground truth
images denoting crack pixels.

4. Prediction of U-Net

The two hyper-parameters chosen to optimize U-Net are batch size i.e., number of images used
per iteration and number of epochs i.e., the total number of times all the images are used for optimizing
parameters of the deep network. The output of U-Net is not a binary image, but a probability
map having values between 0 and 1. Pixels that are more probable to belong to cracks have scores
close to 0 and pixels which are more probable to be un-cracked concrete surface have values close
to 1. Hence, the probability map needs a threshold set in order to convert it into a binary image.
Otsu’s thresholding method [30] is used to generate binary images. Initially, the threshold level is set
to 1.0 to find the optimal hyper-parameters. The performance of the hyper-parameters are assessed
based on Intersection-Over-Union (IoU) score of the crack pixels. IoU score, also known as the Jaccard
similarity coefficient, for each class is the ratio of the number of correctly classified pixels to the union
of ground truth pixels and predicted pixels of that class.

IoUscore =
TP

TP + FP + FN
, (3)

where true positives (TP) represents the overlapped pixels of the predicted mask with the ground
truth mask of the crack, and false negatives (FN) are pixels of the ground truth mask which are not
predicted by the algorithm and false positives (FP) are incorrectly labeled pixels of the predicted mask.
The validation set is used to compute the IoU scores of crack for different values of the hyper-parameters
as shown in Table 1. Due to the limitation on GPU memory size and growing computational cost with
the added number of epochs, batch sizes of 5 and 10 are considered with incrementally varying the
corresponding number of epochs till IoU score on the test data peaks, keeping the threshold level
constant. The batch size and number of epochs are selected as 10 and 30 respectively.
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Table 1. Hyper-parameters of U-Net: Batch Size and Number of epochs are selected according to their
respective Intersection-Over-Union (IoU) score.

Batch Size Number of Epochs IoU Score of Crack Mask

5 4 0.5491
5 7 0.5769
5 10 0.5623

10 4 0.5181
10 7 0.5817
10 10 0.5430
10 20 0.6225
10 30 0.6366
10 40 0.6124

Further, the threshold level in Otsu’s method is varied to find out the effect of it on the IoU score
of a crack mask as shown in Table 2. The threshold level has a major effect on the IoU score. The value
of 0.80 is chosen as it results in the best IoU score. Some of the predicted images of the algorithm are
shown in Figure 4, along with its ground truth images.

Figure 4. Sample RGB images from validation set (left column) with corresponding ground truths
(middle column) and predicted binary image of the crack (right column).
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Table 2. Threshold level in Otsu’s method is selected according to IoU score, corresponding to the
previously selected batch size and number of epochs.

Threshold Level IoU Score of Crack Mask

0.75 0.6366
0.80 0.6817
0.85 0.6817
0.90 0.6798
0.95 0.6753

5. Crack Characterization

The output of the algorithm so far provides a binary image to highlight crack present in the
concrete surface. However, accessing the amount of damage, along with the subsequent decision of
retrofitting, depends on the location of the crack, as well as its geometric properties, like its length,
width, orientation, number of cracks, etc. This paper focuses on quantifying the geometrical properties
of concrete surface cracks, by the use of morphological operations from image processing [6,22,23].

Figure 5 shows the flowchart of algorithms used to obtain pixel level information about crack
geometry from the concrete surface image. The image in Figure 5a is of the concrete surface with
cracks, and Figure 5b shows the output of trained U-net after applying Otsu’s thresholding method.
The first step in the morphological operation involves finding out the pixel area of individual cracks in
the binary image. A single crack in the binary image is object formed by continuous pixels, and if there
is a gap of even a single pixel between the binary objects, then its a different crack. In order to filter out
small blobs which may appear in the predicted binary image due to surface textures, a threshold for
pixel area of individual cracks is set below which all the small objects are removed. This image is further
processed to obtain single pixel thick outline of individual binary objects (cracks) as shown in Figure 5c
using boundary tracing morphological operation, as well as single pixel thick skeleton of the objects,
as shown in Figure 5e, which represents the center line of the cracks. Euclidean distance transform
of the outline image shown in Figure 5c is constructed as shown in Figure 5d. Distance transform of
a binary image provides another image in which pixel values represent the distance in pixels to the
nearest non zero pixels. Hence, any particular pixel of the image in Figure 5d represents its shortest
distance to outline of cracks as represented in Figure 5c. Its values corresponding to the center-line
pixels shown in Figure 5e provide the half width of cracks along the length of the individual cracks.
Combining information from both Figure 5e and Figure 5d, the length and width in units of the pixel of
the cracks, along its length, is obtained. The pixel area of individual cracks are obtained from Figure 5b.
The geometric properties of the cracks are obtained in units of pixels which can be transformed into
physical units using the depth information of the camera from the concrete surface.

In order to separately detect the qualitative orientations of individual cracks (even for more than
one dominant orientation for a single crack), Random sample consensus (RANSAC) [31] algorithm
is used on the skeleton pixels of individual cracks as shown in Figure 5e. It is an iterative algorithm
that looks for the best fitted straight line which passes through randomly chosen two points in every
iteration. Perpendicular distance of all the points from the selected line is computed and compared
against threshold distance in order to classify each pixel as inliers or outliers. The steps are iterated for
a certain number of sample size and the model corresponding to the best inlier ratio is selected in the
end. In this paper, the RANSAC algorithm is used in succession to find dominant crack orientations
which can even be more than one for certain cracks as mentioned before. After applying RANSAC for
the first time on a particular crack, the slope of the best-fitted model gives the most dominant crack
orientation. If the outlier ratio is more than 0.2 (selected based on heuristics), the RANSAC algorithm is
applied again on the remaining outlying points successively till the overall outlier ratio is less than 0.2,
each time the slope of the best fitted straight line model on the residual pixels gives the next dominant
orientation. The result of the algorithm provides crack orientation as shown in Figure 5g.
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Figure 5. Flowchart of algorithms applied on input concrete surface image to obtain geometric
properties of cracks.

6. Experimental Validation

6.1. Experimental Setup

In the previous sections, the framework for computing geometric properties of the cracks from
images of the concrete surface is proposed. In order to validate the efficacy of the proposed framework,
a four-point bending test is carried out on an under-reinforced concrete beam of length 8 feet, depth of
8 inches, and a width of 6 inches. The setup of the experiment is shown in Figure 6. The video of the
entire experiment is recorded using a still iPhone camera placed on a tripod and a UAV (DJI Phantom
4 Advanced) is flown close to the beam, as shown in Figure 6. The DJI Phantom 4 Advanced is
calibrated for its inbuilt compass and remote controller before the flight following the steps provided
in its manual [32]. During the test, the UAV is translated and rotated in all three directions in order
to replicate the real world use of UAV for structural health monitoring near a structure. The video
recorded using UAV has a resolution of 2160× 4096 pixels at a rate of 24 frames per second (fps).
The resolution of the iPhone video is 720× 1280 pixels, recorded at 30 fps. The beam is gradually
loaded such that it fails in flexure in the midspan. The whole experiment went on for about 30 min,
and both the videos are down-sampled to 1 fps as the rate is sufficient for real-time detection of cracks.

6.2. Framework of Analysis

As mentioned in Section 1 each frame of the video needs to be first processed to segment out
regions containing concrete surface; this step is a separate study for the future. For the present
demonstration of the current framework, the concrete region is tracked frame by frame by first selecting
the Region of Interest (ROI) as a rectangular box from the very first frame of the video, which covers the
midspan of the beam where the appearance of flexure cracks are more prominent. The ROI is tracked
throughout the length of the video using Kanade-Lucas-Tomasi (KLT) feature tracking algorithm [33–35].
Hence, irrespective of the displacement of the object (in this case the concrete surface near midspan),
or translation and rotation of the camera, an image of the concrete surface per frame is extracted as
defined by the ROI from the first frame of the video, over the duration of the video. The images are
then processed using the same framework as discussed before also shown in Figure 7. The geometric
properties of the crack, if detected, in any frame are obtained following the framework.
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Figure 6. Experimental Setup showing (above) simply supported concrete beam transversely loaded at
two points at its center and the video of the experiment being acquired using UAV, (below) and a still
ground-based iPhone camera on a tripod is used to record the same experiment.

Figure 7. Flowchart of steps used in post-processing of recorded video frame by frame.

6.3. Quantification of Crack Geometry

6.3.1. Crack Length, Area, and Width

Figure 8a shows the number of cracks detected in the ROI over time. The cluster of pixels classified
as belonging to crack neighboring each other are identified as single crack, but, if a detected pixel is
separated by more than one non-crack pixel, then it belongs to another crack. For example, in Figure 7,
the number of detected cracks is four. Figure 8b,c shows the progress of total length and total area of
detected cracks over time in pixel units. Along the center skeleton line of individual cracks, the width
of the crack for each pixel, along the skeleton line, is computed, which gives dense geometrical
information of each crack for every frame. In Figure 8d, the sum of the maximum width of individual
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detected cracks over time is shown. In this study, the units are approximately converted to millimeters
as the depth of the beam is known in physical units. The approximation is valid till the plane of
the object (in this case the concrete surface that is tracked over time) is parallel to the image plane
of the camera. Hence, multiplying with the factor which converts pixels to mm, the variation of
geometric measurements of the cracks is shown in Figure 9. The geometric measurements represented
in physical units for the iPhone camera are reasonably accurate with some margin of error as it is
kept still throughout the experiment, therefore the assumption of the plane of the object and plane
of the image being parallel is valid. Initially, the UAV is kept hovering facing the surface such that
the assumption can be said to be approximately correct, but, in the later part of the experiment,
around 24.0 min onwards, the UAV is rotated and translated such that the plane of the object becomes
skewed with respect to the plane of the image; hence, subsequent geometric measurements from
UAV converted to physical units will have considerable error which is evident from deviation of
the values compared to the measurements from iPhone after around 24.0 min. Tracking of objects
in motion adds noise to the image, the amount of which is directly proportional to the amount of
relative motion of the object between two frames. In the case of the iPhone camera which is placed
on a tripod throughout the experiment, the relative motion of the concrete surface ROI is almost
negligible, which only encompasses the slow vertical downward movement of the tracked object due
to downward deflection of the beam. However, for video recorded from UAV, for initial 18 min of
the experiment, it was kept hovering at a particular spot, afterward, the UAV and its camera were
translated and rotated at times, in order to replicate the real-life health monitoring practice at the field.
The noise in the measurement of geometric properties with video from UAV after 18 min is due to the
relative motion of the object (in this case, the concrete surface ROI) between successive frames using
the KLT feature tracking algorithm.
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(d) Sum of maximum individual crack width.

Figure 8. Variation of crack characteristics with time (red filled-in circles for UAV video and blue
crosses for iPhone video).
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(c) Sum of maximum individual crack width.

Figure 9. Variation of crack characteristics with time scaled to physical units (red filled-in circles for
UAV video, and blue crosses for iPhone video).

The initial crack became visible around 14.5 min after the start of the experiment. The experiment is
paused between 19.4 min to 23.5 min in order to change the battery of UAV. However, the iPhone video
was still recording, which is apparent from the plot of Figure 8 or Figure 9. Both in Figures 8 and 9,
discrete jumps in the geometric measurements of detected cracks correspond to the appearance of
new cracks at those instants of time as shown in Figure 8a. Figure 10 shows frames of the video at
time instants mentioned at corresponding left side of the images at each row both for iPhone video
(1st column of images) and UAV video (3rd column of images) with corresponding image which
shows detected cracks in red and yellow circle and dot at the position of maximum width of the
crack. The images at each frame of both the videos obtained during the experiment are not part of the
training or validation set of U-Net. The image surface shows lots of textural features, along with cracks;
still, the trained network could detect the cracks in pixel-level. There is a high visual correspondence
between the cracks in the original image and that in the detected ones. The time instants in Figure 10
are chosen such that they correspond to mentioned discrete jumps in the plots of the geometric
measurements of Figures 8 and 9. Towards the end of the experiment, the UAV is translated and
rotated in such a way so as to capture the region of the concrete surface which remains occluded in
iPhone video due to supporting columns of the Universal Testing Machine. Figure 11 shows the frame
of the video, along with the tracked ROI, both for iPhone and UAV camera at 29.0 min after the start
of the experiment. In this case, mobility of the UAV is harnessed to gain access to the concrete surface
which remains hidden in ground-based iPhone video. The corresponding detected cracks are shown in
the last row of Figure 10.
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Figure 10. Snapshots of the original transformed images of the concrete surface and its corresponding
detected cracks using the proposed framework at various instants of time with position of maximum
crack width shown as yellow circle. The first and second column corresponds to video captured using
iPhone, whereas the third and fourth columns corresponds to video captured using UAV.

(a) Snapshot of video frame at 29.0
mincaptured using iPhone.

(b) Snapshot of video frame at 29.0 min
captured using UAV.

Figure 11. Original frame of the video at 29.0 min recorded using iPhone and UAV.

Each frame of the video is processed to gather dense spatial geometric measurements of individual
cracks. But, in Figures 8 and 9, global measures to quantify the amount of damage due to crack in each
frame of the video is plotted over time. Figure 12 shows individual detected cracks corresponding to
the frames of the video both for iPhone, as well as UAV, as shown in Figure 11. The individual detected
cracks are numbered from left to right in black fonts within cyan textboxes. Both the resultant images
of Figure 12a,b processes part of the same region of the concrete surface with the cracks numbered as 2
and 3 are same in both the cases. The specific details of individual crack’s geometrical measurements
are tabulated in Table 3. As previously discussed, the measurements of geometrical properties in
physical units from video obtained from UAV will have errors. Still, the geometrical measurements
corresponding to cracks numbered as 2 and 3 are almost similar for iPhone and UAV video.

Table 3. Detailed geometric measurements of individual cracks as shown in Figure 11.

Crack Number Length (mm) Area (mm2) Maximum Width (mm) Mean Width (mm)

iPhone

1 213.80 1243.10 7.35 3.92
2 116.08 585.12 5.30 3.24
3 125.63 562.99 4.16 2.97
4 145.47 631.00 5.30 2.83

UAV

1 334.38 2145.61 16.41 4.62
2 137.72 575.69 4.62 2.74
3 115.94 491.57 3.62 2.69
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(a) Detected and quantified cracks
for iPhone video at 29.0 min

(b) Detected and quantified cracks
for UAV at 29.0 minute

Figure 12. The red fitted line shows dominant crack orientation in degrees (red in yellow text box) of
individual cracks which are numbered from left to right (black in cyan text box), for image frame at
29.0 min both for iPhone and UAV video.

6.3.2. Crack Orientation

The qualitative orientation of crack is also of primary significance apart from its length, width and
area for condition monitoring of concrete structures in order to assess the class of cracks. For beam
elements, flexure cracks grow perpendicular upwards from beam edge in a qualitative sense,
whereas shear cracks generally propagate at 45 degrees with respect to the beam edge. Merely fitting
a line using least squares for individual crack is not sufficient as it will generate a single best fit line
for cracks such as the ones shown in Figure 12b numbered 1. In reality, the referred crack is a flexure
crack and shear crack joined together during their propagation. In addition, another example is crack
numbered 1 shown in Figure 12a where a flexure crack while propagating turns diagonal midway
through the depth of the beam and starts to propagate as a shear crack. Hence, successive RANSAC is
used to obtain the dominant crack orientation of individual cracks as discussed in Section 5. The result
of the successive RANSAC algorithm is shown in Figure 12. The best fitted straight line representing
the dominant direction of crack propagation is shown in red, and the value of its orientation is shown
in degrees (red text in a yellow text box).

Crack orientation is computed according to the above-mentioned method for all the frames of the
video both for iPhone and UAV. The absolute values of the inverse tangent of the dominant slopes of
all detected cracks in radians are shown in Figure 13 varying over time. As shown in Figure 8a, the first
crack is detected around 14.5 min after the start of the experiment; hence, in Figure 13, the plot starts
around that time. Initially, the orientation of the cracks is around π/2 radians, meaning the initial
cracks propagates perpendicular to the beam’s lower edge, at its midspan, upwards, signifying flexural
cracks as expected. However, when the UAV is moved so as to capture view of the beam away from its
midspan, to the region of the concrete surface which is occluded in the video captured using iPhone,
around 24.7 min after start of the experiment, diagonal cracks are detected in the video frames acquired
using the UAV-based camera, as shown by presence of red diamonds around that time which are at an
angle near π/4 radians. At that moment of time, the UAV-based camera could capture the left most
diagonal crack, as shown in Figure 11b which remains occluded in Figure 11a. Over time, the diagonal
crack propagates and gets visible in video captured using the iPhone camera; hence, there is a presence
of blue crosses near crack orientation of π/4 radians towards the end of the experiment. This validates
the efficacy of the above-mentioned method in computing the dominant direction of crack propagation
which helps in identifying the nature of the crack. The beam failed around 30 min after the start of the
experiment (see Figure 13), and the extraction of crack orientation and magnitude permits integrity
assessment before failure occurs, which is the subject of future study.
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Figure 13. Dominant orientation of individual cracks in radians varying over time for video recorded
using both iPhone and UAV.

7. Conclusions

The paper proposes an efficient method of processing video measurements from a camera
mounted on UAV using deep neural network and Computer Vision algorithms to automatize
the process of condition monitoring of concrete structures. Training a deep neural network image
segmentation architecture called U-Net from a very small number of pixel-level annotated images
is described. The trained model U-Net segments out pixels in the image belonging to cracks and
converts the original RGB image of the concrete surface to binary image of cracks. The conversion
of the original image to the binary image of the cracks is performed to compute the geometric
properties of cracks, like length, width, area, and crack orientation, using morphological operations
in which the steps are discussed in detail in the paper. In order to demonstrate the robustness and
real-life applicability of the proposed framework, the laboratory experiment is carried out on an
8-foot-long beam which is gradually loaded until it fails in flexure. The images obtained from the
video recordings of the experiment are not part of the dataset used for training a deep neural network;
hence, it also demonstrates the robustness of the method, as well. In summary, the key contribution of
the paper consists of the detection of cracks on the concrete surface, quantification of its geometric
properties, like length, width, area, and dominant orientation, and inference of its nature. The paper
experimentally validates the efficacy and robustness of the proposed framework as it tracks the
propagation of cracks on its surface by successfully detecting multiple cracks on a full-scale concrete
beam as it is loaded, measuring their geometric properties, as well as inferring the formation of initial
formation of flexure crack and its evolution to shear cracks near its failure. The extracted pixel-level
dense quantitative geometrical information, after detection of cracks propagating on the concrete
surface, is valuable for recognizing the nature and extent of structural damage, thus enabling integrity
assessment before failure occurs. The future extension of the proposed methodology includes the
application of LiDAR installed on UAV for 3D mapping of the whole structure, as well as automatic
segmentation of concrete surface from the acquired video.
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