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Abstract: Object Detection requires many precise annotations, which are available for natural images
but not for many non-natural data sets such as artworks data sets. A solution is using Weakly
Supervised Object Detection (WSOD) techniques that learn accurate object localization from image-
level labels. Studies have demonstrated that state-of-the-art end-to-end architectures may not be
suitable for domains in which images or classes sensibly differ from those used to pre-train networks.
This paper presents a novel two-stage Weakly Supervised Object Detection approach for obtaining
accurate bounding boxes on non-natural data sets. The proposed method exploits existing classi-
fication knowledge to generate pseudo-ground truth bounding boxes from Class Activation Maps
(CAMs). The automatically generated annotations are used to train a robust Faster R-CNN object
detector. Quantitative and qualitative analysis shows that bounding boxes generated from CAMs
can compensate for the lack of manually annotated ground truth (GT) and that an object detector,
trained with such pseudo-GT, surpasses end-to-end WSOD state-of-the-art methods on ArtDL 2.0
(≈41.5% mAP) and IconArt (≈17% mAP), two artworks data sets. The proposed solution is a step
towards the computer-aided study of non-natural images and opens the way to more advanced tasks,
e.g., automatic artwork image captioning for digital archive applications.

Keywords: weakly supervised learning; wsod; class activation maps; artworks; cultural heritage

1. Introduction

Object Detection (OD) aims at identifying the location of objects inside an image and
plays an important role in many applications: surveillance [1], automotive [2], medical
imaging [3], remote sensing [4] and figurative art [5]. Object detection in figurative art
supports iconology, which aims at tracking the spatio-temporal diffusion of symbols
(objects) across artworks to study the influences and propagation of ideas. For example,
in crucifixion scenes, the presence and number of nails and ropes helps date the artwork,
the upper branch of the cross helps determine the geographic provenance, and in Mary
Magdalene images, a book is a hint to the influence of Gnosticism. Since large digital
artwork archives are spreading, computer-aided iconology at scale may support the creation
of new knowledge.

However, training a fully supervised object detector requires a large number of pre-
cisely annotated bounding boxes. Such annotations may be challenging to acquire in novel
domains, e.g., cultural heritage, due to the effort of the annotation task. Moreover, large-
scale crowd-sourcing campaigns, e.g., Amazon Mechanical Turk, may lead to inaccurate
and inconsistent results in domains that require expert knowledge. Weakly Supervised
Object Detection (WSOD) aims to learn to localize classes inside an image using image-level
annotations only.

Initially, WSOD methods addressed the task with Multiple Instance Learning (MIL) by
finding high-confidence region proposals based on positive image-level annotations [6–8].
More recent works employ the Weakly Supervised Deep Detection Network (WSDDN),
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which combines MIL and Convolutional Neural Networks (CNNs) and enhance the ar-
chitecture with specific modules to improve instance classification and localization [9].
State-of-the-art studies have demonstrated outstanding results on natural images, but three
main problems arise when dealing with non-natural images. First, the methods rely on
external proposals, generated with Selective Search [10] or Region Proposal Networks
(RPNs) [11], which are difficult to produce when the target data set does not share classes
with the pre-trained RPNs models. Secondly, the complexity and noisiness of non-natural
data sets have a negative impact on the learning process [12]. Common problems are
confusing backgrounds, the density of instances, less discriminative class features, large
intra-class diversity and inter-class similarity, artificial colours and shadows, and low image
quality. Finally, most state-of-the-art end-to-end WSOD methods freeze a large part of the
network, thus making it impossible to take advantage of the renowned benefits of Transfer
Learning (TL) on non-natural data sets [13–15].

For these reasons, this paper presents a training pipeline (Figure 1) composed of three
stages: a ResNet-50 classifier, a Class Activation Map (CAM) technique and a Faster R-CNN
object detector. The resulting architecture fully exploits the strength of TL when training the
classifier and the object detector, the visualization capabilities of CAMs and the robustness
and efficiency of Faster R-CNN.

ResNet50 Class
Activation

Maps

Bounding
boxes

generation

Faster
RCNN
training

Bounding
boxes
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Test Set

Train images

Test images

Faster
RCNN
model

Figure 1. Proposed pipeline—The pipeline comprises several steps: (1) training of a ResNet-50
classifier on train set images; (2) computation of Class Activation Maps; (3) devising of bounding
boxes surrounding the connected components on train set images; (4) use of the obtained bounding
boxes as pseudo-GT to train a Faster R-CNN object detector; and (5) application of the trained
detector model on test images. Gray arrows indicate the training steps, while red arrows indicate the
testing steps.

The contributions can be summarized as follows:

• We propose a WSOD approach based on three components that can be fully cus-
tomized to work on non-natural data sets where state-of-the-art architectures fail.
The proposed pipeline consists of: an existing ResNet-50 classifier, a CAM method
paired with a dynamic thresholding technique to generate pseudo-ground truth
(pseudo-GT) bounding boxes, and a Faster R-CNN object detector to localize classes
inside images.

• We evaluate performances on two artwork data sets (ArtDL 2.0 and IconArt [16]),
which are annotated for WSOD and whose complexity has been demonstrated in
previous studies [17,18]. Our approach is able to reach ≈41.5% mAP on ArtDL and
≈17% mAP on IconArt, where state-of-the-art techniques obtain a maximum value of
≈25% and ≈15% mAP, respectively.

• We provide qualitative analysis to highlight the ability of the object detector to correctly
localize multiple classes/instances even in complex artwork scenes. While the object
detector can uncover features that are not found by the original classifier, failure
examples show that the model sometimes suffers the inaccuracy of the pseudo-GT
annotations used for training.

• For our analysis, we have extended an existing data set (ArtDL [14]) with 1697 manu-
ally annotated bounding boxes on 1625 images.
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The rest of the paper is organized as follows: Section 2 surveys related work; Section 3
describes the proposed pipeline; Section 4 evaluates each stage of the proposed pipeline
quantitatively and qualitatively and compares the performance with state-of-the-art tech-
niques; finally, Section 5 draws the conclusions and outlines the future work.

2. Related work

This section surveys the state-of-the-art WSOD algorithms and computer vision appli-
cations on artwork images.

2.1. Weakly Supervised Object Detection

WSOD methods aim to localize classes inside an image using limited annotations,
usually image-level labels. Initially, the task has been tackled as a MIL problem [6–8] in
which images are treated as bags of positive or negative instances for each class based on
the image-level annotations. A classifier is trained to distinguish each generated proposal’s
most discriminative features and assign a category to them. MIL represents a non-convex
optimization problem, thus the training may get stuck in a local minimum. Several studies
propose a solution either by constraining the initialization of the network [19,20] or by
modifying the learning process [21,22]. Interesting approaches are presented by [21,23]
and [22], which optimize the problem by dividing it into sub-parts, respectively, at the data
level and loss level. Recent works combine MIL and Deep Neural Networks (DNN) in WS-
DDNs [9,24–27]. A typical WSDDN is composed of two streams, devoted to classification
and localization trained jointly to mine positive samples [28]. Several studies build upon
WSDDN and try to refine the proposal localization: OICR [29] introduces multiple online
instance classifiers to select more accurate boxes and PCL [30] clusters proposals based
on similar image features and uses them for training supervision. The authors of [31–35]
integrate single or multiple bounding boxes regressors into their architectures to perform
re-localization. Since all these methods require external proposals, UWSOD [36] proposes a
unified framework that exploits self-supervision for bounding box proposal and refinement.
All the cited methods are still limited by the MIL non-convex optimization problem. Many
studies combine CAMs [37] or Weakly Supervised Semantic Segmentation (WSSS) [38] to
achieve better WSOD performances. The authors of [39–41] leverage the power of CAMs as
segmentation proposals, [42–45] introduce a collaboration loop between the segmentation
and detection branches, [46] proposes a cascaded convolutional neural network and [47]
exploit segmentation properties, i.e., purity and completeness, to harvest tight boxes that
take into account the surrounding context. Still, the actual methods cannot fully exploit
CAMs as bounding box generators and require the use of external domain-dependent
proposals or hybrid-annotated data. In addition, many architectures use erasing techniques,
which have been proven to be detrimental, especially when multiple similar classes appear
in the same image [48]. The authors of [49] survey MIL-based and CAM-based approaches
for WSOD, presenting quantitative results on four benchmarking data sets.

2.2. Automated Artwork Image Analysis

In recent years, there has been an increasing interest in applying Artificial Intelli-
gence in the cultural heritage field [5,50]. Studies have been supported by the massive
digitization of artworks and the release of public data sets. Still, most studies focus on
style and material recognition [51,52] or author classification [53], while few tackle visual
question answering [54,55] or captioning [56,57]. Object Detection is still a rarely stud-
ied task in the cultural heritage field [58–60], mainly due to the scarcity of large-scale
annotated data sets [61] and the low similarity with natural image classes. Annotat-
ing artworks requires previous knowledge and is unsuitable for public crowd-sourcing
campaigns, especially when dealing with highly specific classes, e.g., Iconclasses [62],
and scenes characterized by multiple subjects scattered in the entire image. Image-level
labels are way more straightforward and less time-consuming to annotate; they can of-
ten be retrieved by descriptions or properties in the digital collection (e.g., title, author,
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date, depicted classes, etc.). Very few works leverage weak annotations for WSOD on
artworks. [63] is a pioneering work on the task and proposes a weakly-supervised ap-
proach for localizing gods and animals on Greek vases. The authors of [16,18] present
a novel data set, IconArt, and a MIL classifier trained on proposals obtained by Faster
R-CNN. The research in [17] studies the efficacy of Class Activation Maps in localizing
relevant iconography symbols of Christian Iconography on the ArtDL [14] data set. [64]
introduces a cross-domain WSOD framework to localize objects in watercolour images.
Domain adaptation is obtained through the style transfer of fully-annotated natural im-
ages. The technique is limited to classes that exist and that have been annotated in other
domains. A key challenge of object identification and localization in the cultural her-
itage domain is the adverse training environment given by low distinctiveness of class
features, high heterogeneity of class representations, confusing backgrounds, and image
quality. These conditions require the study of specific techniques and network adaptations
or combinations.

3. Methods

This section introduces the proposed weakly supervised object detection pipeline
shown in Figure 1. Once the ResNet-50 classification architecture has been trained with
image-level labels, weak bounding boxes are extracted from CAMs and exploited as pseudo-
GT to train a Faster R-CNN object detector. Finally, test set bounding boxes are obtained
by feeding images directly to the object detection model without computing CAMs on the
test set.

3.1. Classification Architecture

The first stage of the pipeline shown in Figure 1 consists in training a fully supervised
classification model with image-level labels. We employ ResNet-50 [65], a well-known
CNN architecture, pre-trained on the ImageNet data set [66]. The network was chosen
for the outstanding classification results obtained even on non-natural images, thanks to
transfer learning [14,52,67,68].

Discriminative Region Suppression

The ResNet-50 backbone is augmented with a Discriminative Region Suppression
(DRS) module. DRS [48] works by suppressing feature map values with a maximum
threshold that can be fixed or learned during the training phase. The result is that attention
is spread to areas adjacent to the most active CAM regions instead of focusing on a few
sparse discriminative object features, which is a common issue with standard CAM tech-
niques [24,69,70]. The advantage of DRS is twofold: it has been designed for WSSS, thus can
be applied to both single-instance and multi-instance data sets, and it works by suppressing
and not erasing feature map values. Figure 2 demonstrates the difference between erasing
and suppression on a given feature map. It can be noted that the fundamental difference
between suppression and erasing is that suppression limits the maximum value of feature
maps while erasing sets values higher than a threshold, i.e., the most important features,
to zero. For this reason, erasing has been demonstrated to be detrimental in multi-class
multi-instance scenarios [48] because it can make the network learn irrelevant features.

The DRS module is inserted in the ResNet-50 architecture after each skip-connection,
only from conv3_x to conv5_x, since the previous layers conv1 and conv2_x, are frozen.
We employ the learnable version of the DRS module, which has been demonstrated to
obtain better localization performance than the fixed counterpart [48]. The insertion of the
DRS module into the ResNet-50 architecture is evaluated in Section 4.2.
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Feature map Erasing Suppression

Figure 2. Erasing and suppression—Erasing sets to zero the areas above a certain threshold τ, while
suppression sets those areas to τ. In this example, τ = 0.6. The colors of the heatmaps are scaled
based on their maximum and minimum values.

3.2. Class Activation Maps

Class Activation Mapping is an interpretability technique used to highlight the most
discriminative class features inside images. Standard CAMs [37] are generated by perform-
ing, for each class, a weighted sum of the feature maps of the last convolutional layer. Given
an input image i and a classification architecture, the actual CAM for a class c, indicated as
Mc

i , is computed as follows:
Mc

i = ∑
k

wc
k Ak (1)

where Ak is the kth feature map in the last convolutional layer, and wc
k is the weight

associated with feature map k and class c.
Several CAMs variants have been proposed in the literature to address known limita-

tions [71–73], yield better visualizations, and obtain finer localization. While some of them
rely on the existing network structure [71,74–78], other techniques require the use of ad
hoc architectures [73,79–81]. In this work, four state-of-the-art techniques will be analyzed
for the generation of bounding boxes: CAM [37], Grad-CAM [74], Grad-CAM++ [75] and
Smooth Grad-CAM++ [71]. For the implementation details, we refer the reader to the
original works. A comparison of the localization abilities of CAMs on artworks has been
presented in [17].

Percentile as a Standard for Thresholding

CAMs play a fundamental role in the generation of pseudo-GT bounding boxes. They
are matrices of values between 0 and 1 representing each image pixel’s activation (or
importance) to specific characteristics of each class. For the generation of bounding boxes
from CAMs, a clear distinction between foreground and background areas must be made,
and usually, the discrimination is performed by applying a fixed threshold [75,76,78]: values
lower than the threshold are considered as background pixels and values higher or equal
are assigned to the foreground. The works [17,82] studied the use of a fixed threshold and
demonstrated that localization results strongly depend on the chosen value. The authors
of [72] propose using Percentile as a Standard for Thresholding (PaS), which consists of
using a threshold based on CAM values that better separates background and foreground
areas. Their approach considers an image i, the normalized CAM Mc

i associated with a
class c, a percentile value p ∈ [0, 100] and a fixed threshold θloc ∈ [0, 1] with p, θloc ∈ R.
Hence, a localization threshold τloc is defined as:

τloc = θloc · perp(Mc
i ) (2)

where θloc is the fixed value usually employed when thresholding CAMs.
The percentile term (perp) considers the distribution of values inside each class activa-

tion map Mc
i . A percentile value p allows to obtain a single value perp(Mc

i ) that separates
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the (100− p)% highest values in Mc
i from the p% lowest values and that, multiplied by

a fixed parameter θloc, constitutes the actual threshold τloc. If p = 100, perp(Mc
i ) = 1,

and θloc = τloc, so PaS generalizes the fixed threshold approach. Class Activation Maps
techniques and the introduction of PaS are studied in Section 4.2.

3.3. Object Detector

CAMs can accurately localize classes inside an image but lack the power to separate
multiple instances correctly, especially when overlapping or very close. Furthermore, their
quality has a strong dependence on the classification network. Hence, the need for a more
robust object detector.

The final stage of the pipeline consists of Faster R-CNN [11], a state-of-the-art object
detector commonly used alongside WSOD architectures. Faster R-CNN is a unified object
detection network, composed of four subsequent modules: a Backbone Network for feature
extraction, the RPN, the RoI Pooling Layer, and the classifier. The RPN module generates a
set of anchor boxes at fixed positions and sizes and determines each anchor box’s objectness
score. The RoI Pooling Layer, given a feature map and a set of proposals, extracts a pooled
feature representation. Finally, the classifier associates a class label to each bounding box.

Faster R-CNN has been widely used in diverse fields, ranging from face recogni-
tion [83], to litter detection [84] and astrophysics [85]. In the literature, Faster R-CNN
and other off-the-shelf object detectors have been used, in a weakly-supervised manner,
to refine the object locations obtained from state-of-the-art WSOD architectures [9,30]. This
research proposes to train Faster R-CNN with bounding boxes generated from CAMs and
exploit the learned detection model to identify classes on non-natural artwork images.

The use of Faster R-CNN in the proposed pipeline and its robustness to noisiness and
quality of pseudo-GT bounding boxes are analyzed in Section 4.2.

4. Evaluation

This section presents the data sets used for the task and the evaluation of each compo-
nent. The evaluation aims at (1) understanding whether class activation maps combined
with percentile thresholding are effective at localizing objects in different artworks’ data
sets; (2) assessing if automatically generated pseudo-GT bounding boxes can be used as a
replacement for manually annotated ground truth and (3) comparing the pipeline against
state-of-the-art WSOD solutions. Both quantitative and qualitative analyses are presented.

4.1. Data Sets

To evaluate the proposed pipeline, two artworks’ data sets are used, namely ArtDL 2.0
and IconArt [16]. The two data sets were selected as representatives of non-natural images
for the WSOD task, which was demonstrated to be quite different from WSOD on natural
images [16–18]. They also provide diversity in the image quality and annotated classes.

4.1.1. ArtDL 2.0

The ArtDL data set has been introduced in [14] with only image-level labels and
extended with annotations for object detection in [17]. It contains 42,479 paintings repre-
senting the Iconclass [62] categories of 10 Christian Saints. The representation of Iconclasses
in Christian art paintings uses specific symbols to identify the portrayed character, so the au-
thors of [17] manually annotated 823 test images with bounding boxes for each Saint’s body
and his/her related symbols for a total of 882 Saint-level and 2887 symbol-level annotations.

The ArtDL 2.0 data set adds bounding boxes that include both the Saints’ bodies and
the associated symbols, because the latter are a proper part of the context that characterizes
the iconography class and determines the detection.

Figure 3 shows some examples. The red and green bounding boxes are the original
ArtDL annotations for the Saint and his/her iconographic symbols, while the yellow
rectangle is the ArtDL 2.0 bounding box obtained by merging the red and green ones.
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As Figure 3 shows, some symbols may be inside a Saint-level box whereas others may be
placed elsewhere in the image. Table 1 presents the statistics of the ArtDL 2.0 data set.

Figure 3. ArtDL 2.0 bounding boxes. The red bounding boxes contain the body of the saints and
the green ones comprise individual iconography symbols associated with each Saint. The ArtDL 2.0
boxes (yellow) include both the Saint and the symbols.

Table 1. The ArtDL 2.0 data set —The number of images is shown per class and per task (classification
and object detection). For object detection, the number of annotated bounding boxes is reported too.

Set Virgin
Mary

Antony
of Padua Dominic Francis

of Assisi Jerome John the
Baptist Paul Peter Sebastian Mary

Magd. Total

Classification
images

Train 9515 115 234 784 939 943 419 949 448 727 15073

Val. 1189 14 30 98 117 97 52 118 56 90 1861

Test 1189 14 29 98 118 99 52 119 56 90 1864

Object detection
images

Val. 1063 23 30 98 101 101 40 86 54 85 1625

Test 283 26 29 85 99 81 34 84 47 68 823

Annotated
bounding boxes

Val. 1076 23 30 98 102 101 40 87 55 85 1697

Test 283 26 29 85 99 81 34 84 47 68 836

4.1.2. IconArt

IconArt is a data set introduced in [16] to support the evaluation of WSOD techniques
on artworks. This multi-class multi-label data set consists of seven classes portraying
religious characters (e.g., Virgin Mary and Saint Sebastian) and non-religious subjects (e.g.,
ruins and nudity). No iconography symbols are associated with the classes. A validation
set is randomly extracted from the training set following the procedure described in [16].
Table 2 reports the total number of images, the number of images used for detection, and the
annotated bounding boxes of the IconArt data set.

Table 2. The IconArt data set —The number of images is shown per class and per task (classification
and object detection). For object detection, the number of annotated bounding boxes is reported too.

Set Angel Child
Jesus Crucifixion Mary Nudity Ruins Saint

Sebastian None Total

Classification
images

Train 600 755 86 1065 956 234 75 947 2978

Test 627 750 107 1086 1007 264 82 924 2977

Object detection
images Test 261 313 107 446 403 114 82 623 1480

Annotated
bounding boxes Test 1043 320 109 502 759 194 82 N/A 3009

4.2. Quantitative Analysis

This section starts by assessing the contribution of the DRS module to the classification
performance. Then, it compares several CAM techniques and classification backbones for
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generating a pseudo-GT. Finally, it evaluates the proposed pipeline with regards to other
state-of-the-art WSOD techniques.

4.2.1. Classification

The evaluation of the classification performances has been conducted by comparing
ResNet-50 enhanced with DRS and the architectures of the related works [14,18]. For the
evaluation, a ResNet-50 model pre-trained on the ImageNet data set [66] has been used.
The results of [14,18] have been replicated by applying the architectures and trained models
provided by the authors. ResNet-50 with the inclusion of the DRS module has been trained
with the same procedure of [14], both for ArtDL 2.0 and IconArt. The use of a fully-
supervised image classification architecture on IconArt and Mi-max on ArtDL has not been
documented previously.

Since the Mi-max architecture [16,18] is designed for end-to-end WSOD, the network’s
output corresponds to bounding boxes instead of class confidence scores. To compute
classification performance, the authors perform classification-by-detection. Thus, the
image-level classification score for each class is defined as the highest detection score for
that class.

Table 3 compares the classification results of the three architectures on the ArtDL 2.0
and IconArt data sets. The obtained results are comparable to those in the original works
for all the replicated methods. ResNet-50 has consistent performance in the two data
sets while ResNet-50 with DRS presents slightly lower precision and recall in ArtDL 2.0
and slightly better precision and worse recall in IconArt. These results are expected
when employing attention modules because they focus on maximizing CAM localization
rather than classification accuracy [86,87]. Mi-max shows much lower results, especially
in ArtDL 2.0, due to the need to train the network from scratch and the difficulty in
learning to identify the classes that present few examples and less discriminative features
(e.g., Dominic, Anthony of Padua and Paul). The per-class AP results are presented in
Tables 4 and 5.

Table 3. Classification performance —This table presents the classification results on the ArtDL 2.0
and IconArt data sets. Reported results are macro-averaged. ResNet-50 and ResNet-50 with DRS
show similar and consistent results in the two data sets while Mi-max is the architecture obtaining
the worst classification results. The best-performing method for each data set is highlighted in bold.

Method
ArtDL 2.0 IconArt

Precision Recall F1 AP Precision Recall F1 AP

ResNet-50 [14] 0.727 0.698 0.691 0.716 0.715 0.679 0.642 0.725

ResNet-50 + DRS 0.658 0.658 0.649 0.701 0.717 0.619 0.656 0.731

Mi-max [18] 0.040 0.850 0.090 0.176 0.240 0.970 0.360 0.540

Table 4. Per-class classification performance on ArtDL 2.0—This table presents the per-class AP results
on the ArtDL 2.0 data set. The best-performing method for each class is highlighted in bold.

Method Virgin
Mary

Antony
of Padua Dominic Francis

of Assisi Jerome John the
Baptist Paul Peter Sebastian Mary

Magd.

ResNet-50 0.973 0.548 0.498 0.746 0.784 0.805 0.469 0.733 0.822 0.781

ResNet-50 + DRS 0.959 0.737 0.575 0.782 0.781 0.707 0.345 0.663 0.790 0.675

Mi-max 0.768 0.016 0.017 0.059 0.266 0.208 0.049 0.074 0.390 0.189
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Table 5. Per-class classification performance on IconArt—This table presents the per-class AP
results on the IconArt data set. The best-performing method for each class is highlighted in bold.

Method Angel Child
Jesus Crucifixion Mary Nudity Ruins Saint

Sebastian

ResNet-50 0.739 0.848 0.794 0.888 0.821 0.764 0.219

ResNet-50 + DRS 0.702 0.841 0.833 0.883 0.818 0.789 0.250

Mi-max 0.548 0.547 0.765 0.694 0.651 0.412 0.138

4.2.2. Pseudo-GT Generation

Since Mi-max does not produce CAMs, only ResNet-50 and ResNet-50 with DRS
are employed for the pseudo-GT generation step. The pseudo-GT bounding boxes have
been evaluated on the validation set of ArtDL 2.0 for ResNet-50 with and without the
DRS module. As for classification, results presented in [17] have been replicated as closely
as possible.

The authors of [17] analyzed CAMs’ localization capabilities using a fixed threshold
and found the optimal value to be 0.05. In this research, a grid search has been performed
on threshold values θloc ranging from 0.05 to 1 with a step of 0.05 and on percentile
values p ranging from 50 to 100 with a step of 5. Percentile values lower than 50 are not
considered because they would always lead to a threshold close to 0, because most CAM
values are 0 or very close to 0. The evaluation uses the Pascal VOC mAP metric. Since
this evaluation assesses the ability of CAMs to generate pseudo-GT, the mAP value is
computed only on GT classes. The aim is to have a pseudo-GT as similar as possible to
human-annotated bounding boxes.

Table 6 summarizes the mAP results obtained on the ArtDL 2.0 validation set. Percentile-
based thresholding yields better results than a fixed threshold for all CAM methods.
ResNet-50 with DRS obtains better results on two methods (CAM and Grad-CAM++) and
only when using fixed thresholds. Overall, the best combination is ResNet-50 without DRS
and with CAM and percentile-based thresholding (θloc = 0.15 and p = 95) with an mAP of
25.1%. This configuration is chosen to generate the pseudo-GT on the ArtDL 2.0 data set.

Table 6. Mean Average Precision of pseudo-GT (ArtDL 2.0)—The mAP is evaluated considering
the CAM of the GT classes on the validation set. The use of percentile always yields better results
than a fixed threshold and the best architecture is the configuration with ResNet-50, CAM, a threshold
of 0.15, and the 95th percentile. The best-performing method is highlighted in bold.

Method DRS
Fixed Threshold PaS

Threshold mAP Threshold Percentile mAP

CAM [37]
7 0.05 0.184 0.15 95 0.251

3 0.10 0.208 0.35 95 0.213

Grad-CAM [74]
7 0.05 0.174 0.55 90 0.231

3 0.10 0.150 1.00 75 0.180

Grad-CAM++ [75]
7 0.05 0.158 0.15 95 0.229

3 0.10 0.166 1.00 80 0.215

Smooth Grad-CAM++ [71]
7 0.05 0.167 0.65 85 0.229

3 0.10 0.152 1.00 80 0.183

Table 6 shows that the threshold/percentile combinations vary across methods and
backbones. For this reason and due to the differences between ArtDL 2.0 and IconArt
(class types, number of bounding boxes per image, and image quality), an optimal thresh-
old/percentile combination must be separately searched for the IconArt. Differently
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from ArtDL 2.0, IconArt has no validation set. The search strategy proposed in previ-
ous works [72,87,88] consists of two steps: first, a range of threshold and percentile values
is set accordingly to ArtDL 2.0 results and standard suggested values. Then, a sample of
20 qualitative results is randomly drawn from the training set and analyzed to choose the
best percentile/threshold values. The range considered for the percentile p is {85, 90, 95}
and the range considered for the threshold θloc is {0.10, 0.15, 0.20, 0.25}. The best qualitative
results are obtained with ResNet-50 and the DRS module by setting θloc = 0.20 and p = 90.
On IconArt, the best results are obtained with ResNet-50+DRS because all the classes are
represented by compact objects, so the region suppression feature delivers the expected
benefits of a better focus. Conversely, ArtDL 2.0 classes may comprise multiple symbols
not necessarily close to each other (see Figure 3).

To compare CAM techniques with a standard baseline, we adopted Selective Search [10],
a region proposal method that computes a hierarchical grouping of superpixels based on
color, texture, and size. Since Selective Search aims at a very high recall, the generated
regions are classified by the architecture presented in Section 3.1 to keep only the most
confident predictions as pseudo-GT (i.e., those predictions with a classification score ≥ 0.9).
The obtained mAP is ≈ 0.03, much lower than the described CAM techniques.

An alternative solution has been presented in [89] to keep only tight discriminative
boxes from Selective Search proposals. It consists of: (1) filtering all the boxes with a
score lower than a threshold (Tscore) and then applying Non-Maximum Suppression (NMS)
to remove all the non-discriminative boxes; (2) discarding all the boxes that are entirely
surrounded by a larger box; and (3) merging all the discriminative boxes with an IoU
higher than a specified threshold (Tf usion). This technique can attain an mAP of 0.157 with
Tscore = 0.3, NMS = 0.7 and Tf usion = 0.1. This result is still ≈ 10% lower than CAM + PAS.
For this reason, CAM + PAS has been used in this research for pseudo-GT mining.

4.2.3. Weakly Supervised Object Detection

The final stage of the pipeline has been evaluated on the ArtDL 2.0 and IconArt test
sets. For the classification stage, ResNet-50 (without DRS for ArtDL 2.0 and with DRS
for IconArt) has been employed, while for the subsequent step the CAM and PaS have
been selected. For ArtDL 2.0, the pseudo-GT bounding boxes have been generated with a
threshold of 0.15 and percentile of 95, while for IconArt with 0.20 and 90.

For both data sets, a Faster R-CNN detector with a ResNet-50 backbone pre-trained on
the Pascal VOC data set [90] is fine-tuned. The first two layers of the ResNet-50 backbone
are frozen to exploit the transfer learning advantage that was confirmed to be essential for
the classification stage. Bounding boxes for the evaluation are obtained by feeding test
images directly to the trained object detector model, as presented in Figure 1. The first two
stages (classification and pseudo-GT generation) are applied only to training images.

The proposed pipeline is compared against state-of-the-art WSOD architectures chosen
based on their novelty and outstanding results on natural images: PCL [30], CASD [24]
and UWSOD [36]. All methods have been replicated using the models provided by the
respective authors trained with the recommended parameters, except those marked with *
in Table 7 for which the results published by their authors are considered. Mi-max is
included because it is the best performing state-of-the-art architecture on the IconArt data
set. Bounding boxes generated with CAM and PaS have also been evaluated because they
are a simple and commonly used technique and provide an interesting baseline.
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Table 7. WSOD Performance—Detection capabilities are evaluated on the test set using the Pascal
VOC mAP metric. The results marked with * are taken from the original works. The best-performing
architecture for each data set is highlighted in bold.

Architecture ArtDL 2.0 IconArt

PCL [30] 0.248 0.059 *

CASD [24] 0.135 0.045

UWSOD [36] 0.076 0.062

Mi-max [18] 0.082 0.145 *

CAM + PaS 0.403 0.032

Ours 0.415 0.166

Table 7 summarizes the results of the examined methods for both data sets. In ArtDL 2.0,
all the end-to-end WSOD techniques present worse localization performance than CAM
with PaS. In IconArt, the CAM + PaS and end-to-end methods yield similar results. While
IconArt mAP values range from 3.2% of CAM + PaS to 16.6% of our method, for ArtDL 2.0
there is a vast difference between the 7.6% of UWSOD and the 41.5% of our method.
This is justified by previous studies in the cultural heritage field, which demonstrates
the importance of fine-tuning and transfer learning when working with non-natural im-
ages [14,15,52,68]. Most end-to-end architectures rely on frozen backbones, pre-trained on
ImageNet or Pascal VOC, thus not allowing fine-tuning of the first stage of the network,
which is fundamental for extracting features for the localization step. In addition, PCL,
Mi-max, and CASD rely on external proposals from Selective Search [10] or from a Faster
R-CNN RPN. Both alternatives present disadvantages: Selective Search was demonstrated
in [18] to be unsuitable for artworks because proposals cover on average 50% of the GT
bounding boxes, and fail with occluded or non-compact classes (e.g., those presented in
Figure 3). Instead, RPN tends to cover objects similar to Pascal VOC’s classes but may not
be relevant for non-natural images.

For ArtDL 2.0 it is interesting to note that PCL, a simpler WSOD technique, obtains
better results and is more robust to training noise with regards to the more complex methods
of CASD and UWSOD. Label noise and data set imbalance in ArtDL 2.0 also impact the
performance of Mi-max. Table 7 also shows that CAMs performances vary much across
data sets: a large drop is observed from ArtDL 2.0, which has few boxes per image to
IconArt, which has many boxes per image, especially for some classes (angels, nudity).

Table 8 presents the per-class AP results on ArtDL 2.0, and Table 9 the per-class AP
results on IconArt.

Table 8. Per-class WSOD performance on ArtDL 2.0—Detection capabilities are evaluated on the
ArtDL 2.0 test set for each class using the AP metric. The best-performing architecture for each class
is highlighted in bold.

Architecture Virgin
Mary

Antony
of Padua Dominic Francis

of Assisi Jerome John the
Baptist PAUL Peter Sebastian Mary

Magd.

PCL 0.478 0.024 0.005 0.122 0.476 0.204 0.059 0.191 0.370 0.554

CASD 0.301 0.011 0.035 0.059 0.344 0.057 0.010 0.112 0.072 0.351

UWSOD 0.018 0.063 0.033 0.022 0.022 0.034 0.018 0.019 0.023 0.014

Mi-max 0.142 0.016 0.000 0.000 0.128 0.112 0.024 0.040 0.219 0.136

CAM + PaS 0.242 0.341 0.254 0.282 0.604 0.308 0.268 0.613 0.418 0.697

Ours 0.490 0.230 0.322 0.294 0.551 0.468 0.245 0.540 0.446 0.556
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Table 9. Per-class WSOD performance on IconArt—Detection capabilities are evaluated on the
IconArt test set for each class using the AP metric. The best-performing architecture for each class is
highlighted in bold.

Architecture Angel Child
Jesus Crucifixion Mary Nudity Ruins Saint

Sebastian

PCL 0.029 0.003 0.010 0.263 0.023 0.014 0.072

CASD 0.002 0.000 0.200 0.049 0.014 0.023 0.028

UWSOD 0.089 0.000 0.020 0.016 0.003 0.076 0.112

Mi-max 0.043 0.067 0.357 0.156 0.240 0.152 0.001

CAM + PaS 0.010 0.002 0.076 0.009 0.028 0.052 0.046

Ours 0.009 0.017 0.589 0.019 0.243 0.061 0.221

4.3. Qualitative Analysis
4.3.1. Positive Examples

This section presents positive detection examples from the proposed method and
compares them with the CAM + PaS baseline. Figure 4 shows three examples from the
ArtDL 2.0 data set (a–c) and three examples from the IconArt data set (d–f). All six artworks
present complex scenes depicting multiple characters of one or more classes.

GT
CA

M
 +

 P
aS

OU
RS

a b c d e f

Figure 4. Positive WSOD detections—This figure presents positive examples on (a–f) six artworks
from the ArtDL 2.0 and IconArt data sets. The first row contains the manually annotated ground
truth, the middle row presents bounding boxes generated from CAM + PaS and the third row
shows detections from the proposed WSOD method. Bounding boxes are color-coded by class for
better visualization.

In the ArtDL 2.0 data set, the bounding boxes produced by our method correctly
locate the saints of interest and the most relevant symbols (e.g., Saint Sebastian’s arrows
in Figure 4a, Saint Jerome’s writing material in Figure 4b and Baby Jesus in Figure 4c).
Confusion is present when the Virgin Mary appears with other Saints due to imprecise
pseudo-GT annotations. Compared to the baseline, our method better identifies the classes
depicted in the images (e.g., in Figure 4a our pipeline recognizes all three classes of interest,
while ResNet-50 recognizes only Saint Sebastian) while focusing on the most relevant
areas rather than spreading on the entire image. Thus, even if Faster R-CNN is trained
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with knowledge from ResNet-50, the object detector can outperform the CAM baseline by
discovering novel features.

Similar results are obtained for IconArt. The most relevant regions are identified
correctly (e.g., in Figure 4d Mary’s upper part of the body, which is the most discriminative
part, the child Jesus, and the very small angel). In Figure 4e, a crowded scene with nude
figures is depicted. Our detector localizes and separates the majority of foreground figures
into unique boxes, while enclosing the group in the background in one large box. Figure 4f
shows another interesting example in which our method perfectly recognizes both Virgin
Mary and the Crucifixion of Jesus even if the scene depicts many figures very similar to
each other. The advantages discussed for the ArtDL 2.0 data set are even more evident in
the IconArt data set, and the effect of the significant quantitative improvements presented
in Table 9 can be noted in all the three artworks in Figure 4d–f.

4.3.2. Negative Examples

Figure 5 presents two negative examples for the ArtDL 2.0 data set (a–b) and two for
the IconArt data set (c–d). Our method can localize the depicted characters in the first two
examples but fails at predicting the correct classes. In Figure 5a, the confusion depends on
the similarity between Francis of Assisi, Dominic, and Anthony of Padua, which are the
least represented saints in the data set and can be recognized by fewer distinctive symbols.
In Figure 5b, the model makes some confusion between similar classes (Virgin Mary and
Mary Magdalene) or figures that are often depicted together (e.g., John the Baptist and Jesus
in “The Baptism of Jesus” scene). In Figure 5c, the model predictions are wrong. Virgin
Mary and Child Jesus may be confused with nudity because in all the images the Child
Jesus is associated with nudity, with the latter class being more recognizable. Figure 5d
presents another common confusion between the Virgin Mary, Child Jesus, and Joseph or
other male figures that are not annotated but frequently appear in the same scene.

OURS

GT
OU

RS

a b c d

Figure 5. Negative WSOD detections—This figure presents negative examples on (a–d) four art-
works from the ArtDL 2.0 and IconArt data sets. The first row contains the manually annotated
ground truth and the second row shows detections from the proposed WSOD method. Bounding
boxes are color-coded by class for better visualization.

False Positive (FP) examples can be analyzed by charting the error type distribution.
For this evaluation, the ODIN framework [91] was used. Figure 6 shows the FP cate-
gorization for two ArtDL 2.0 classes (Anthony of Padua and John the Baptist) and two
IconArt classes (Child Jesus and Virgin Mary). As shown in Figure 5a,b, the most common
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error related to Anthony of Padua and John the Baptist is confusion with other classes.
For Anthony of Padua, confusion occurs with similar classes (39%) while for John the
Baptist confusion happens mostly with other (not necessarily similar) classes. The IconArt
data set presents completely different distributions: 50% of the errors are caused by con-
fusion with background, i.e., the predictions are not intersecting with any GT box, while
only 20–25% are due to misclassification and another 20–30% to poor localization. This
difference is influenced by the images and scene characteristics of the two data sets, visible
in Figures 4 and 5.

Anthony of Padua John the Baptist

Child Jesus Virgin Mary

Figure 6. FP error distributions—The FP error analysis for two ArtDL 2.0 classes (Anthony of Padua
and John the Baptist) and two IconArt classes (Child Jesus and Virgin Mary) shows a difference in
error type distribution between the data sets.

5. Conclusions and Future Work

This paper presents a study on the effectiveness of a training pipeline for WSOD on
non-natural (e.g., artwork) images. The proposed architecture is based on a combination of
existing components. However, the results demonstrate that two-stage detection yields a
simple yet effective solution on data sets characterized by label scarcity, uncommon classes,
and less discriminative features.

The analysis has demonstrated that: (1) the introduction of the DRS module in the
classification architecture is beneficial to delineating better CAM regions in data sets with
multiple compact objects; (2) the use of PaS as a thresholding technique significantly im-
proves localization for all the analyzed CAM techniques by adapting to varying image
conditions (from black and white to very variable color palettes and confusing back-
grounds); (3) CAM-based pseudo-GT generation on non-standard data sets can be used as
a replacement of manual bounding box annotations, still generated bounding boxes present
imperfections when compared to expert annotations; (4) faster R-CNN can successfully
refine the localization knowledge derived from class-labels only, even on non-natural data
sets; and (5) end-to-end WSOD architectures are ineffective on the considered artworks’
data sets.

Future work will focus on re-using the previously trained ResNet-50 classification
model as the backbone for Faster R-CNN. This would allow exploiting the already learned
weights and most discriminative features while also making the training of Faster R-CNN
lighter and faster. Novel CAM-based [92] or box-based [93,94] Weakly Supervised Instance
Segmentation approaches will also be studied to obtain more precise localization. Still,
these methods would require an extensive manual annotation of test images. Finally, an in-
teresting future application consists in addressing the captions’ generation problem [95]
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by integrating the trained object detector (e.g., Faster R-CNN) in a caption generation
network [96,97], possibly exploiting hierarchical relations in paintings [98].
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