
Journal of Orthopaedic Translation 27 (2021) 110–118
Contents lists available at ScienceDirect

Journal of Orthopaedic Translation

journal homepage: www.journals.elsevier.com/journal-of-orthopaedic-translation
Review article
Overview of methods for enhancing bone regeneration in distraction
osteogenesis: Potential roles of biometals

Ye Li a,1, Qi Pan a,1, Jiankun Xu a, Xuan He a, Helen A. Li b, Derek A. Oldridge c, Gang Li a,**,2,
Ling Qin a,*,2

a Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong
b School of Medicine, University of East Anglia, Norwich, England, UK
c Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
A R T I C L E I N F O

Keywords:
Distraction osteogenesis (DO)
Biodegradable
Magnesium (Mg)
Biometal
Bone regeneration
* Corresponding author. Department of Orthopae
** Corresponding author. Department of Orthopae

E-mail addresses: gangli@cuhk.edu.hk (G. Li), li
1 Contributed equally.
2 5/F, Lui Chee Woo Clinical Science Building, T

https://doi.org/10.1016/j.jot.2020.11.008
Received 1 September 2020; Received in revised fo

2214-031X/© 2020 The Authors. Published by Elsev
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
A B S T R A C T

Background: Distraction osteogenesis (DO) is a functional tissue engineering approach that applies gradual me-
chanical traction on the bone tissues after osteotomy to stimulate bone regeneration. However, DO still has
disadvantages that limit its clinical use, including long treatment duration
Methods: Review the current methods of promoting bone formation and consolidation in DO with particular in-
terest on biometal.
Results: Numerous approaches, including physical therapy, gene therapy, growth factor-based therapy, stem-cell-
based therapy, and improved distraction devices, have been explored to reduce the DO treatment duration with
some success. Nevertheless, no approach to date is widely accepted in clinical practice due to various reasons,
such as high expense, short biologic half-life, and lack of effective delivery methods. Biometals, including calcium
(Ca), magnesium (Mg), zinc (Zn), copper (Cu), manganese (Mn), and cobalt (Co) have attracted attention in bone
regeneration attributed to their biodegradability and bioactive components released during in vivo degradation.
Conclusion: This review summarizes the current therapies accelerating bone formation in DO and the beneficial
role of biometals in bone regeneration, particularly focusing on the use of biometal Mg and its alloy in promoting
bone formation in DO. Translational potential: The potential clinical applications using Mg-based devices to
accelerate DO are promising. Mg stimulates expression of multiple intrinsic biological factors and the develop-
ment of Mg as an implantable component in DO may be used to argument bone formation and consolidation in
DO.
1. Overview of DO in bone regeneration

Hippocrates was the first to propose the placement of traction forces
to aid in bone healing more than 2000 years ago [1]. In the modern era, it
was Codivilla who first applied bone elongation techniques in 1905,
publishing a case report of a femoral distraction osteogenesis [2]. Since
being developed in the 1950s, the Ilizarov transportation technique-
—also known as “DO technique”—has become an important technique in
the fields of oral, maxillofacial, and orthopedic surgeries [3–6].

The mechanism of DO, which was reported through tension stress,
has attracted great attention in both research and clinical domains since
dics and Traumatology, Chinese
dics and Traumatology, Chinese
ngqin@cuhk.edu.hk (L. Qin).

he Chinese University of Hong K

rm 10 November 2020; Accepted

ier (Singapore) Pte Ltd on behalf
the 1950s [3,7]. It is reported that both appropriate mechanical stimuli
and adequate angiogenesis are required for successful bone formation
during DO [8–10]. However, overly rapid distraction could cause local-
ized ischemia, thereby inhibiting bone formation. It has also been
demonstrated that new bone formation is closely linked to angiogenesis
during DO as well [11,12].

The procedure of DO is composed of three sequential phases
including latency, distraction, and consolidation [2]. In the latency
phase, bone segments are fixed for 5–7 days after the osteotomy, as
suggested by Ilizarov [4]. The expression of interleukin 1 (IL-1), inter-
leukin 6 (IL-6), bone morphogenic protein-2 (BMP-2), and bone
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Figure 1. The process of distraction osteogenesis (A) Latency phase (B) Distraction phase (C) Consolidation phase (D) Schematic diagram of the distraction process.
The biological processes of latency phase include hematoma inflammation, recruitment of mesenchymal stem cells and angiogenesis response. The biological processes
of distraction phase include callus formation, angiogenesis and osteogenesis. The biological processes of consolidation phase include bone formation, osteoclast
recruitment and bone remodeling.
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morphogenic protein-4 (BMP-4) are up-regulated during the latency
phase and subsequently return to baseline [13]. Then, distraction is
performed at a controlled rate (1.0–1.5 mm/day) and frequency (2–4
times/day) until the desired lengthening is obtained [4]. During the
distraction phase, the expression of interleukin 6 (IL-6) is up-regulated
again, which plays a role in intramembranous ossification by promot-
ing the differentiation of cells into the osteoblastic lineage [13,14]. The
receptor activator of nuclear factor-kb ligand/osteoprotegerin (RAN-
KL/OPG) ratio remains high during the early distraction phase, helping
facilitate the resorption of the newly formed mineralized cartilage during
the latency phase [13]. The expression of bone morphogenic protein-6
(BMP-6) is high during the early stage of the distraction phase [13]. In
response to distraction tension, the expression of BMP-2, BMP-4, and
TGF-β peak in this phase to stimulate new bone formation [15]. The
direct effect of mechanical tension in enhancing osteoblast activity and
promoting osteoblastic differentiation of bone marrow mesenchymal
stem cells (BMSCs) has been demonstrated in various studies [16,17].
Additionally, it is also reported that the tension caused by distraction
could upregulate the expression of neurotrophic (nerve growth factor,
brain-derived neurotrophic factor, and neurotrophic-3) and their re-
ceptors (tropomyosin-related kinases A, B, and C) to enhance
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osteogenesis during DO [18], suggesting the importance of
tension-induced neural response during DO. The expression of IGF-1 and
β-fibroblast growth factor (βFGF) are also increased during this phase
[13]. In addition, vascular endothelial growth factor (VEGF) and
angiopoietin-1 and -2 expression are up-regulated, stimulating new
vessel formation and enhancing the plasticity of existing larger vessels
[15]. The consolidation phase usually takes half to one year or longer to
accomplish and contains a long period of immobilization as the
distracted callus becomes mature with the mechanical support from the
fixation device, keeping the callus stable and preventing cartilaginous
formation in-between. During the consolidation phase, bone remodeling
starts by allowing the formation of lamellar bone with bone marrow el-
ements to help form a better remodeling structure, which can provide
mechanical support over a long period of time [2]. The biological pro-
cesses involved in the consolidation phase consist of bone columns
interconnecting, osteoclast recruitment, and bone remodeling [13]. The
expression of BMP-2, BMP-4, and βFGF gradually decreases in the
consolidation phase [13]. Toward the end of the consolidation phase, the
expression TNF-α is significantly increased, suggesting that it plays an
important role in bone consolidation (Fig. 1) [13].



Table 1
Advantages and disadvantages of DO in bone regeneration.

Authors Advantages Disadvantages

Aronson et al.
(1997)

Induction of local bone formation with a minimally invasive procedure Inflammation surrounding the pin track caused by mechanical or thermal
damage, cellulitis, abscess, or local osteomyelitis

Nakase et al.
(2009) [21]

Stimulating correction of coronal, sagittal, and rotational defects with
shortening in the lower limbs

Complications were as follows: superficial pin tract infection, deep infection,
and transient decrease of range of motion of the nearby joint

Barakat et al.
(2010) [22]

Enhancing the regeneration of soft tissues such as skin, muscle, tendon and
neurovascular structures

Complications included pin tract infection

Borzunov et al.
(2012) [24]

Bone loss is compensated for by distraction regeneration and results in
consolidation at the docking site of the transported bone fragment

Requires several stages and takes a long time in cases of extensive bone defects

Kempton et al.
(2014) [20]

Restoring length after digital amputations and relatively technically easy with
no donor-site morbidity

Long duration of treatment and high complication rates

Suzanne et al.
(2020) [25]

The application of force over time for the generation of all tissues: skin,
muscle, nerves, blood vessels and bone

Force-related complications including misshaped regenerate, tipping of the
regenerate and open bite

Dogra et al. (2020)
[26]

Correcting the gross mandibular asymmetry Scar formation and requirement of frequent patient follow up
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2. The advantages and disadvantages of DO in bone regeneration

In comparison to other methods, the DO technique has several ad-
vantages (Table 1). The main advantage of DO is to induce endogenous
bone formation [19,20]. Kempton et al. [20] reported that DO offered
succinct advantages in restoring length and was relatively easier to
handle. According to the report by Nakase et al. [21], DO technique can
correct deformities in coronal, sagittal, and rotational planes with
shortening in the lower limbs which is corrective in a variety of skeletal
disorders. More importantly, the DO technique can stimulate regenera-
tion of surrounding soft tissues such as skin, muscle, tendon, and neu-
rovascular structures at the same time of bone formation, where other
methods can hardly achieve [22]. DO technique has 3–5 times decreased
primary disability for the treatment of post-traumatic non-unions
compared to other treatments, which means more patients can return to
work sooner, hence leading to beneficial social and economic impacts
[23].

Despite the advantage of the DO technique, there are still challenges
that need to be solved to make the DO technique more accessible
(Table 1). The DO technique usually needs lengthy treatment duration
which can lead to high complication rates [20,24]. Complications of DO
include: risks of infection (5% overall) including superficial pin, tract,
and deep infections; transient decreasing range of motion of the nearby
Table 2
Methods to accelerate bone formation in DO.

Methods Authors Methods Clin
Mod

Intramedullary nailing Jager et al. [29];
Popkov et al.
[30]

Elastic stable intramedullary
nailing (ESIN)

Clin

Gubin et al.
[3]；
Lan et al. [28]

Intramedullary nailing (IMN) Clin

External fixation pin
coating

Caja et al. [63]; Hydroxyapatite (HA) coating Clin

Automated continuous
devices

Kessler P et al.
[36]

Motor-driven hydraulic pump Pigs

Physical stimulation Chan et al. [39] Low-intensity pulsed ultrasound
(LIPUS)

Rabb

Miloro et al. [40] Low-level laser (LLL) Rabb

Hagiwara et al.
[42]

Electrical stimulation (ES) Rabb

Gene therapy Sun et al. [53] Micro-RNA-503 Rats
Ashinoff et al.
[48]

Adenoviral-mediated delivery of
BMP-2

Rats

Cytokine-based therapy Zhao et al. [55] Osteogenic growth peptide (OGP) Rabb
Sailhan et al.
[54]

Bone Morphogenic Protein-2
(BMP-2)

Rabb

Stem-cell based therapy Yang et al. [52] Transplantation of allogeneic
MSCs

Rats
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joint; premature or delayed consolidation, non-union, delayed union,
axial deviation, late twisting, or fracture; and failure for the bone to grow
in the desired direction [11]. The pin track inflammation is commonly
caused by mechanical stimuli, thermal damage, cellulitis, abscess, or
local osteomyelitis [11]. In addition, joint complications may cause joint
mobility to be lost temporarily or permanently [11].

3. Enhancement of bone formation in DO

To reduce the complications of DO, extensive research over the past
two decades has focused on improving surgical technique, fixator and
distraction devices, physical stimulation, and the use of biological agents.

Improvement in surgical technique, fixator and distraction devices,
and physical stimulation.

Developments in surgical technique, as well as fixator and distraction
devices continue in DO, and these developments are summarized in
Table 2.

Intramedullary nailing: Lengthening over intramedullary nailing
(IMN) can give several benefits including reduction of the duration of
external fixation time, prevention of refracture, and earlier rehabilita-
tion [27]. It was also reported that adjuvant IMN or
lengthen-and-then-nailing (LATN) can allow early removal of the
external fixator, gaining popularity in adults for cosmetic surgery, limb
ical study/
els

Main conclusion Disadvantages/limitations

ical study Reducing external fixator wearing
time

Risk of deep intramedullary
infection

ical study Allowing early removal of the
external fixator

Risk of deep intramedullary
infection

ical study Reducing pin loosening No influence on infection and
malunion

Speeding regeneration Economic burden, inflexibility

its Increasing endochondral formation Economic burden

its Enhancing new bone formation Unknown mechanism and
efficiency

its Enhancing new bone formation Unknown mechanism and
efficiency

Promoting bone formation Safety issues
Improving bone deposition Safety issues

its Promoting the new bone formation Short biologic half-life
its Enhancing consolidation High expense

Significantly increased bone
volume fraction

Lack of efficient delivery
methods



Table 3
The biological functions of biometals and their proposed role in bone regeneration [94,95].

Biometal Body
content

Blood content Biological functions Signaling molecules and their proposed role in bone regeneration

Ca 1.0–1.5 Kg
[96]

8.8–10.4 mg/
dL [96]

Enzyme co-factor, maintaining skeletal
framework, signaling molecule [64]

Enhances the effects of BMP-2 on Osteocalcin, Runx2 and Osteria expression via SMAD
signaling (7.5 mM Ca2þ) [97]

Mg 24–25 g
[98,99]

1.5–2.5 mg/
dL [99]

Enzyme co-factor, composition of
chlorophylls [94]

Stimulates CGRP-mediated osteogenic differentiation of stem cells (Mg rod) [100];
Promotes angiogenesis and prevents vessel leakage (10 mM Mg2þ) [101]; Inhibits
osteoclast differentiation (10 mM Mg2þ) through regulating Ca2þ signal [101];

Zn 2–3 g [81] 6.3 mg/L
[102]

Enzyme co-factor (nucleic-acids
polymerases), involved in cell division [94]

Stimulates osteoblast bone formation (15 uM Zn2þ) [83]; Inhibits osteoclast
differentiation [84]; Increases alkaline phosphatase activity (1.0 mg Zn2þ/100 g body
weight) [85];

Cu 80–120 mg
[81]

0.8–1.6 mg/L
[102]

Transportation of oxygen, redox reactions
[94]

Promotes angiogenesis, osteostimulation and antibacterial activity of bioactive glass
(5%) [88];

Mn 12 mg
[103]

4-15 ug/L
[104]

Enzyme co-factor (superoxide dismutase,
pyruvate kinase), metabolism of fats [94]

Accelerates fracture healing in a rat model (0.125 mg/kg) [90]; Enhances osteogenesis
(0.55%) [105];

Co 3 mg [103] 0.39 ug/L
[102]

Hematopoiesis (vitamin B12) [94] Upregulates anti-inflammatory, osteogenic, and proangiogenic factors (1 ppm) [91]
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length discrepancy, and sequelae of poliomyelitis [3,28]. Jager et al. [29]
reported that elastic stable intramedullary nailing (ESIN) can reduce
external fixator wearing time with no additional complications. How-
ever, many problems that limit the clinical application of intramedullary
nailing still exist including the risk of deep intramedullary infection and
blockade of the ideal positions of pins for external fixator [30].

External fixation pin coating: The application of pin coatings such
as hydroxyapatite (HA), titanium, and silver to enhance fixation and
reduce infection has been studied for many years [31,32]. HA, consti-
tuting 65% of the human bone mineral component, is widely accepted as
a bone substitute and prosthetic coating [31]. Piza et al. reported that
HA-coating could reduce pin loosening, while no significant difference
was found in the infection rate between groups with or without
HA-coating [31,33]. Pieske et al. demonstrated that HA-coating
improved bone fixation with no difference in rates of infection [34].
Therefore, the antimicrobial properties of the coatings need to be further
improved in future studies.

Automated continuous devices: Novel distraction devices that can
lengthen automatically and continuously have been developed. The
automated distraction is of clinical significance since it can eliminate the
need for patient compliance and diminish the frequency of postoperative
care [2]. There are three types of automated devices for DO: hydraulic
power, motor-driven, and spring-mediated devices [35]. Continuous
distraction may be carried out at a rate of up to 2 mm per day, with
relatively good bone quality [36]. Despite promising results, automated
devices are quite expensive and not widely accepted for routine clinical
use [35]. Problems with currently available automated devices include
risk of infection, device breakage, economic burden, inflexibility for
adjustment during the treatment, limited range of lengthening, and the
need for multiple surgical procedures [35]. However, further develop-
ment of automated devices continues to improve their reliability,
adjustability, and affordability.

Physical stimulation: Physical therapies including low-intensity
pulsed ultrasound (LIPUS) [37–39], low-level laser (LLL) [40,41], elec-
trical stimulation (ES) [42,43], and pulsed electromagnetic field stimu-
lation [44,45] had been investigated to accelerate bone formation in the
consolidation phase during DO. Shimazaki et al. reported the positive
effects of the low-intensity ultrasound during DO in the rabbit model,
which may stimulate osteoblastic cells to synthesize extracellular matrix
[37]. Moreover, it was reported that LIPUS could increase endochondral
formation in a dose-dependent manner during rapid DO [39]. Miloro
et al. applied the low-level laser (820 nm) with an output of 400 mW of
6.0 J � 6 transmucosal sites in a rabbit DO model [40]. Radiographical
and histological results showed that new bone formation and ossification
were more obvious for the low-level laser-treated group [40]. Hübler
et al. also reported improved bone structure using low-level laser on the
newly formed bone [41]. Hagiwara et al. applied electrical current
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stimulation (10 A) to two of the screws used as electrodes during DO and
observed an increased bone formation at 10 and 20 days after distraction
[42]. The beneficial effect of electrical stimulation might be attributed to
the decreased partial pressure of oxygen, increased pH, and increased
vascularization which are all favorable for new bone formation [42,46].
A pulsed electromagnetic field with 75 Hz frequency was applied by
Felipe et al. at 10 days after surgery for 8 h/day to promote bone for-
mation and consolidation [45]. Li et al. reported that the pulsed elec-
tromagnetic field could reduce the healing time of regenerated bone in a
rabbit DO model [44]. However, the mechanisms and efficiency of the
physical stimulation methods in accelerating DO bone formation still
need further elucidation.

4. Biological agents

Multiple studies applied biological agents to enhance DO (Table 2).
These included gene therapy [47–49], cytokine-based therapy [50], and
stem-cell-based therapy [51,52].

Gene therapy: Local gene therapies of bone morphogenic protein
(BMP) have been reported to induce sustained and relatively high levels
of BMP production at regenerates during DO. Local adenoviral-mediated
delivery of BMP-2 could improve bone consolidation [48].
BMP-7-mediated ex vivo gene transfer based on MSCs promoted callus
formation and bone consolidation during DO [49]. Sun et al. reported
that Micro-RNA-503 could promote bone formation in DO through sup-
pressing Smurf1 expression in a rat DO model [53]. Despite many
promising results of gene therapy, safety issues and selection of optimal
dose, timing, and delivery methods still require further investigation [48,
50].

Growth factor-based therapy: Local or systematic administration of
growth factors have been reported to promote bone formation including
BMP [54], osteogenic growth peptide (OGP) [55], platelet-derived
growth factor (PDGF) [9], VEGF [9], nerve growth factor (NGFβ), and
calcitonin gene-related peptide (CGRP). Among these growth factors,
BMP plays the most important role in bone healing through regulating
osteogenic differentiation of MSCs and synergistic effects with VEGF
signaling [2]. Local application of BMP-2 in the distraction phase effec-
tively enhances consolidation in DO [54]. Intravenous systemic appli-
cation of OGP enhances bone formation in a rabbit DOmodel [55]. VEGF,
PDGF, and angiopoietins are important for new blood vessel formation in
the distraction regenerate during DO [9]. Apart from applying angio-
genic and osteogenic factors to accelerate bone formation in DO, other
factors such as NGFβ had also been applied to shorten the consolidation
phase in DO [56]. The local injection of neuropeptide CGRP accelerated
DO bone formation via the enhancement of angiogenesis [57]. Despite
many beneficial results of growth factor therapies, their application in
clinical practice is limited by high expense, short biologic half-life, and



Table 4
Advantages and disadvantages of using Mg to enhance bone regeneration.

Advantage Disadvantage

Desirable mechanical strength
Osteogenic ability
Angiogenic ability
Anti-microbial activity
High biocompatibility
Degradability in the biological

environment, thereby avoiding the
economic cost and risk of physical or
psychological complications from a
second surgery.

If degradation rate is too fast, then it
may lead to loss of mechanical strength
of the implant for intended long-term
bone regeneration applications;
Localized alkaline environment during
degradation;
Gas formation and accumulation due to
the rapid degradation process, leading
to the displacement of surrounding
tissues and a decrease in the implant-
bone contact area
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the lack of efficient delivery methods [48,50].
Stem-cell based therapy: With capacity in producing regenerative

cytokines, differentiating into different cell types of the tissue or organ
and self-renewal, mesenchymal stem cells (MSCs) are applied to enhance
bone formation in DO [52,58–62]. Studies have demonstrated that
applying autologous or allogeneic MSCs to the distraction regenerates
shortens the treatment time of DO [51,52,60]. The selection of a
cost-effective treatment protocol, a suitable cell type and the develop-
ment of apposite carrier materials for the delivery of cells, still need
further examination [51].

5. Overview of biometals in bone regeneration

Biometals—including Ca, Mg, Zn, Cu, Mn, and Co—are termed as
metals that have a biological function [64]. The biological functions of
these biometals and their proposed roles in bone regeneration are sum-
marized in Table 3.

Calcium is the main component of human bones and teeth, and 99%
of which is present as HA [Ca10(PO4)6(OH)2] crystals [65]. Calcium acts
as co-factor of enzyme and plays an important role in maintaining skel-
etal framework [64]. It is reported that Calcium can improve the effects
of BMP-2 on Osteocalcin, Runx2 and Osteria expression through SMAD
signaling. Compared with the limited use of Calcium-based alloys, Cal-
cium phosphate is more widely used in bone regeneration applications
because of its osteoconductive and osteoinductive properties. The poor
strength and fatigue resistance of Calcium phosphate-based biomaterials
makes them unsuitable for load-bearing parts of the human body.
However, the surface functionalization of metallic implants with HA
coatings shows promise in improving the performance of bone implants
[63,66–68].

Mg is one of the major mineral components of bone matrix, and 53%
of body Mg is stored in bone [69]. As the second most abundant intra-
cellular cation, 95% of Mg in cells are bound to negatively charged
molecules such as ribosomes, plasma membrane phospholipids, and
adenosine triphosphate (ATP) [70]. Mg ion (Mg2þ) functions as a
cofactor of more than 300 enzymes and their activities all exhibit a
similar bell-shaped curve for dependence on Mg2þ [70]. The degradation
products of Mg-based implants includeMg2þ [71–74], hydrogen [75,76],
and elevated local pH [77–79] which have all been demonstrated to
promote osteogenesis and angiogenesis. The Mg2þ generated during Mg
metal degradation can stimulate the osteogenic differentiation of stem
cells and enhance the migration of endothelial cells, ultimately inducing
osteogenesis and angiogenesis in many in vitro studies [71–74].
Hydrogen therapy can decrease the volume of infarction and suppress
injuries caused by ischemia via reducing oxidative stress [75,76]. The
alkaline environment has been recognized to increase osteoblastic min-
eral deposition and suppress osteoclastic activities, suggesting the ther-
apeutic value of elevated local pH in bone regeneration [77–79].

Zn is an essential mineral for the growth and development of mam-
mals [80], and around 2–3 g of Zn in the human body forms an integral
part of more than three hundred important enzymes, including enzymes
that are involved in regulating gene expression [64,81]. Recently,
biodegradable Zn has been developed into novel alloy systems with
outstanding mechanical strength [82]. Zn and its alloys exhibit distinct
advantages in promoting bone regeneration due to their capacity to
stimulate osteoblast bone formation, increase alkaline phosphatase ac-
tivity, and inhibit osteoclast differentiation [82–85]. However, the un-
derlying mechanism of Zn action in these activities has not been
elucidated.

Cu is an important element for maintaining normal health and for
survival, and there is around 80–120 mg Cu in the human body [64]. Cu
functions as a cofactor for enzymes involved in regulating many physi-
ological processes, including maintaining energy production in the
human body [64]. Cu2þ can stimulate the proliferation of endothelial
cells [86], enhance the activity and proliferation of osteoblasts [87], and
promote the osteostimulation and antibacterial activities of bioactive
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glass [88]. Therefore, Cu shows great potential in enhancing bone
regeneration.

Mn is an important mineral, which is required for the development of
brain and nervous tissues [64]. Mn is an important cofactor for enzymes
that regulate carbohydrate and fat metabolism, and promote the syn-
thesis of sex hormones [64]. Mn is associated with the maintenance of
bone structure and in regulating bone metabolism [89]. The addition of
Mn can significantly enhance osteogenesis. Additionally, it has been
shown that local treatment of Mn2þ can accelerate fracture healing in a
rat model via amplifying early angiogenesis [90]. Therefore, the local
administration of Mn2þ is a potential therapeutic method for bone
regeneration.

Co is an important element that forms an integral part of vitamin B12
(cyanocobalamin) and is involved in the formation of hemoglobin [64].
However, the inconsistent effect of cobalt, possibly attributable to dif-
ferences in tested concentrations, has produced controversy regarding
the application of Co-based biomaterials in bone regeneration [91]. The
1 ppm concentration of cobalt is reported to have optimal bone regen-
eration outcomes via upregulating anti-inflammatory, pro-osteogenic,
and pro-angiogenic factors [91]. Hence, the application of Co-based al-
loys for the development of cost-effective lengthening devices to reduce
the treatment duration of DO shows great potential.

The biometals Mg, Zn, Cu, Mn, and Co have all been shown to have
beneficial effects in bone regeneration. Among the above biometals, Mg
and its alloys have been intensively investigated in recent years as a new
class of biodegradable materials due to their suitable mechanical prop-
erties and low mass density, as well as angiogenic and osteogenic prop-
erties [71–74,92,93]. Therefore, we discuss the advantages and
disadvantages of Mg in bone regeneration and the potential of using
biodegradable Mg to shorten the treatment duration of DO.

6. Advantages and disadvantages of Mg in bone regeneration

The advantages of Mg in bone regeneration have been indicated in
several prior studies [106–112] (Table 4). Mg has attracted great atten-
tion for bone repair because of its suitable mechanical strength [113], the
capacity of promoting osteogenesis [100], angiogenesis [114], degrad-
ability [115], and antimicrobial potential [116]. The anti-microbial
property is especially useful for DO implications that are associated
with infection [116,117]. The degradation characteristic of Mg in the
biological environment may also avoid a second surgery for implant
removal [111]. Additional advantages include the low density of the
biodegradable Mg alloy and the observation that its degradation products
(Mg ions, hydrogen and elevated local pH value) increased expression of
multiple endogenous biological agents continuously, resolving the
problem of inefficient delivery methods for growth factor therapy,
therefore making it a good candidate for accelerating DO [93,117].

There are still a number of challenges that have restricted Mg im-
plants as a suitable material in bone tissue engineering, most notably the
rapid in vivo degradation rate and alkaline degradation products, which
trigger an acute and unfavorable excessive inflammatory response [118].



Figure 2. Diagram illustrating the potential application of Mg-based IMN to accelerate DO.
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Besides that, extensive gas formation due to the rapid degradation pro-
cess could lead to displacement of the surrounding tissues and a decrease
in the implant-bone contact area, eventually hampering bone regenera-
tion [119]. These disadvantages may be overcome by changing the
composition, microscopic structure, grain size, texture orientation, and
incorporating a protective coating [107].

The potential of using biodegradable Mg to promote bone formation
in DO.

The problems of Mg-based implants could be solved by using alloying,
coating, or high-purification technologies to provide higher corrosion
resistance, suitable mechanical properties and various biofunctions
[118].

Alloy design of Mg has been investigated for dozens of years with a
focus on biodegradability, as well as desirable mechanical and osteo-
promotive properties. So far, two Mg alloys have proven effective in
humans. A Mg alloy ((MgYREZr)) screw, developed by Waizy et al. is
comparable to the titanium one in treating hallux valgus abnormalities
[120]. Lee et al. have developed a Mg–Ca–Zn alloy implant, and they
found that the implant could facilitate early bone healing and could be
completely replaced by new bone within one year of implantation [121].
As one of the most popular magnesium alloys with aluminum, biode-
gradable AZ31 Mg alloy provides a low mass density and good me-
chanical properties. It has been investigated as an external device by
Wang et al. in a mandibular DO canine model and the results suggest that
AZ31 Mg alloy is equivalent to the stainless steel device in terms of fix-
ation stability [93]. The alloy shows a certain degradation rate in the
mandible and does not have a negative effect on the kidney or liver [93].
However, the efficiency of the AZ31 Mg alloy in reducing the DO treat-
ment period has not been explored.

With the development of metallurgy technology, high-purity Mg
(99.99%) has been developed to improve corrosion resistance during in
vivo application [118]. A 3D-printed pure Mg incorporated scaffold has
been developed for bone defect repair, showing good osteogenesis,
angiogenesis, and suitable mechanical properties while simultaneously
upregulating the expression VEGFA and BMP2 [114]. It is reported that
intramedullary nailing can reduce external fixator wearing time with no
additional complications [27]. Mg and its alloys may also be designed as
part of the intramedullary nail (hybrid device) for promoting bone
115
consolidation when exchanging the external fixator. An innovative, pure
Mg-containing intramedullary nail has been developed to promote frac-
ture repair in an ovariectomy-induced osteoporosis rat model via upre-
gulating the release of CGRP by Zhang et al. in Nature Medicine [100].
CGRP can also promote angiogenesis by promoting endothelial cell
migration and tube formation [122]. Moreover, CGRP has been reported
to promote bone formation via enhancing angiogenesis during DO [57].
The pro-angiogenic effect of Mg may be attributable to CGRP-mediated
signaling. Hence, the use of a Mg-based metal for development of a
cost-effective intramedullary nailing or coating could enhance bone
formation and ultimately reduce the treatment duration of DO due to its
capacity to continuously upregulate the expression of multiple endoge-
nous agents that promote angiogenesis, osteogenesis and neuronal
regeneration. These diverse effects may themselves be driven by Mg
degradation products, including local release of Mg ions, elevated pH
value, and hydrogen (Fig. 2).

7. Conclusion

Current methods including physical therapy, gene therapy, growth
factor-based therapy, stem-cell-based therapy, and improved distraction
devices to shorten the treatment duration of DO have been proven
effective in animal models. However, further development is still needed
to improve their reliability, adjustability, and affordability. Mg and its
alloys are promising biomaterials that may be applied in DO to promote
bone formation due to their suitable mechanical strength, osteogenic and
angiogenic potential, degradability and antimicrobial ability. The ability
of Mg to upregulate the expression of multiple endogenous biological
agents continuously solves the problems of lacking an efficient delivery
method and short biologic half-life for growth factor therapy, making it a
good candidate for accelerating DO. The use of pure Mg metal as an
intramedullary nail for application in the distraction regenerate may
shorten the treatment duration of DO by upregulating the expression of
osteogenic and angiogenic factors as well as enhancing bone formation.
In conclusion, this review summarizes the various methods for promoting
bone formation in DO, with focus on the exploration of the translational
potential of biodegradable Mg and its alloys.
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