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Abstract

Software produced for research, published and otherwise, suffers from a number of com-

mon problems that make it difficult or impossible to run outside the original institution or

even off the primary developer’s computer. We present ten simple rules to make such soft-

ware robust enough to be run by anyone, anywhere, and thereby delight your users and

collaborators.

Author summary

Many researchers have found out the hard way that there’s a world of difference between

“works for me on my machine” and “works for other people on theirs.” Many common

challenges can be avoided by following a few simple rules; doing so not only improves

reproducibility but can accelerate research.

Introduction

Scientific software is typically developed and used by a single person, usually a graduate stu-

dent or postdoc [1]. It may produce the intended results in their hands, but what happens

when someone else wants to run it? Everyone with a few years of experience feels a bit nervous

when told to use another person’s code to analyze their data: it will often be undocumented,

work in unexpected ways (if it works at all), rely on nonexistent paths or resources, be tuned

for a single dataset, or simply be an older version than was used in published papers. The

potential new user is then faced with two unpalatable options: hack the existing code to make

it work or start over.

Being unable to replicate results is so common that one publication refers to it as “a rite of

passage” [2]. The root cause of this problem is that most research software is essentially a pro-

totype, and therefore is not robust. The lack of robustness in published, distributed software

leads to duplicated efforts with little practical benefit, which slows the pace of research [3, 4].

Bioinformatics software repositories [5, 6] catalogue dozens to hundreds of tools that perform

similar tasks: for example, in 2016, the Bioinformatics Links Directory included 84 different

multiple sequence aligners, 141 tools to analyze transcript expression, and 182 pathway and

interaction resources. Some of these tools are legitimate efforts to improve the state-of-the-art,
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but often, they are difficult to install and run [7, 8] and are effectively abandoned after publica-

tion [9].

This problem is not unique to bioinformatics or even to computing [2]. Best practices in

software engineering specifically aim to increase software robustness. However, most bioinfor-

maticians learn what they know about software development on the job or otherwise infor-

mally [1, 10]. Existing training programs and initiatives rarely have the time to cover software

engineering in depth, especially since the field is so broad and developing so rapidly [4, 10]. In

addition, making software robust is not directly rewarded in science, and funding is difficult to

come by [1]. Some proposed solutions to this problem include restructuring educational pro-

grams, hiring dedicated software engineers [4, 11], partnering with private sector or grassroots

organizations [1, 5], or using specific technical tools like containerization or cloud computing

[12, 13]. Each of these requires time and, in some cases, institutional change.

The good news is you don’t need to be a professionally trained programmer to write robust

software. In fact, some of the best, most reliable pieces of software in many scientific commu-

nities are written by researchers [3, 11] who have adopted strong software engineering

approaches, have high standards of reproducibility, use good testing practices, and foster

strong user bases through constantly evolving, clearly documented, useful, and useable soft-

ware. In the bioinformatics community, Bioconductor and Galaxy follow this path [12, 14].

Not all scientific software needs to be robust [15], but if you publish a paper about your soft-

ware, it should, at minimum, satisfy these rules.

So what is “robust” software? We implied above that it is software that works for people

other than the original author and on machines other than its creator’s. More specifically, we

mean that:

• it can be installed on more than one computer with relative ease,

• it works consistently as advertised, and

• it can be integrated with other tools.

Our rules are generic and can be applied to all languages, libraries, packages, documenta-

tion styles, and operating systems for both closed-source and open-source software. They are

also necessary steps toward making computational research replicable and reproducible: after

all, if your tools and libraries cannot be run by others, they cannot be used to verify your results

or as a stepping stone for future work [16].

Rule 1: Use version control

Version control is essential to sustainable software development [17, 18]. In particular, devel-

opers will struggle to understand what they have actually built, what it actually does, and what

they have actually released without some mechanical way to keep track of changes. They

should therefore put everything into version control as soon as it is created, including pro-

grams, original field observations, and the source files for papers. Files that can be regenerated

as needed, such as the binaries for compiled programs or intermediate files generated during

data analysis, should not be versioned; instead, it is often more sensible to use an archiving sys-

tem for them and store the metadata describing their contents in version control instead [19].

If you are new to version control, it is simplest to treat it as “a better Dropbox” (or, if you

are of a certain age, a better FTP) and to use it simply to synchronize files between multiple

developers and machines [20]. Once you are comfortable working that way, you should use a

feature branch workflow: designate one parallel copy (or “branch”) of the repository as the

master, and create a new branch from it each time you want to fix a bug or add a new feature.
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This allows work on independent changes to proceed in isolation; once the work has been

completed and tested, it can be merged into the master branch for release.

Rule 2: Document your code and usage

How to write high-quality documentation has been described elsewhere [21], and so here, we

only cover two minimal types: the README and usage. The README is usually available

even before the software is installed, exists to get a new user started, and points them towards

more help. Usage is a terse, informative command-line help message that guides the user in

the correct use of the software.

Numerous guidelines exist on how to write a good README file [22, 23]. At a minimum,

your README should:

1. Explain what the software does. There’s nothing more frustrating than downloading and

installing something only to find out that it doesn’t do what you thought it did.

2. List required dependencies. We address dependencies in more detail in Rule 5.

3. Provide compilation or installation instructions.

4. List all input and output files, even those considered self-explanatory. Link to specifications

for standard formats and list the required fields and acceptable values in other files. If there

is no rigorous definition for a format, explain its parts as clearly as possible in plain English.

5. List a few example commands to get a user started quickly.

6. State attributions and licensing. Attributions are how you credit your contributors; licenses

dictate how others may use and need to credit your work.

The program should also print usage information when launching from the command line.

Usage provides the first line of help for both new and experienced users. Terseness is impor-

tant: usage that extends for multiple screens is difficult to read or refer to on the fly.

Almost all command-line applications use a combination of POSIX [24] and GNU [23]

standards for usage. More standard command-line behaviours are detailed in [8]. Your soft-

ware’s usage should:

1. Describe the syntax for running the program, including the name of the program, the rela-

tive location of optional and required flags, other arguments, and values for execution.

2. Give a short description to remind users of the software’s primary function.

3. List the most commonly used arguments, a description of each, and the default values.

4. State where to find more information.

Usage should be printed to standard output so that it can be combined with other bash util-

ities like grep, and it should finish with an appropiate exit code.

Documentation beyond the README and usage is up to the developer’s discretion. We

think it is very important for developers to document their work, but our experience is that

people are unlikely do it during normal development. However, it is worth noting that software

that is widely used and contributed to has and enforces the need for good documentation [14].

Rule 3: Make common operations easy to control

Being able to change parameters on the fly to determine if and how they change the results is

important as your software gains more users since it facilitates exploratory analysis and
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parameter sweeping. Programs should therefore allow the most commonly changed parame-

ters to be configured from the command line.

Users will want to change some values more often than others. Since parameters are soft-

ware-specific, the appropriate “tunable” ones cannot be detailed here, but a short list includes

input and reference files and directories, output files and directories, filtering parameters, ran-

dom number generation seeds, and alternatives such as compressing results, using a variant

algorithm, or verbose output.

Check that all input values are in a reasonable range at startup. Few things are as annoying

as having a program announce after running for two hours that it isn’t going to save its results

because the requested directory doesn’t exist.

To make programs even easier to use, choose reasonable defaults when they exist and set no

defaults at all when there aren’t any reasonable ones. You can set reasonable default values as

long as any command line arguments override those values.

Changeable values should never be hard-coded: if users have to edit your software in

order to run it, you have done something wrong. Changeable but infrequently changed val-

ues should therefore be stored in configuration files. These can be in a standard location,

e.g., .packagerc in the user’s home directory, or provided on the command line as an

additional argument. Configuration files are often created during installation to set up such

things as server names, network drives, and other defaults for your lab or institution.

Rule 4: Version your releases

Software evolves over time, with developers adding or removing features as need dictates.

Making official releases stamps a particular set of features with a project-specific identifier so

that version can be retrieved for later use. For example, if a paper is published, the software

should be released at the same time so that the results can be reproduced.

Most software has a version number composed of a decimal number that increments as

new versions are released. There are many different ways to construct and interpret this num-

ber, but most importantly for us, a particular software version run with the same parameters

should give identical results no matter when it’s run. Results include both correct output as

well as any errors. Increment your version number every time you release your software to

other people.

Semantic versioning [25] is one of the most common types of versioning for open-source

software. Version numbers take the form of “MAJOR.MINOR[.PATCH],” e.g., 0.2.6. Changes

in the major version number herald significant changes in the software that are not backwards

compatible, such as changing or removing features or altering the primary functions of the

software. Increasing the minor version represents incremental improvements in the software,

like adding new features. Following the minor version number can be an arbitrary number of

project-specific identifiers, including patches, builds, and qualifiers. Common qualifiers

include alpha, beta, and SNAPSHOT, for applications that are not yet stable or released,

and -RC for release candidates prior to an official release.

The version of your software should be easily available by supplying --version or -v on

the command line. This command should print the software name and version number, and it

should also be included in all of the program’s output, particularly debugging traces. If some-

one needs help, it’s important that they be able to tell whoever’s helping them which version of

the software they’re using.

While new releases may make a program better in general, they can simultaneously create

work for someone who integrated the old version into their own workflow a year or two ago

and won’t see any benefits from upgrading. A program’s authors should therefore ensure that
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old released versions continue to be available. A number of mechanisms exist for controlled

release that range from adding an appropriate commit message or tag to version control [20]

to official releases alongside code on Bitbucket or GitHub to depositing into a repository like

apt, yum, homebrew, CPAN, etc. Choose the method that best suits the number and expertise

of users you anticipate.

Rule 5: Reuse software (within reason)

In the spirit of code reuse and interoperability, developers often want to reuse software written

by others. With a few lines, a call is made out to another library or program and the results are

incorporated into the primary script. Using popular projects reduces the amount of code that

needs to be maintained and leverages the work done by the other software.

Unfortunately, reusing software (whether software libraries or separate executables) intro-

duces dependencies, which can bring their own special pain. The interface between two soft-

ware packages can be a source of considerable frustration: all too often, support requests

descend into debugging errors produced by the other project due to incompatible libraries,

versions, or operating systems [16]. Even introducing libraries in the same programming lan-

guage can rely on software installed in the environment, and the problem becomes much

more difficult when relying on executables or even on web services.

Despite these problems, software developers in research should reuse existing software pro-

vided a few guidelines are adhered to.

First, make sure that you really need the auxiliary program. If you are executing GNU sort

instead of figuring out how to sort lists in Python, it may not be worth the pain of integration.

Reuse software that offers some measurable improvement to your project.

Second, if launching an executable, ensure the appropriate software and version is available.

Either allow the user to configure the exact path to the package, distribute the program with

the dependent software, or download it during installation using your package manager. If the

executable requires internet access, check for that early in execution.

Third, ensure that reused software is robust. Relying on erratic third party libraries or soft-

ware is a recipe for tears. Prefer software that follows good software development practices, is

open for support questions, and is available from a stable location or repository using your

package manager.

Exercise caution, especially when transitioning across languages or using separate executa-

bles, as they tend to be especially sensitive to operating systems, environments, and locales.

Rule 6: Rely on build tools and package managers for installation

To compile code, deploy applications, and automate other tasks, programmers routinely use

build tools like Make, Rake, Maven, Ant, or MS Build. These tools can also be used to manage

runtime environments, i.e., to check that the right versions of required packages are installed

and install or upgrade them if they are not. As mentioned in Rule 5, a package manager can

mitigate some of the difficulties in software reuse.

The same tools can and should be used to manage runtime environments on users’

machines as well. Accordingly, developers should document all dependencies in a machine-

readable form. Package managers like apt and yum are available on most Unix-like systems,

and application package managers exist for specific languages like Python (pip), Java (Maven/

Gradle), and Ruby (RubyGems). These package managers can be used together with the build

utility to ensure that dependencies are available at compile/run time.

For example, it is common for Python projects to include a file called requirements.txt
that lists the names of required libraries, along with version ranges:
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requests>=2.0
pygithub>=1.26,<=1.27
python-social-auth>=0.2.19,<0.3
This file can be read by the pip package manager, which can check that the required soft-

ware is available and install it if it is not. Whatever is used, developers should always install

dependencies using their dependency description, especially on their personal machines, so

that they’re sure it works.

Conversely, developers should avoid depending on scripts and tools which are not available

as packages. In many cases, a program’s author may not realize that some tool was built locally

and doesn’t exist elsewhere. At present, the only sure way to discover such unknown depen-

dencies is to install on a system administered by someone else and see what breaks. As use of

virtualization containers becomes more widespread, software installation can also be tested on

a virtual machine or container system like Docker.

Rule 7: Do not require root or other special privileges to install or

run

Root (also known as “superuser” or “admin”) is a special account on a computer that has

(among other things) the power to modify or delete system files and user accounts. Conversely,

files and directories owned by root usually cannot be modifed by normal users.

Installing or running a program with root privileges is often convenient, since doing so

automatically bypasses all those pesky safety checks that might otherwise get in the user’s way.

However, those checks are there for a reason: scientific software packages may not inten-

tionally be malware, but one small bug or over-eager file-matching expression can certainly

make them behave as if they were. Outside of very unusual circumstances, packages should

not require root privileges to set up or use.

Another reason for this rule is that users may want to try out a new package before install-

ing it systemwide on a cluster. Requiring root privileges will frustrate such efforts and thereby

reduce uptake of the package. Requiring, as Apache Tomcat does, that software be installed

under its own user account—i.e., that packagenamebe made a user and all of the package’s

software be installed in that pseudo-user’s space—is similarly limiting, and makes side-by-side

installation of multiple versions of the package more difficult.

Developers should therefore allow packages to be installed in an arbitrary location, e.g.,

under a user’s home directory in */packagename, or in directories with standard names

like bin, lib, and man under a chosen directory. If the first option is chosen, the user may

need to modify his or her search path to include the package’s executables and libraries, but

this can (more or less) be automated and is much less risky than setting things up as root.

Testing the ability to install software has traditionally been regarded as difficult, since it nec-

essarily alters the machine on which the test is conducted. Lightweight virtualization contain-

ers like Docker make this much easier as well, or you can simply ask another person to try and

build your software before releasing it.

Rule 8: Eliminate hard-coded paths

It’s easy to write software that reads input from a file called mydata.csv, but it’s also very

limiting. If a colleague asks you to process his or her data, you must either overwrite your data

file (which is risky) or edit your code to read otherdata.csv (which is also risky, because

there’s every likelihood you’ll forget to change the filename back or will change three uses of

the filename but not a fourth).
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Hard-coding file paths in a program also makes the software harder to run in other envi-

ronments. If your package is installed on a cluster, for example, the user’s data will almost cer-

tainly not be in the same directory as the software, and the folder C:\users\yourname\
will probably not even exist.

For these reasons, users should be able to set the names and locations of input and output

files as command-line parameters. This rule applies to reference datasets as well as the user’s

own data: if a user wants to try a new gene identification algorithm using a different set of

genes as a training set, he or she should not have to edit the software to do so. A corollary to

this rule is to not require users to navigate to a particular directory to do their work, since

“where I have to be” is just another hard-coded path.

In order to save typing, it is often convenient to allow users to specify an input or output

directory, and then require that there be files with particular names in that directory. This

practice is an example of “convention over configuration,” a principle used by software frame-

works such as WordPress and Ruby on Rails that often strikes a good balance between adapt-

ability and consistency.

Rule 9: Include a small test set that can be run to ensure the

software is actually working

Every package should come with a set of tests for users to run after installation. Its purpose is

not only to check that the software is working correctly (although that is extremely helpful)

but also to ensure that it works at all. This test script can also serve as a working example of

how to run the software.

In order to be useful, make the tests easy to find and run. Many build systems will also run

unit tests if provided them at compile time. For users, or if the build system is not amenable to

testing, provide a working script in the project’s root directory named runtests.shor

something equally obvious. This lets new users build their analysis from a working script. For

example, with its distribution, the graph-based sequence aligner HISAT2 includes a full set of

very small files, and a “Getting Started with HISAT2” section in its manual that leads you

through the entire data lifecycle [26].

Equally important is to make the test script’s output easy to interpret. Screens full of corre-

lation coefficients do not qualify: instead, the script’s output should be simple to understand

for nonexperts, such as one line per test, with the test’s name and its pass/fail status, followed

by a single summary line saying how many tests were run and how many passed or failed. If

many or all tests fail because of missing dependencies, that fact should be displayed once,

clearly, rather than once per test, so that users have a clear idea of what they need to fix and

how much work it’s likely to take.

Research has shown that the ease with which people can start making contributions is a

strong predictor of whether they will or not [27]. By making it simpler for outsiders to contrib-

ute, a test suite of any kind also makes it more likely that they will, and software with collabora-

tors stands a better chance of surviving in the busy field of scientific software.

Rule 10: Produce identical results when given identical inputs

The usage message tells users what the program could do. It is equally important for the pro-

gram to tell users what it actually did. Accordingly, when the program starts, it should echo all

parameters and software versions to standard out or a log file alongside the results to increase

the reproducibility of that step.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005412 April 13, 2017 7 / 10

https://doi.org/10.1371/journal.pcbi.1005412


Given a set of parameters and a dataset, a particular version of a program should produce

the same results every time it is run to aid testing, debugging, and reproducibility. Even minor

changes to code can cause minor changes in output because of floating-point issues, which means

that getting exactly the same output for the same input and parameters probably won’t work dur-

ing development, but it should still be a goal for people who have deployed a specific version.

Many applications rely on randomized algorithms to improve performance or

runtimes. As a consequence, results can change between runs, even when provided with the

same data and parameters. By its nature, this randomness renders strict reproducibility

(and, therefore, debugging) more difficult. If even the small test set (#9) produces different

results for each run, new users may not be able to tell whether or not the software is working

properly. When comparing results between versions or after changing parameters,

even small differences can confuse or muddy the comparison. And especially when

producing results for publications, grants, or diagnoses, any analysis should be absolutely

reproducible.

Given the size of biological data, it is unreasonable to suggest that random algorithms be

removed. However, most programs use a pseudo-random number generator, which uses a

starting seed and an equation to approximate random numbers. Setting the seed to a consis-

tent value can remove randomness between runs. Allow the user to optionally provide the ran-

dom seed as an input parameter, thus rendering the program deterministic for those cases

where it matters. If the seed is set internally (e.g., using clock time), echo it to the output for

reuse later. If setting the seed is not possible, make sure the acceptable tolerance is known and

detailed in documentation and in the tests.

Conclusion

There has been extended discussion over the past few years of the sustainability of research

software, but this question is meaningless in isolation: any piece of software can be sustained if

its users are willing to put in enough effort. The real equation is the ratio between the skill and

effort available and the ease with which software can be installed, understood, used, main-

tained, and extended. Following the ten rules we outline here reduces the denominator and

thereby enables researchers to build on each other’s work more easily.

That said, not every coding effort needs to be engineered to last. Code that is used once to

answer a specific question related to a specific dataset doesn’t require comprehensive docu-

mentation or flexible configuration, and the only sensible way to test it may well be to run it

on the dataset in question. Exploratory analysis is an iterative process that is developed quickly

and revised often [4, 11]. However, if a script is dusted off and run three or four times for

slightly different purposes, is crucial to a publication or a lab, or is being passed on to someone

else, it may be time to make your software more robust.

Supporting information

S1 Checklist. Robust software checklist. A checklist summarizing these ten simple rules to

apply to your own software.

(PDF)
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