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Healthy cerebrovascular myocytes express members of several different ion channel families which regulate resting membrane
potential, vascular diameter, and vascular tone and are involved in cerebral autoregulation. In animal models, in response to
subarachnoid blood, a dynamic transition of ion channel expression and function is initiated, with acute and long-term effects
differing from each other. Initial hypoperfusion after exposure of cerebral vessels to oxyhemoglobin correlates with a suppression
of voltage-gated potassium channel activity, whereas delayed cerebral vasospasm involves changes in other potassium channel
and voltage-gated calcium channels expression and function. Furthermore, expression patterns and function of ion channels
appear to differ between main and small peripheral vessels, which may be key in understanding mechanisms behind subarachnoid
hemorrhage-induced vasospasm. Here, changes in calcium and potassium channel expression and function in animal models of
subarachnoid hemorrhage and transient global ischemia are systematically reviewed and their clinical significance discussed.

1. Introduction

Despite current treatment options, delayed cerebral ischemia
following aneurismal subarachnoid hemorrhage (SAH) is
still associated with a high morbidity and mortality [1].
The narrowing of cerebral blood vessels by vasospasm
represents the main cause of delayed cerebral ischemia [2].
Because vasospastic smooth muscle cells are known to be
depolarized compared to controls [3, 4], the expression
and function of ion channels in these cells after SAH
are of great interest. Furthermore, the inhibitor of L-
type calcium channels nimodipine remains gold standard
in treatment and prophylaxis of vasospasm after SAH.
However, recent studies have revealed that several ion
channels of different subfamilies are impacted by SAH and
may contribute to delayed vasospasm. The goal of the
present analysis is to review ion channel expression and
function in healthy cerebral blood vessels as well as after
SAH.

2. Ion Channels Healthy Cerebral Vessels

2.1. Expression and Function of Potassium Channels in Healthy
Cerebral Vessels. Membrane potential of cerebrovascular
smooth muscle cells and thus dilation and constriction
of cerebral arteries are directly dependent on potassium
conductance [5, 6]. Members of four potassium super-
families have been shown to be expressed in smooth
muscle cells of healthy cerebral vessels: inwardly rectifying
(Kir), ATP-dependent- (KATP), voltage-gated (Kv), and large-
conductance calcium-activated (BK) potassium channels.
Kir2.1 mRNA and protein could be identified in basilar
arteries of rats and dogs [7, 8], whereas the presence of
KATP in cerebrovascular smooth muscle has been determined
electrophysiologically [9] and reviewed in detail by Ploug
et al. 2008 [10]. Transcripts of Kv channel subunits Kv1.1
to Kv1.6, Kv2.1, Kv2.2, were detected in healthy rat cerebral
vessels and Kv3.1, Kv3.4, and Kv4.3 in healthy dog cerebral
vessels but only protein of Kv1.2, Kv1.5, Kv2.1, and Kv2.2
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subunits could be identified [7, 11, 12]. In situ hybridization
revealed the presence of different BK channel splice variants
(X1+24, X2+92, SS2+174 and SS4+81) in combination with
β1, β2, and β4 subunits in rat cerebral arteries [13].
Transcripts of both Kir2.1 and Kir2.2 have been identified in
cerebrovascular smooth muscle [14, 15], where they are
thought to play an essential role in neurovascular coupling
by mediating local vasodilation as a response to increased
neuronal activity [16–18].

Functional studies of the physiological role of Kv and BK
channels in healthy cerebral vessels show that they contribute
to vascular tone by regulating resting membrane potential
of vascular myocytes, limiting depolarization by promoting
K+ efflux [19]. BK channels are particularly vital in cerebral
resistance arteries, where raised intracellular calcium at
depolarization elicits outward BK currents representing a
negative feedback loop, which antagonizes vasoconstriction
[20, 21]. Furthermore, BK channels also play an important
role in the principle vasorelaxation pathway (nitric oxide
synthase pathway), as they are activated by cyclic GMP-
dependent protein kinase (PKG), which is stimulated by
the NO-induced increase of cGMP [22]. Interestingly, a
recent study of mouse cerebral parenchymal arterioles found
small-conductance (SK) and intermediate-conductance (IK)
calcium-activated potassium currents in isolated endothelial
cells in addition to the BK currents in isolated myocytes [23].
Both appear to contribute to vasorelaxation, as superfusion
of the cerebral cortex with SK and IK channel inhibitors
apamin and TRAM-34, respectively, reduces resting cortical
CBF [23].

In healthy cerebral blood vessels activation of KATP chan-
nels causes hyperpolarization of vascular myocytes and thus
vasodilatation [5, 18, 19]. Several antihypertensive drugs
like the vasodilators diazoxide, cromakalim, and pinacidil
exert their therapeutic effect by activating KATP channels
[24, 25]. KATP channels appear to play an important role in
cerebral autoregulation, as in rats their inhibition impairs
healthy autoregulatory vasomotor responses to hypotension
and its reverse. Furthermore, KATP channel activation is also
associated with several pathophysiological responses such as
reactive hyperemia in cerebral circulation after hypoxia [26]
(reviewed by Ko et al., 2008 [27]).

2.2. Expression and Function of Calcium Channels in Healthy
Cerebral Vessels. L-type voltage-gated calcium channels
(VGCCs) were traditionally believed to predominantly con-
trol Ca2+ influx in cerebrovascular smooth muscle cells;
however recent studies have revealed expression of various
Ca2+ channels and their isoforms. Protein and transcripts
of the alpha1 subunit of the Cav1.2 (L-type) VGCC are
expressed strongly in basilar arteries of the dog [28] and
the rat [29]. Interestingly, however, in the rat basilar artery
(and lateral branches), transcripts of the low-voltage acti-
vated channel Cav3.1 were the strongest expressed VGCCs,
exceeding relative mRNA levels of the other four identified
VGCCs in the following order: Cav3.1 (T-type) > Cav1.2
(L-type) > Cav1.3 (L-type) > Cav3.2 (T-type) > Cav2.3 (R-
type). The same study found that, at the protein level, Cav3.1

and Cav1.2 were both clearly expressed basilar artery smooth
muscle cells, while Cav3.2 protein expression was much
lower, Cav2.3 protein was confined to the surface of the
vessel, and Cav1.3 protein was not detectable at all. However,
the authors did not find evidence for Cav2.2 (N-type) VGCC
protein or mRNA expression as was found in basilar arteries
of the dog [28]. In dogs inhibition of L- and T-type Ca2+

channels with nimodipine and mibefradil, respectively leads
to a relaxation of healthy arteries under isometric tension,
whereas blockade, of N-type Ca2+ channel has no effect [30].

It is notable that expression of VGCCs appears to be
heterogeneous in cerebrovascular smooth muscle cells: in the
dog basilar artery low-voltage activated (LVA) current made
up more than 50% of the total current in 12% of myocytes,
less than 10% in 26% of myocytes, and between 10% and
50% in 62% of myocytes [28]. Additionally VGCC expression
may vary depending on vessel size: Kuo and coworkers [31]
described a high-voltage-activated Ca2+ current showing T-
type channel kinetics, which is insensitive to nifedipine and
nimodipine and is blocked by the T-type blocker mibefradil.
Interestingly, the fraction of this current is higher in smaller
vessels and decreases with vessel size. These currents could
represent low-voltage-activated T-type currents, but also
“intermediate-voltage-” activated R-type currents, which are
insensitive to dihydropyridines but are also antagonized
by mibefradil [32]. This vessel-size-dependent difference
of expression patterns of VGCCs in cerebral blood vessels
implies that the contribution of L-type VGCCs to vaso-
constriction is greatest in large basal cerebral vessels, while
dihydropyridine-insensitive VGCCs play a more important
role in smaller vessels. Other investigators suggest that L-type
Ca2+ channels could be responsible for vasomotion, while
non-L-type Ca2+ channels control vascular tone [29].

3. Early Ion Channel Dysfunction after SAH

In addition to delayed cerebral vasospasms, acute hypoper-
fusion immediately after rupture of an aneurysm causing
subarachnoid blood represents another characteristic of
SAH pathology [33–35]. Relative hypovolemia, impaired
cerebral circulation due to elevated intracranial pressure,
abnormal autoregulation, as well as early vasospasm have
been discussed as possible etiologies behind acute hypop-
erfusion after SAH [33, 35–38]. Some insights into the
underlying molecular mechanism could be gained from
animal experiments. Data from a rat SAH model found
evidence for acute vasoconstriction after even minor sub-
arachnoid hemorrhage [35]. In cultured primate cerebrovas-
cular smooth muscle cells a significant increase of free
intracellular Ca2+ is observed as early as 2 minutes after
exposure to oxyhemoglobin (oxyHb) and sustains for 7
days [39]. Similarly Takenaka and colleagues found that
endothelin, oxyHb, 5-hydroxytryptamine, norepinephrine,
prostaglandin F2 alpha, and leukotrienes C4 and D4 but not
bilirubin produced acute dose-dependent increases in intra-
cellular Ca2+ concentration [40] in cultured cerebrovascular
smooth muscle cells. Furthermore, Takenaka and coworkers
report that the L-type Ca2+ channel blocker verapamil
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does not inhibit the oxyHb-induced rise in intracellular
Ca2+, implying non-L-type calcium channels in acute vaso-
constriction after exposure of the vessel to blood [41].
This finding may be explained by data from Ishiguro and
coworkers [42] that demonstrates that, in isolated cerebral
arteries, acute oxyHb exposure induces vasoconstriction and
suppression of Kv currents but does not influence VGCCs.
Long-term (5 days) oxyHb exposure on the other hand
enhanced expression of VGCCs, pointing toward important
roles of Kv channels in acute vasoconstriction and VGCCs in
delayed vasoconstriction after SAH.

4. Changes in Ion Channel Expression and
Function in Delayed Cerebral Vasospasm

4.1. The Pathophysiological Role of Potassium Channels

in the Genesis of Delayed Cerebral Vasospasm

4.1.1. Voltage-Gated Potassium (Kv) Channels in SAH.
Reduced K+ conductance causing depolarization of cere-
brovascular myocytes was amongst the earliest hypotheses
behind delayed cerebral vasospasm after SAH, and indeed
many modern studies support this model [43–45]. However,
it has become increasingly evident that members of different
potassium channel families are affected in different ways
after SAH, raising many new questions. Several authors
emphasize a loss of functional voltage-gated K+ channel
(Kv) in response to SAH, as mainly responsible for the
disturbance of K+ conductance. Seven days after SAH, Kv2.2,
and Kv2.1 transcripts and protein were found to be reduced
in basilar arteries of dogs [7, 43]. Immunohistochemical
staining of rabbit cerebral arteries revealed a reduction of
surface-expressed Kv1.5 protein 5 days after oxyHb exposure
[46]. Furthermore, Ishiguro describes redistribution of Kv1.5
protein after oxyHb exposure: in unexposed vessels Kv1.5 was
observed within large defined regions of the cell membrane
and was associated with phosphotyrosine-rich vesicular
compartments adjacent to the plasma membrane, whereas
OxyHb exposure caused a decrease in Kv1.5 surface staining
and a redistribution of the remaining Kv1.5 into smaller
foci that appeared fused with phosphotyrosine-enriched
vesicles. This stands in support of the hypothesis that oxyHb-
induced suppression of Kv1.5 channels is mediated by a
mechanism involving increased tyrosine phosphorylation-
dependent trafficking of the channel from the cell surface
[46].

4.1.2. Inwardly Rectifying Potassium (Kir) Channels in SAH.
Next to Kv channels, expression of an inwardly rectifying
potassium channel is found to be influenced by SAH.
Seven days after SAH, dog basilar artery myocytes display
enhanced expression of Kir2.1 protein and transcripts [7, 45].
Accordingly, blockage of Kir2.1 channels in arteries under
isometric tension produced a greater contraction in SAH
than in control arteries. It is thus possible that increased
expression of Kir2.1 channels after SAH may represent an
adaptive response reducing disturbance of the cellular K+

balance and consecutively cerebral vasospasm.

4.1.3. Large Conductance Calcium-Activated (BK) Potassium
Channels in SAH. Whether BK channels are impacted by
SAH and contribute to vasospasm is a matter of debate,
as data on this subject has proven to be somewhat con-
tradictory. It has been reported that in dog basilar artery
myocytes, BK current density, kinetics, Ca2+ and voltage
sensitivity, single-channel conductance, and apparent Ca2+

affinity are unaffected by SAH [44]. Aihara et al. report that
although the expression of the BK channel alpha subunit is
unchanged after SAH, expression of BK channel β1 subunit
mRNA (but not protein) is reduced 7 days after SAH in
dog basilar artery myocytes and correlates with the degree
of vasospasm [7]. Koide et al. found that although SAH does
not alter BK channel density or single channel properties in
rabbits, SAH does cause a distinct reduction in Ca2+ spark-
induced transient BK currents, corresponding to decreased
expression of ryanodine receptor type-2 protein [47]. Ca2+

sparks are focal Ca2+ releases through ryanodine receptors
(RyRs) in the sarcoplasmic reticulum (SR), which oppose
the contractile actions of global cytosolic Ca2+ by activation
of BK channels leading to hyperpolarization and decreased
Ca2+ influx through VGCCs [48, 49]. Findings by Koide et
al. suggest that impaired subcellular signaling from the SR to
BK channels at the cell surface, due to reduced expression of
RyRs causing less focal Ca2+ spark discharges, could be a key
mechanism in vasospasm after SAH.

4.1.4. ATP-Dependent (KATP) Potassium Channels in SAH.
An important role of KATP channels in animal models of
SAH-induced vasospasm appears likely, as several experi-
mental studies have shown that pharmacologic activation
of KATP channels can significantly attenuate vasospasm. The
KATP channel activator levcromakalim increased vasorelax-
ation in rabbit basilar arteries three days after SAH [4] and in
dog basilar arteries seven days after SAH [50]. Furthermore,
the endogenous KATP channel activator calcitonin gene-
related peptide (CGRP) displayed therapeutic effects revers-
ing vasospasm after SAH in rabbits and monkeys [51, 52]
but failed to significantly attenuate vasospasm to a greater
degree than standard of care (nimodipine) in a clinical trial
comprising 117 patients [53].

4.1.5. VGCCs in SAH. The role of VGCCs in vasospasm
may seem obvious in clinical practice where L-type Ca2+

channel blockers, such as nimodipine, are the gold standard
of prophylaxis and treatments of cerebral vasospasm. This
is indeed reflected in experimental investigations offering
evidence in support of a large contribution of L-type
VGCCs to vasoconstriction in certain cerebral blood vessels.
However, recent findings have revealed the importance of R-
type and T-type channels in vasospasm. Although typically
classed with the high-voltage-activated Ca2+ channels, R-
type calcium channels are activated at potentials between
those of low and high VGCCs, representing an intermediate
VGCC. This channel is of interest in vasospasm, as its
expression is directly linked to SAH and it may be available
for opening at the depolarized resting potential of vasospastic
cerebrovascular myocytes.
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Intravenous administration of nimodipine five minutes
after SAH improves circulation and attenuates vasospasm in
rats [54]. Nicardipine (dihydropyridine) pellets positioned
next to the basal arteries have been shown to reduce the
occurrence of angiographic vasospasm in a dose-dependent
manner in patients suffering from SAH [55, 56]. How-
ever, L-type antagonists alone cannot reverse SAH-induced
vasospasm completely. In this regard, the finding is that
although L-type VGCC antagonists abolish cerebral artery
constriction and block VGCC currents in cerebral artery
myocytes from healthy rabbits, the lack of their efficacy in
rabbits after SAH corresponds to an increase in R-type cur-
rents and alpha1E (Cav2.3 pore forming subunit) protein and
mRNA [57]. This is in line with recent findings by Nikitina
et al. who observed that high-voltage-activated (HVA) Ca2+

channel currents were significantly decreased and low-
voltage-activated (LVA) currents increased during vasospasm
4, 7, and 21 days after SAH in dogs [28]. This study revealed
an increase in protein expression of T-type (Cav3.1 and
Cav3.3 alpha subunits) and R-type VGCCs and a decrease
in L-type (Cav1.2 and Cav1.3 alpha subunits) VGCCs
in dog basilar arteries after SAH. Interestingly however,
differently to Nikitina et al., Ishiguro et al. could not observe
an increase in R-type protein and mRNA in the basilar
artery or other larger diameter vessels after SAH, but only
in smaller vessels. Several authors suggest that the func-
tional significance of R-type channels may lie within small
diameter blood vessels and that blood vessels of different
sizes are impacted differently by SAH [58]. Furthermore,
exposure of organ cultured rabbit cerebral arteries to oxyHb
induces the expression of R-type VGCC mRNA in small
vessels rendering the vessels sensitive to SNX-482 (R-type
antagonist) and less sensitive to diltiazem [59]. SNX-482
was also found to attenuate CBF reduction after SAH in
rats [60].

In addition to R-type VGCCs, the low-voltage-activated
(T-type) channels Cav3.1 and Cav3.3 have been shown
to be upregulated in the dog basilar artery after SAH
[28]; however the functional significance of this finding
is a matter of debate: the increased expression of T-
type VGCC channels was proposed to be functionally
irrelevant because these channels should be inactivated in
depolarized cells. In fact, T-type channels were reported to
inactivate at resting membrane potentials of most smooth
muscle cells at about −75 to −65 mV [17]. Cisternal
application of nicardipine but not of the T-type antagonist
mibefradil reduced CT angiography measured vasospasm in
cynomolgus macaques [61], which is in agreement with the
functional insignificance of T-type VGCCs in depolarized
cells.

5. Changes of Ion Channel Expression
and Function following Transient Global
Ischemia after SAH

Increased ICP and decreased CPP immediately following
SAB cause a transient global ischemia (TGI) [62–64].

Distinguishing which molecular changes can be attributed to
subarachnoid blood and which to TGI is difficult; however
studies of TGI (without SAH) can be of assistance. Very
little is known about changes in ion channel expression
and function in cerebral vessels following transient global
ischemia. The only study describing direct impact of TGI
on ion channels in cerebral arteries found that in piglets
arteriolar response (i.e., dilation) of KATP channels to their
activators aprikalim and iloprost is impaired 1 hour after
TGI but normalizes over 2–4 hours [65]. Interestingly, this
reduction of cerebral arteriolar dilation to activation of
KATP channels could be prevented with the nonsteroidal
anti-inflammatory drug indomethacin. In addition to this
acute provasoconstrictive effect, TGI has recently been
described to have a delayed provasoconstrictive effect. In
the two-vessel carotid artery occlusion model, transient
forebrain ischemia caused a functional upregulation of
ETB and 5-HT1B receptors in the ACA and MCA of the
rat 48 hours after the insult [66]. In the case of SAH-
induced TGI, an upregulation of vasoconstrictor receptors
could contribute to vasospasm and thus to delayed cerebral
ischemia.

More is known about the effects of TGI on neuronal
ion channels. Transient forebrain ischemia in rats leads to
a downregulation of L-type VGCCs in vulnerable hippo-
campal CA1 neurons by oxidation modulation, whereas
L-type Ca2+ channels in the CA3 are not affected [67].
Interestingly, blockade of L-type but not of N- or P-/
Q-type VGCCs worsened neuronal survival, while, more
importantly, L-type calcium-channel agonists applied after
reperfusion significantly decreased neuronal injury in rats
subjected to forebrain ischemia [67]. These results stand in
strong contrast to the widely accepted view of excitotoxic
mechanisms after brain ischemia, which make glutamate-
induced intracellular calcium overloading responsible for
induction of apoptotic proteins and toxic molecules [68, 69],
but shed light on possible region-specific involvement of
calcium signaling in cell survival. Indeed other studies give
weight to this hypothesis of L-type downregulation after
ischemia and may ultimately lead to a modification of the
view of calcium-mediated neurotoxicity [70–72]. R-type
VGCCs may also mediate neuroprotection in focal ischemia,
as mice lacking the R-type VGCC display larger infarct
volume size than wild-type mice after occlusion of the MCA
[73]. Although N-type VGCCs (but also L-type, P/Q-type)
have been reported to be upregulated in the hippocampus
and cortex after global ischemia [74, 75], neuroprotective
effectiveness of their inhibitors is a matter of debate, as
evidence is contradictory [76]. Furthermore, pharmacologic
inhibition of T-type VGCCs has been shown to have a
neuroprotective effect in hippocampal neurons after global
ischemia in rats and also an in vitro model of ischemia-
induced delayed cell death in rat organotypic hippocampal
slice cultures [77, 78]. However, a 2012 meta-analysis of
effectivity of calcium channel antagonists on ischemic stroke
including 7731 patients in 34 trials concluded that calcium
channel antagonists have no effect on primary outcome or
survival after stroke but that nimodipine at high doses is
associated with poorer outcome [79].
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6. Conclusions

It is apparent that the decrease of K+ conductance and the
shift from HVA Ca2+ currents to LVA Ca2+ in cerebrovascular
myocytes represent key phenomena in SAH-induced vaso-
spasm; however we have yet to put together the pieces to
establish a model of the complex mechanisms behind SAH
pathology. This paper focuses on ion channels and thus on
processes at the cell surface, but one must not overlook the
downstream effects of ion channel signaling via interacting
proteins like protein kinase C (PKC), an important regulator
of VGCCs. Several VGCCs and nearly all K+ channels are
highly regulated by PKC. After SAH, hemoglobin alters
expression levels of different PKC isoforms and induces their
translocation from the cytosol to the plasma membrane
(PKC-δ on day 4 and PKC-α on day 7) [80]. It has been
suggested that PKC-δ is involved in initiation of SAH-
induced vasospasm whereas PKC-α plays a role in its
endurance [81, 82]. PKC phosphorylates the Cav1.2 subunit
of L-type calcium channels and leads to dual modulation
with inhibitory and stimulatory effects in vascular smooth
muscle cells. R-type VGCCs also underlie PKC-mediated
Ca2+-dependent stimulation [83, 84]. But also calmodulin,
another regulatory protein of voltage-gated Ca2+ channels,
is significantly impacted by SAH, displaying a decrease
within the first 48 hours after SAH [85]. One may speculate
that imbalance of calmodulin-mediated inactivation and
PKC-mediated Ca2+-dependent stimulation of R-type Ca2+

channels might lead to self-perpetuating Ca2+ influx during
vasospasm. The calmodulin antagonist trifluoperazine was
demonstrated to reduce severity of cerebral vasospasm
following SAH but at doses far in excess of the normal
accepted therapeutic range in humans [86].

Transient global ischemia after SAH may contribute to
neurologic injury by downregulation of L-type VGCCs in
the CA1 region of the hippocampus [67] but also may
contribute to the occurrence of vasospasm by the increase of
vasoconstrictor receptors and the functional impairment of
KATP channels in cerebrovascular myocytes [65, 66].

In the effort of developing better pharmacologic ther-
apies and prophylaxes of vasospasm, it is very likely
that patients will ultimately benefit from in vitro studies
investigating ion-channel signaling and protein interaction
partners in great detail. As in every disease, identifying exact
targets in order to develop specific modulators is key, and
the lack thereof may be the root of difficulties in treating
vasospasms with L-type antagonists, such as nicardipine or
nimodipine, which also have substantial modulatory effects
on several other ion channels [87, 88]. Furthermore, the
extent to which vasospasm contributes to poor outcome after
SAH remains a matter of debate. Although several authors
falsely cite CONSCIOUS-1 as evidence that vasospasm does
not contribute to poor outcome (the study was not powered
to detect changes in morbidity, mortality, or clinical out-
come), recent evidence showing that a reduction of cerebral
infarction but not of vasospasm correlated with better
neurological outcome [89] fuels the debate on causality of
the pathological phenomena following SAH. In this regard, it
may be necessary to consider further mechanisms by which

nimodipine enhances clinical outcome. Several experimental
studies of different animal models of cerebral ischemia
have found neuroprotective effects of nimodipine [90–
92]; however clinical studies remain inconclusive. Although
nimodipine was found to have no effect on primary outcome
or survival after stroke in a recent meta-analysis of 34 clinical
trials, one study has found nimodipine to reduce relative risk
of the frequency of CT-scan-documented cerebral infarction
and of ischemic neurologic deficit after aneurysmal SAH but
not of angiographically detected cerebral vasospasm [93].
Taken together, these results underline the need for both
experimental and clinical investigations of the molecular
mechanisms behind the therapeutic effect of nimodipine and
thus calcium channel blockade.
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