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Presenilin (PS) with a genetic mutation generates abundant β-amyloid protein (Aβ) 43. Senile plaques are formed by Aβ43 in the
cerebral parenchyma together with Aβ42 at middle ages. These brains cause the early onset of Alzheimer’s disease (AD), which is
known as familial Alzheimer’s disease (FAD). Based on the stepwise processing model of Aβ generation by γ-secretase, we
reassessed the levels of Aβs in the cerebrospinal fluid (CSF) of FAD participants. While low levels of Aβ38, Aβ40, and Aβ42 were
generated in the CSF of FAD participants, the levels of Aβ43 were unchanged in some of them compared with other participants.
We sought to investigate why the level of Aβ43 was unchanged in FAD participants. These characteristics of Aβ generation were
observed in the γ-secretase assay in vitro using cells, which express FAD mutations in PS1. Aβ38 and Aβ40 generation from their
precursors, Aβ42 and Aβ43, was decreased in PS1 mutants compared with wild-type (WT) PS1, as observed in the CSF. Both the
ratios of Aβ38/Aβ42 and Aβ40/Aβ43 in PS1 mutants were lower than those in the WT. However, the ratio of Aβ43/amyloid precursor
protein intracellular domain (AICD) increased in the PS1 mutants in an onset age dependency, while other Aβ/AICD ratios were
decreased or unchanged. Importantly, liquid chromatography–mass spectrometry found that the generation of Aβ43 was
stimulated from Aβ48 in PS1 mutants. This result indicates that PS1 mutants switched the Aβ43 generating line, which reflects the
level of Aβ43 in the CSF and forming senile plaques.
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INTRODUCTION
Familial Alzheimer’s disease (FAD) patients are less prevalent
(approximately 1%) than those with sporadic Alzheimer’s
disease (AD) [1, 2]. More than 200 genetic mutations have
been found in presenilin (PS) 1 and 50 mutations in PS2, which
are the catalytic core of the γ-secretase complex [3–5], and >60
mutations in amyloid precursor protein (APP) have been
discovered [6]. APP is cleaved sequentially by β- and γ-
secretase to generate amyloid β-protein (Aβ) proteins [4]. FAD
mutations in PS and APP increase the ratio of Aβ42/Aβ40
compared with the ratio in wild-type (WT) [7–10]. Senile
plaques, a neuropathological hallmark of AD, are composed
largely of Aβ42 [11]. Thus, Aβ42 has been considered the
earliest species deposited in the parenchyma and the real
culprit for the development of sporadic AD. In addition, Aβ43, a
longer but much less prevalent Aβ, has been found in the
senile plaques of the brains of those affected by AD and Down
syndrome [12–14]. Nishimura and colleagues reported that
random mutagenesis generated a PS1 R278I mutation that
results exclusively in the production of Aβ43 [15], and Saido
and colleagues reported that mutant PS1 transgenic mice
(R278I/APPsw) had elevated levels of Aβ43 and earlier forma-
tion of senile plaques in their brains [16]. This particular
mutation was identified in a patient who presented with

language disturbance [17]. Recently, Aβ43 generation and
deposition were found to be increased in the brains of those
carrying FAD mutations in PS1 [13, 14]. These studies raise the
possibility that Aβ43 plays a pivotal role in the development
of FAD.
γ-Secretase generates each Aβ under two pathways. At first,

Aβ49 and Aβ48 are cleaved from APP. Aβ49 is successively
cleaved, mostly to Aβ40, via Aβ46 and Aβ43, while Aβ48 is
similarly cleaved to Aβ38 via Aβ45 and Aβ42. Of note, the most
abundant species, Aβ40, is derived not from Aβ42 but from Aβ43.
Moreover, Aβ38 is derived mainly from Aβ42 and Aβ43 [18–20].
These sequential Aβ generation mechanisms have been referred
to as stepwise processing [18–20].
We previously reported that (i) the levels of Aβ42 and Aβ43

are proportional, and the levels of Aβ38 and Aβ40 are also
proportional in the cerebrospinal fluid (CSF) of sporadic AD
participants, mild cognitive impairment (MCI) participants, and
cognitively normal controls (NCs). The levels of Aβ concentra-
tion in the CSF might reflect lipid raft-associated γ-secretase
activity from brain cortices [21, 22]; (ii) there is a correlation
between the levels of deposited Aβ42 and Aβ43 in the cerebral
parenchyma in the NCs, MCI, and sporadic AD brains [23]; and
(iii) lipid raft-nonassociated γ-secretase activity in the AD brains
increases the generation of Aβ42 and Aβ43 from brain cortices,
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and these released Aβs into the extracellular space probably
form senile plaques [23]. Thus, not only Aβ in the CSF but also its
deposition in the brain parenchyma depends on γ-secretase
activities.
Based on these characteristics of γ-secretase in sporadic AD, we

reassessed the mechanism of Aβ generation and γ-secretase
activity in PS1 mutants using human CSF and in vitro γ-secretase
assays. CSF samples from FAD participants showed low levels of
Aβ38, Aβ40, Aβ42, and Aβ43 but not some Aβ43. Surprisingly,
although lipid raft-associated γ-secretase activity, which was
prepared from mutant PS1 stably expressing cells, showed
decreased Aβ38, Aβ40, and some Aβ42 generation in the
in vitro γ-secretase assay, the level of Aβ43 was the same as the
level of WT PS1. This γ-secretase activity was distinctly different
from the alteration of γ-secretase activity found in those with
sporadic AD [21]. Liquid chromatography–mass spectrometry (LC-
MS/MS) revealed that this altered Aβ43 generation was not only
from Aβ46 but also from Aβ48 in the PS1 mutants, despite
different stepwise processing pathways. The extent of switching
Aβ43 generation might reflect FAD onset.

MATERIALS AND METHODS
Participants
The previously measured CSF samples of participants with sporadic AD,
MCI, and cognitively NCs were described previously [21]. Briefly, we
included 24 participants with AD (mild-to-moderate AD; 50–86 years old),
19 participants with MCI (57–82 years old), and 21 cognitively NC
participants (61–89 years old). The CSF samples from 5 participants with
(symptomatic) FAD (mutant PS1; T116N, L173F, G209R, L286V, and L381V)
were from Niigata University Hospital, and 1 patient with FAD (mutant PS1;
L85P) was from Osaka University Hospital.

CSF analysis
CSF (10–15mL) was collected in a polypropylene or polystyrene tube and
gently inverted. After brief centrifugation, aliquots of CSF collected were
transferred to polypropylene tubes (0.25–0.5 mL), which were kept at
−80 °C until use. The CSF concentrations of Aβ38, Aβ40, Aβ42, and Aβ43
were quantified using commercially available enzyme-linked immunosor-
bent assay kits (cat NOs. 27717, 27718, 27712, and 27710, respectively, IBL,
Gunma, Japan).

Cell culture
A previously reported cell culture method was employed [24]. Briefly, WT
or mutant PS1 stably expressing Chinese hamster ovary (CHO) or human
embryo kidney (HEK) 293 cells were cultured in Dulbecco’s modified
Eagle’s medium (Sigma, St. Louis, MO, USA) containing 10% fetal bovine
serum (Invitrogen, Carlsbad, CA, USA) and penicillin/streptomycin (Invitro-
gen). In these PS1-expressing cell lines (Table S1), displacement of
endogenous PS1 was confirmed by western blotting [25, 26].

Quantification of raft-associated γ-secretase activity
A previously reported assay method was employed with some modifications
[21, 27]. Briefly, raft fractions were collected from each membrane fraction of
the cell. The protein concentration of each raft fraction was adjusted to
100 μg/mL and then incubated with 500 nM FLAG-tagged β carboxyl-
terminal fragment (βCTF) (C99-FLAG) for 1 h at 37 °C. The proteins in the
samples were separated using sodium dodecyl sulfate–polyacrylamide gel
electrophoresis and subjected to quantitative western blotting using specific
antibodies, 3B1 for Aβ38, BA27 for Aβ40, 44A3 for Aβ42, anti-Aβ43 polyclonal
for Aβ43 (IBL, Gunma Japan), and amyloid intracellular domain (AICD) for UT-
421 (kindly gifted by Dr. T. Suzuki, Hokkaido University).

LC-MS/MS quantification of released peptides
The expected peptides were quantified using LC-MS/MS as previously
described [18–20]. A Quattro Premier XE tandem quadrupole mass
spectrometer in tandem with ultra-high-performance liquid chromatogra-
phy (Waters system equipped with an Acquity UPLC HSS T3 column,
1.8 μm, 2.0 × 150mm) was used to identify and quantify the released
oligopeptides.

Statistical analysis
All statistical analyses were conducted using GraphPad Prism version 8.
Data transformation was required to achieve normal distributions in the
CSF analysis. Data analyses were performed after logarithmic transforma-
tion of the data for Aβ38, Aβ40, Aβ42, and Aβ43 and compared with our
previous results. In the case of Aβ generation in the in vitro assay, Pearson’s
correlation coefficients were calculated to indicate the strength of the
relationship between two variables.

RESULTS
Altered Aβ43 generation in the PS mutations
Honorable previous studies reported that many PS1 mutants have
lower and higher γ-secretase activity to generate Aβs than WT
PS1 [28–31]. These altered γ-secretase activities are probably
reflected in the level of Aβ found in CSF. The Aβ levels in the CSF
of participants with FAD were compared with those in cognitively
NC participants, MCI participants, and AD participants, as found in
our previous study [21] (Fig. 1). The Aβ levels in FAD participants
were lower than those we previously reported [21], except for one
case of FAD (G209R) in the Ln Aβ38 versus Ln Aβ40 plot and three
cases of FAD (L85P, G209R, and L381V) in the Ln Aβ42 versus Ln
Aβ43 plots (Fig. 1). Interestingly, a clear proportion of Aβ38 and
Aβ40 was observed in the CSF from FAD participants compared
with other participants (Fig. 1A; Ln (Aβ40)= 0.7105 × (Ln Aβ38)+
2.78, R= 0.9536). These Aβs are the set of major final products in
the stepwise processing of Aβ. When Aβ38 generation from Aβ42
decreased in the CSF of FAD participants, Aβ40 generation from
Aβ43 also decreased, as found in the CSF of other participants.
This proportional plot indicates that both γ-secretase cleavages,
from Aβ43 to Aβ40 and from Aβ42 to Aβ38, occurred
simultaneously in FAD brains, as found in other participants.
However, the plots of Aβ42 and Aβ43 in the FAD participants
varied within those of other participants. In these plots, the levels

2 4 6 8
5

6

7

8

9

Ln (A 38)

Ln
 (

A
40

 )

Ln A 38 vs Ln A 40

NC, MCI, AD
FAD

0 2 4 6
-2

0

2

4

Ln (A 42)

Ln
 (

A
43

)

Ln A 42 vs Ln A 43

FAD

NC, MCI, AD
B

0 2 4 6
-2

0

2

4

Ln (A 42)

Ln
 (

A
43

)

Ln A 42 vs Ln A 43

0 2 4 6 8
4

5

6

7

8

9

Ln A 38 vs Ln A 40

Ln (A 38)

Ln
 (

A
40

 )

L173F

L381V
L85P

T116N

L286V
G209R

L173F

L381V

L85P

T116N

L286V

G209R

A

Fig. 1 The relationship between the level of each Aβ in the CSF
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controls, MCI participants, and AD participants. A The levels of Ln
Aβ40 were proportional to Ln Aβ38 in all subjects. B The levels of Ln
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of the FAD participants (L85P, G209R, and L381V) digressed far
from the regression line (Fig. 1B; Ln (Aβ43)= 0.9963 × (Ln Aβ42)
− 2.497, R= 0.8333). The onset age of these mutations was 27
years for L85P, 49.6 years for G209R, and 29 years for L381V.
These results indicate that the levels of Aβ38, Aβ40, and Aβ42
decreased in the CSF of FAD participants, while Aβ43 might be
defective by those mutations (Fig. 1B).

The γ-secretase activity of FAD mutation in the PS1
To provide further insight into the effects of PS1 mutation on
the stepwise Aβ processing mechanism, we directly measured
γ-secretase activities using CHO and HEK293 cells. These cells
expressed WT or FAD mutant PS1, which forms γ-secretase
[24, 28]. The lipid raft fractions, which contain γ-secretase, were
isolated from these PS1-expressing cells and are referred to as
raft-associated γ-secretase. In our previous study, lipid raft-
associated γ-secretase from human brain cortices generated a
ratio of Aβs similar to Aβs in CSF [21]. These lipid raft fractions
were incubated with their substrate, C99-FLAG, to assess each
mutant PS1 γ-secretase activity. This in vitro assay showed
proportional plots between Aβ38 and Aβ40, as observed in the
case of CSF (Fig. 2A; Aβ40= 2.082 × Aβ38+ 192.5, R= 0.8412).
The highest levels of Aβ40 and Aβ38 were in the WT PS1 from
both CHO and HEK293 cells (Fig. 2A). These results are
consistent with the previous finding by Van Broeckhoven and
colleagues [32]. In contrast, both increased and decreased
levels of Aβ42 were observed in the PS1 mutants compared
with those of WT PS1 (Fig. 2B; Aβ43= 0.1119 × Aβ42+ 382.2, R
= 0.06276). Although Aβ42 decreased in some PS1 mutants,
the level of Aβ43 was unchanged, as observed in the CSF of
three early-onset FAD mutants (Figs. 1B and 2B).

Next, we compared the ratios of Aβ40/Aβ43 and Aβ38/Aβ42,
which are Aβ product/precursor sets, with each AD onset age.
Although Aβ43 generation was unchanged in the PS1 mutants
(Fig. 2B), these Aβ40/Aβ43 versus onset age plots were weakly
proportional, as previously reported [16] (Fig. 3A; Aβ40/Aβ43=
0.04822 × (onset age)− 0.1641, R= 0.5783). These reductions in
Aβ40 occurred in an onset age dependency, as previously
reported [16, 32]. Another Aβ generation pathway Aβ38/Aβ42
versus onset age was also proportional and onset age dependent
(Fig. 3B; Aβ38/Aβ42= 0.02120 × (onset age)+ 0.01322, R=
0.6751). These results indicated that FAD mutations of the early-
onset ages have inhibitory effects on both γ-secretase-mediated
cleavage pathways, from Aβ43 to Aβ40 and from Aβ42 to Aβ38.

Aβ43 generation increased FAD onset age dependency
In the Aβ-generating mechanism, γ-secretase cleaves βCTF to
generate Aβ48 and Aβ49 at first, which is known as ε-cleavage,
and then those counterparts of the AICD are released [24, 33, 34].
In the case of PS1 mutants, some Aβ species decreased, but AICD
generation was almost unchanged in the in vitro assay (Fig. S1).
Previously, we showed that the level of total Aβ was equal to the
level of total AICD in the in vitro γ-secretase assay [24]. Thus, the
levels of AICD showed the level of total Aβ in this assay. In the
present study, the ratio of Aβ/AICD was used to compare with the
onset age of FAD. Although the ratio of Aβ43/AICD showed a
correlation in PS1 mutant onset age dependency, other ratios of
Aβ/AICD were decreased or unchanged (Fig. 4A; Aβ43/AICD=
−0.00237 × (onset age)+ 0.2342, R=−0.4466). The ratio of Aβ42/
AICD was found to be almost constant (Fig. 4B; Aβ42/AICD=
0.0001172 × (onset age)+ 0.06415, R=−0.001039). These find-
ings demonstrate that the levels of Aβ42 generation depend on
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the value of AICD generation. However, the level of Aβ43
generation might be the independent manner of PS1 mutants.
Other ratios, Aβ38/AICD and Aβ40/AICD, were reduced in an onset
age dependency (Fig. 4C; Aβ40/AICD= 0.003806 × (onset age)+
0.002352, R= 0.7560, Fig. 4D; Aβ38/AICD= 0.001229 × (onset
age)+ 0.006055, R= 0.7350). Decreasing the values of Aβ38 and
Aβ40 means increasing those of Aβ42 and Aβ43 (Fig. 3). Both γ-
secretase cleavages, from Aβ43 to Aβ40 and from Aβ42 to Aβ38,
seem to be tightly regulated by PS1 mutations (Fig. 4). Thus, the
Aβ42/Aβ40 ratio would be increased in FAD mutants compared
with WT PS1 [7–10]. However, the generation of Aβ43 might have
another generation pathway by PS1 mutations.

Aβ43 arises directly from Aβ48 in the FAD mutants
A most important issue: “Where does Aβ43 come from in the case
of PS1 mutants?” Previously, we reported that γ-secretase
generates Aβ42 from Aβ48 via Aβ45 and Aβ43 from Aβ49 via
Aβ46 stepwise processing pathway in the case of WT PS1 [18].
Aβ43 is derived mainly from Aβ46 but also a minority from Aβ47
and Aβ48 by raft-associated γ-secretase in rat brain [20]. Thus, we
measured released peptides using LC-MS/MS to provide further
insight into Aβ43 generating mechanism by an in vitro lipid raft-
associated γ-secretase assay with each PS1 mutant. First, we
compared each released peptide (Fig. S2A). In stepwise Aβ
processing, ITL was generated from Aβ49 to Aβ46, and VIV was
generated from Aβ46 to Aβ43. These peptides have a clear
correlation even if a mutation exists in PS1 (Fig. S2B; ITL= 1.004 ×
VIV− 0.1709, R= 0.9997). On the other hand, VIT and TVI were
generated from Aβ48 to Aβ45 and from Aβ45 to Aβ42 (Fig. S2A).
These peptides also showed a correlation (Fig. S2C; VIT= 1.033 ×
TVI+ 176.5, R= 0.9790). These clear correlations indicated that the
levels of Aβ42 and Aβ43 generation depend on the levels of Aβ48

and Aβ49 generated by FAD mutation in PS1 (Fig. S2A, B).
However, there seems to be a contradiction regarding Aβ43
generation, as shown in Fig. 4A. Therefore, we measured the ratios
of each generated peptide/AICD compared with onset age. γ-
Secretase releases VVIA and IAT to generate Aβ38 from Aβ42 and
Aβ40 from Aβ43, respectively. The ratios of VVIA/AICD and IAT/
AICD showed a similar pattern, as shown in Fig. 4C, D (Fig. S3). The
ratios of ITL (from Aβ49 to Aβ46)/AICD, VIV (from Aβ46 to Aβ43)/
AICD, VIT (from Aβ48 to Aβ45)/AICD, and TVI (from Aβ45 to Aβ42)/
AICD decreased or remained unchanged depending on the onset
age, as shown in Fig. 4B–D (Fig. S4). Importantly, the ratio of VIVIT/
AICD increased onset age dependency, as observed in Fig. 4A of
the ratio of Aβ43/AICD (Fig. 5; VIVIT/AICD=−0.0005321 × (onset
age)+ 0.05662, R=−0.3861). VIVIT was released from Aβ48 to
Aβ43 by γ-secretase (Fig. S2A). These findings indicated that the
PS1 mutation would be altered to generate Aβ43 from Aβ48 by
the switching generation mechanism because Aβ48 generates
Aβ42 via Aβ45 under WT PS1. However, Aβ40 decreased onset age
dependency, although Aβ43 increased in PS1 mutants. Thus, these
γ-secretase alterations reflect the level of Aβ43 in the CSF and
Aβ43 might form senile plaques, including Aβ42, in the brains of
FAD patients [14].

DISCUSSION
Here we assume that (i) the levels of Aβ38 and Aβ40 were on the
regression line in the CSF; (ii) some levels of Aβ43 from FAD
participants, but not those of Aβ42, diverged from the regression
line; (iii) the in vitro γ-secretase assay followed these Aβ
generations by PS1 mutations, as seen in the CSF; (iv) the levels
of Aβ43/AICD reflected the onset age of FAD; and (v) Aβ43 was
generated not only from Aβ46 but also from Aβ48 in the PS1

Fig. 4 Onset age versus the ratios of Aβ/AICD for each FAD mutation. A The ratio of Aβ43/AICD increased with age-dependent onset. B The
ratio of Aβ42/AICD was almost unchanged at all onset ages. C The ratio of Aβ40/AICD and D Aβ38/AICD decreased with onset age
dependency. The open circles indicate WT PS1, and the closed circles indicate FAD mutant PS1. (n= 3).
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mutants. With these assumptions, the most important issue for the
mechanism of Aβ43 generation in the PS1 mutant is that the Aβ43
generation line was switched from Aβ48. This is in contrast with
the mechanism of γ-secretase activity in sporadic AD [21, 22].
In the present study, we quantified the concentrations of four

Aβs, Aβ38, Aβ40, Aβ42, and Aβ43, in the CSF from FAD
participants for comparison with our previous study [21]. Even if
the patient had FAD mutations in PS1, Aβ38 and Aβ40 were clearly
on the regression line, although absolute levels were lower than in
others (Fig. 1A). Previous studies found that absolute Aβ40
generation decreased in FAD mutants in an onset age depen-
dency [16, 28]. In our study, ε-cleavage by mutant PS1 was
unchanged compared with WT PS1 because the level of AICD was
unchanged (Fig. S1). Thus, we compared the Aβ38/AICD and
Aβ40/AICD ratios (Fig. 4C, D). These ratios, for both Aβ38 and Aβ40
generation, were decreased in an onset age dependency. These
results indicate that FAD mutants especially affect the decrease in
Aβ38 and Aβ40 generation.
Next, the CSF concentrations of both Aβ42 and Aβ43 were

proportional except in some early-onset ages of PS1 mutants (Fig.
1B). In the in vitro assays, the levels of Aβ42 decreased, but some
Aβ43 did not. Similar plots were obtained in the PS1 mutant cells
in the in vitro assay (Fig. 2B). In the case of a human, who has a
mutation in the PS, as a heterozygote, but in the case of cells, it
exists as a homozygote. This genetic difference would have
appeared in the level of Aβ43 in the in vitro assay. As a result, the
ratios of Aβ43/AICD, but not Aβ42/AICD, increased in an onset
age-dependent manner (Fig. 4A, B). This finding indicates that the
absolute Aβ42 level is determined by ε-cleavage efficacy in PS1
mutants. Importantly, a high concentration of Aβ43 might
accelerate the formation of senile plaques in the brains, including
Aβ42. Aβ43 induces aggregation more than Aβ42 by 1.5–2 times
[16]. First, Aβ43 might need Aβ42 to form senile plaques in the
cerebellum parenchyma because immunostaining revealed that
both Aβ42 and Aβ43 exist in the same senile plaque [23]. Second,
decreasing Aβ40 would increase Aβ42 aggregation in the brain.
BRI-Aβ42/Tg2576 bitransgenic mice exhibited increased Aβ
deposition compared with Tg2576 mice, but BRI-Aβ40/Tg2576
bitransgenic mice did not [35, 36]. Thus, the presence of Aβ40
prevents Aβ aggregation in the brain. Increasing Aβ43 and
decreasing Aβ40 are the most important issues in PS1 mutation.
The imbalance in the generation of these Aβs probably
determines the onset age of FAD. We do not know why cross-
talk generation of Aβ43 occurred in PS1 mutants. However, we
previously found that the ratio of AICD49–99/50–99 was increased
in PS and APP mutants compared with WT [34]. In addition, when

T714I and V717F mutations exist in βCTF, γ-secretase generates
mainly AICD49–99 in an in vitro assay [24]. In these mutants, Aβ48
might probably be a priority generation species. There is a
contradiction because Aβ42 is generated from Aβ48 in the
stepwise processing WT PS1 and APP. However, Aβ43 is generated
by the V717F mutation, as seen in WT βCTF, although AICD50–99
could not detect, which is a counterpart of Aβ49 [24]. If FAD
mutations are in γ-secretase or APP, the generation of Aβ48 would
increase compared with that of WT. This alteration enhances Aβ43
generation by cross-talk of stepwise processing (Figs. 5 and S2A).
Thus, the level of Aβ43 might be reflected in the CSF of FAD
participants and those of onset age.
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mutant PS1 (L85P, I143T, H163R, L166P, G206V, I213T, M233T, C263F,
E273A, E280A, L286V, G384A, and del E9) were used in this assay. The
open circle indicates WT PS1, and the closed circles indicate FAD
mutant PS1. (n= 3).
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