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A B S T R A C T   

Confronting the challenge of persistent mutations of SARS-CoV-2, researchers have turned to deep learning 
methods to predict the mutated structures of spike proteins and to hypothesize potential changes in their 
structures and drug efficacies. However, limited works are focused on the surface learning of spike proteins even 
though their biological functions are usually defined by the geometric and chemical features of 3D molecular 
surfaces. In addition, the current used geometric deep learning methods are based on mesh representations of 
proteins to identify potential binding targets for drugs. However, the use of meshes has limitations and is not 
applicable for many important tasks in molecular biology. To address these limitations, we adopt the differen-
tiable molecular surface interaction fingerprinting (dMaSIF) method which is based on the 3D point clouds and a 
novel efficient geometric convolutional layer to fast predict the interaction sites on the protein surface. The 
different binding site patterns for Delta, Omicron and its subvariants are clearly visualized. We find that Delta 
and Omicron show the similar surface binding patterns while BA.2, BA.2.13, BA.3 and BA.4 present similar ones. 
BA.4 possesses higher positive interaction site ratio than the others which may account for its higher trans-
mission and infection among humans. In addition, the positive interaction site ratios of BA.2, BA.2.13, BA.3 are 
higher than Delta and Omicron, which are accordant with their transmission and infection rates. Hopefully our 
work offers a new effective route to analyze the protein-protein interaction for the SARS-CoV-2 variants.   

1. Introduction 

Since the massive outbreak of pneumonia cases in China in December 
2019, the epidemic of SARS-CoV-2 virus has turned into a persistent 
threat to the world [1]. The SARS-CoV-2 has been continuously evolving 
by acquiring genomic mutations, resulting in the emergence of specific 
variants of multiple concerns [2]. The mutations in the SARS-CoV-2 
spike protein could significantly enhance the binding affinity of 
receptor-binding domain (RBD) with human Angiotensin-converting 
enzyme 2 (hACE2), leading to rapid spread in the population. In turn, 
the increased viral replication can increase the likelihood of mutation 
formation of SARS-CoV-2 [3]. The available option to possibly terminate 
the pandemic is the development of effective vaccines and drugs against 
circulating variants [4]. Therefore, the accurate identification of binding 
sites of drugs and antibodies on SARS-CoV-2 spike proteins is of great 
significance towards a better control of the pandemic. 

Since its emergence, SARS-CoV-2 has been found to evolve and 
trigger new variants of concern (VOCs) to avoid host hostility, that is, to 

evade the host immune response and increase transmission and 
aggression in the pathogenesis of COVID-19 [5,6]. Among the 
SARS-CoV-2 variants, the Delta (B.1.617.2) identified in India in 
December 2020 aroused panic in public which was believed to be 60 % 
more transmissible than the former Alpha variant [7]. Some researchers 
have proposed effective antibodies for the termination of the Delta 
variant, including casirivimab [8], imdevimab [9], celltrion, and 
regdanvimab [10] etc. However, the Delta variant changed from a var-
iable of interest (VOI) to a VOC. In November 2021, the WHO Technical 
Advisory Group on Virus Evolution (TAG-VE) proposed the identifica-
tion of the B.1.1.529, which was commonly known as the Omicron 
variant to be a new VOC. The spike protein of Omicron is determined by 
30 mutations, 15 of which occur in the RBD, as well as three deletions 
and one insertion [11]. The Omicron variant is by far the most highly 
differentiated strain identified in large numbers during the pandemic, 
raising concerns associated with greater infectivity, lower vaccine effi-
ciency and greater risk of reinfection [11]. Its subvariant BA.1 started 
the Omicron wave which has 39 mutations including 30 substitutions, 
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six deletions and three insertions comparing to the ancestral strain. The 
BA.2 and BA.3 appeared at about the same time as BA.1 which are highly 
related but contain some unique changes in spike protein. The BA.2 and 
BA.3 have 31 and 34 mutations comparing to the ancestral strain, with 
21 shared mutations between them [12]. Followingly, the Omicron 
subvariants BA.2.12.1, BA.2.13, BA.4, and BA.5 appeared which contain 
Leu452 substitutions and become more infectious than the BA.2 [13]. 
Fig. 1 shows some of the global SARS-CoV-2 VOCs including Delta, 
Omicron and its subvariants [14]. The Omicron subvariants show 
closely related variations that share a common ancestor. However, their 
spread rates are quite different which is most certainly due to differences 
in spike protein. 

In recent years, more and more computational studies based on deep 
learning methods have focused on the structural and binding sites pre-
dictions of SARS-CoV-2 mutant spike proteins. For example, the revo-
lutionary AlphaFold2 has taken advantage of the wealth of protein 
sequences available in the open protein database and shown how the 
proteins fold barely from the 1D amino acid sequences [15]. This 
method firstly predicts the distances between amino acids and other 
geometric relations and then uses them as constraints to refine the 3D 
structures. There are also some researchers adopting unsupervised 
learning methods borrowed from the field of Natural Language Pro-
cessing to predict the biological properties of proteins from sequence 
information alone [16,17]. In addition, the protein-protein interactions 
(PPI) can be predicted based on the relations between amino acids of 
different proteins using deep learning methods [18–25]. However, most 
of the research papers predict PPI based on the amino acid sequence data 
and identify nonlinear relationship between the extracted and learned 
features. Limited works have focused on the surface interpretations of 
proteins to predict their interactions. In fact, the internal parts of the 3D 
folded protein do not contribute to protein interactions, but the surface 
plays the key role instead [26]. Gainza et al. have proposed the Mo-
lecular Surface Interaction Fingerprinting (MaSIF) method and pio-
neered the mesh-based geometric deep learning to predict PPI [27]. This 
method could classify binding sites for drugs and discriminate surface 
sites of interaction for protein-protein complexes. But the limitations 
exist in three aspects. The first one is that the protein surface should be 
preprocessed as the raw atomic point cloud and then represented by 
meshes. Secondly, it relies on pre-computed and stored hand-crafted 
chemical and geometric features. Thirdly, it uses MoNet mesh 

convolutions [28] on precomputed geodesic patches, which are pro-
hibitively expensive for calculating more than a few thousand proteins. 
To overcome these limitations, Sverrisson et al. have proposed a method 
named differentiable molecular surface interaction fingerprinting 
(dMaSIF) to predict the surface interaction sites for proteins on-the-fly 
from the underlying atomic point cloud using a novel efficient geo-
metric convolutional layer [26]. This method could end-to-end fast 
process (tens of milliseconds for pre-processing per protein) large col-
lections of proteins by only taking the raw 3D coordinates and chemical 
types of their atoms as input without any hand-crafted pre-computed 
features. The time cost is over 40 times faster than MaSIF and the per-
formance reaches 0.82. It is primarily designed to tackle two important 
tasks, i.e., binding site identification and interaction prediction. The first 
task focuses on classifying the surface of a given protein into interaction 
sites and non-interaction sites. The interaction sites are surface patches 
that are more likely to mediate interactions with other proteins. Un-
derstanding the properties of these interaction sites is of utmost 
importance for various applications, such as drug design and the study of 
protein interaction networks. The second task involves taking two sur-
face patches as input with each representing a different protein involved 
in a complex, and predicting whether these locations tend to come into 
close contact. This task is particularly critical for tasks like protein 
docking, which seeks to predict the spatial orientation and arrangement 
of two proteins when they form a complex. By predicting the likelihood 
of close contact between the provided surface patches, the method offers 
valuable insights into the potential interactions between the proteins 
and assist in predicting the spatial arrangement of the proteins in the 
complex. 

In this work, we adopted the newly emerged dMaSIF method [26] for 
identifying the interaction sites for SARS-CoV-2 variants. We visualized 
the interaction sites on 3D surfaces directly and analyzed the similarities 
of surface binding patterns among different variants. The predicted 
interaction sites with high positive binding ratios could directly show 
the surface features of SARS-CoV-2 variants, offering new insights of 
evolutionary characteristics of the virus. 

2. Methods 

In this paper, we applied the previously proposed model and modi-
fied the input of dMaSIF. For the hyperparameters, we followed the 

Fig. 1. Some global SARS-CoV-2 VOCs including Delta, Omicron and its subvariants.  
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setting in dMaSIF to ensure the performance of neural network. We 
firstly computed a representation of the protein molecular surface. In 
our process, we calculated the following results respectively in order: (1) 
a representation of the protein molecular surface, (2) geometric and 
chemical features, (3) local coordinate systems (4) the probability of 
binding site predicted by a geometric convolutional neural network. 

2.1. PDB models 

The PDB models for SARS-CoV-2 Delta (B.1.617.2) (7TEY.pdb), 
Omicron (B.1. 1.519) (7T9J.pdb), Omicron BA.2 (7XIX.pdb), BA.2.13 
(7XNR.pdb), BA.3 (7XIY.pdb), and BA.4 (7XNS.pdb) spike proteins were 
adopted in this work. These models are all experimental structures of the 
corresponding SARS-CoV-2 variants from either cryogenic electron mi-
croscopy (Cryo-EM) or electron microscopy (EM). We deleted the small 
ligands (NAG) using the UCSF Chimera 1.16 software [29] to show the 3 
chains clearly. The secondary structures of the strand, helix and coil 
were colored in yellow, purple and blue respectively, as shown in Fig. 2. 
The detailed differences of secondary structures among SARS-CoV-2 
Delta (B.1.617.2) (7TEY.pdb), Omicron (B.1. 1.519) (7T9J.pdb), Omi-
cron BA.2 (7XIX.pdb), BA.2.13 (7XNR.pdb), BA.3 (7XIY.pdb), and BA.4 
(7XNS.pdb) spike proteins were calculated by using VMD 1.9.3 [30], as 
shown in Fig. S1 in the Supplementary materials. 

2.2. Work on protein surface 

The dMaSIF model is an end-to-end structure which uses 3D coor-
dinatesαkand chemical properties of all the atom centers of a given 
protein as inputs and yields results depending on the target task such as a 
interaction site score (in the range of 0–100, indicating the probability 
as a interaction site) or a binding/non-binding judgment. The premise of 
this model is that the molecular surface of the protein carries chemical 
and geometric information that determines how it binds or interacts 
with other molecules. 

There were six types of atoms (C, H, O, N, S, Se) in our input data, 
each of which could be encoded as one-hot code Ck ∈ ℝ6. The surface of 
the protein was in the form of oriented point clouds denoted by co-

ordinates and unit normal vectors. The feature vectors associated with 
these points were updated from 16 dimensions (10 geometric and six 
chemical) to one dimension by convolution-like steps. Our data scales of 
the model training were 3–15 K, 30–300 Å, 1 Å and 6–15 K for atoms, 
molecule size, surface sampling resolution and sampling rate, respec-
tively. 

2.3. Surface description 

2.3.1. Fast sampling 
Fast sampling was divided into three steps, i.e., initial sampling, 

evolution and screening, prior to which we provided the distance 
functionSDF(x) (Eq. (1)) associated with all atoms and defined squared 
loss functionE(x1, x2,⋯xN) (Eq. (2)), where σk was atomic radius 
determined by their intrinsic nature and σ(x) was an average atomic 
radius in a neighborhood of pointx. The model described the protein 
surface in terms of the level set of the distance function [31]. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

SDF(x) = − σ(x)⋅ log
∑A

k=1
exp( − ||x − αk||/σk)

σ(x) =

∑A

k=1
exp( − ||x − αk||)σk

∑A

k=1
exp( − ||x − αk||)

, k = 1, 2,⋯A. (1)  

E

(

x1, x2,⋯xN

)

=
1
2
∑N

i=1
(SDF(xi) − r)2

, r = 1.05 (2) 

Initial sampling: We generated B (B = 20) points from a Gaussian 
random distributionN (μ = σk, σ2 = 100) in a neighborhood of one 
atom, and there were total ofA × B sampling points for all. 

Evolution: We minimized the loss function (Eq. (2)) by gradient 
method to get these sampling points evolving towards gradient decent 
direction. Specific operation was to set r = 1.05 Å, learning rate= 1, and 
perform gradient descent 4 times. 

Screening: Screening consisted of two steps. Step 1: we kept points if 

Fig. 2. The structures of SARS-CoV-2 Delta (B.1.617.2) (7TEY.pdb), Omicron (B.1. 1.519) (7T9J.pdb), Omicron BA.2 (7XIX.pdb), BA.2.13 (7XNR.pdb), BA.3 (7XIY. 
pdb), and BA.4 (7XNS.pdb) spike proteins. The secondary structures of the strand, helix and coil were colored in yellow, purple and blue respectively. 
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the distance value was in (r − 0.1,r + 0.1)Å and its increment exceeded 
0.5 Å after gradient descending 4 times with a size of 1 Å. That is, the 
points far away from appointed level set or having persistently negative 
or relatively flat gradient were excluded. Step 2: we defined cubes with 
edges 1 Å and kept only one point in each cube to ensure uniform 
density of sampling point. After the two steps, we obtained N sampling 
points. 

2.3.2. Construction of local coordinate system 
We normalized the gradient of the distance function for each sample 

point xi(i = 1,2,…,N) to get their normal vector n̂i as initialization. To 
construct the local coordinate system (n̂i , ûi , v̂i) for subsequent geo-
metric feature analysis, we smoothed the vector field using a Gaussian 
kernel with σ = {9,12}, updated normal vector n̂i after normalization 
according to Eq. (3), and calculated the tangential vectors ûi , v̂i ac-
cording to Eq. (4) [32]. 

n̂j ← normalize

(
∑N

j=1
exp

(
−
⃒
⃒
⃒
⃒xi − xj

⃒
⃒|

2

2σ2

)

n̂j

)

(3)  

{

n̂i =

[

x, y, z
]

s = sign(z), a =
− 1

s + z
, b = axyûi =

[

1 + sax2, sb, − sx
]

, v̂i

=

[

b, s + ay2, − y
]

(4)  

2.3.3. Chemical feature vectors 
For each sampling pointxk, we found coordinates of the 16 nearest 

atomic centersαi
m,m = 1, 2,⋯16with their chemical typesCi

m,m = 1, 2,

⋯16, and the vectors 
[
Ci

m,
1

||xi − αi
m ||

]
∈ ℝ7integrated from the coordinates 

and chemical types were input into the first Multi-Layer Perceptron 
(MLP) to generate 16 feature vectors fi,m ∈ ℝ6. The second MLP linearly 
mapped summation of them to chemical feature vectors fi ∈ ℝ6 (each 
dimension of vectors had a realistic physical meaning, such as Poisson- 
Boltzmann electrostatic potential, etc.). 

2.4. Quasi-geodesic convolution on points clouds 

2.4.1. Convolutions on 3D shapes 
The geometric convolutional neural network of the model assembled 

MLP and trainable convolutional operators to simulate quasi-geodesic 
and predict the molecular surface based on its local chemical and geo-
metric features only, which ensured 3D rotations and translations 
invariance and protected model from overfitting. 

2.4.2. Work on oriented point clouds 
The geodesic distance between two points xi and xj of a protein 

surface with weights computed by unit normals n̂i and n̂j was approxi-
mated as Eq. (5). 

dij =‖ xi − xj ‖ ⋅
(
2 −

〈
n̂i, n̂j

〉)
(5) 

Then we applied a Gaussian window as a filter todij (Eq. (6)), 

w
(
dij
)
= exp

(

−
d2

ij

2σ2

)

(6)  

where the radius σ ∈ {9,12}Å. For any pointxiand its neighbor pointsxj, 
we encoded their relative position and orientation in the local coordi-
nate system (n̂i , ûi , v̂i) (Eq. (7)). 

pij =
[

p̂n̂
ij, p̂û

ij, p̂v̂
ij

]
=
(
xj − xi

)⊤⋅[n̂i |ûi |v̂i ] (7)  

Fig. 3. Illustration of the dMaSIF methodology applied in this work.  

Table 1 
Software prerequisites of dMaSIF.  

Dependency First Option Second Option 

GCC  7.5.0  8.4.0 
CMAKE  3.10.2  3.16.5 
CUDA  10.0.130  10.2.89 
cuDNN  7.6.4.38  7.6.5.32 
Python  3.6.9  3.7.7 
PyTorch  1.4.0  1.6.0 
PyKeops  1.4  1.4.1 
PyTorch Geometric  1.5.0  1.6.1  
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qij =
[

q̂n̂
ij, q̂û

ij, q̂v̂
ij

]
=
(
nj − ni

)⊤⋅[n̂i |ûi |v̂i ]

Here, we applied MLPs as trainable filters. 

2.4.3. Local orientation and curvatures 
To compute the tangent vectors (ûi , v̂i) at a low computation cost, we 

oriented the first tangent vector ûi = û(xi) along the geometric gradient 
∇û,v̂P(xi) [33], where P(xi) = Pi = MLP(fi) and fi was the input feature. 
To approximate the gradient, we used a quasi-geodesic convolution (Eq. 
(8)). 

∇P(xi)←
1
N
∑N

j=1
w
(
dij
)
[

pû
ij, p

v̂
ij

]

Pj ∈ ℝ2 (8) 

Then we updated the tangent basis (ûi , v̂i) through the standard 
trigonometric formulae. To estimate the local curvatures for oriented 
point clouds efficiently, we used quasi-geodesic convolutions with 
Gaussian windows of radii σ ∈ [1, 2, 3, 5, 10]Åand quadratic filter func-
tions to estimate the local covariancesCovû,v̂

σ,i (p, p) and Covû,v̂
σ,i (p, q) [34], 

where 

p =
[

p̂û
ij, p̂v̂

ij

]
=
(
xj − xi

)⊤⋅
[

ûi |v̂i ] (9)  

q =
[

q̂û
ij, q̂v̂

ij

]
=
(
nj − ni

)⊤⋅
[

ûi |v̂i ].

We approximated the 2 × 2 shape operator at point xi and scaled σ 
with a small regularization parameter below, 

Sσ,i =
(
λ2I2×2 + Covû,v̂

σ,i
(
p, p
))− 1

Covû,v̂
σ,i

(
p, q
)

(10)  

where λ = 0.1Å in our work. We defined the Gaussian curvatures Kσ,i =

det(Sσ,i) and mean curvatures Hσ,i = trace(Sσ,i) at scaleσ. 

2.4.4. Trainable convolutions 
Finally, we turned the input feature fi ∈ ℝF into the output feature 

f′
i ∈ ℝF based on a quasi-geodesic convolution that relied on a trainable 

MLP (Eq. (11)), 

f ′
i←
∑N

j=1
w
(
dij
)
MLP

(
pij
)
fj (11)  

where the MLP was a neural network consisting of three input units, 
H= 8 hidden units, ReLU non-linearity and F= 16 outputs. 

2.5. Pipeline of our method 

We combined the steps in the previous sections and made a pipeline 
for our methods, as illustrated in Fig. 3. The method could be summa-
rized as below: 

Fig. 4. The visualization results of our predictions. (A) The side views of A-B chains of the SARS-CoV-2 variants. (B) The bottom views and (C) the top views of the 
SARS-CoV-2 variants. (D) The histogram of our predictions which presents the distribution gap of interaction site score ranging from 0–100. The horizontal axis of the 
histogram is the interaction site score while the vertical axis is number of the points whose value is in the corresponding range. 
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1. We sampled surface points of SARS-CoV-2 mutant spike proteins and 
computed their normals using the gradient of the distance function;  

2. We used the normal n̂i to compute the geometric feature, i.e., mean 
and Gaussian curvatures at five scalesσ ranging from 1 Å to 10 Å;  

3. We computed chemical features on the spike protein surface by using 
atom types and inverse distances to surface points, which further 
flowed through an MLP. Then, the contributions from the 16 nearest 
atoms to a surface pointxiwere summed together and flowed through 
a linear transformation to obtain the chemical feature;  

4. We concatenated these geometric features and chemical features to 
get a full feature vector of size 16;  

5. The full feature vector flowed through a small MLP to predict the 
orientation score Pifor each surface point. Then we used a quasi- 
geodesic convolution to orient the local coordinates (n̂i, ûi, v̂i); 

Fig. 5. The enlarged views of specific regions in Fig. 4. (A) The similar patterns and (B) the different patterns of the four Omicron subvariants.  

Table 2 
The correlation between histograms H1 and H2 in the Fig. 4 (D).  

Cor 7T9J 7TEY 7XIX 7XIY 7XNR 7XNS 

Omicron(7T9J)  1.0000  0.9989  0.9823  0.9611  0.9782  0.9770 
Delta(7TEY)  0.9989  1.0000  0.9873  0.9659  0.9833  0.9802 
BA.2(7XIX)  0.9823  0.9873  1.0000  0.9897  0.9984  0.9893 
BA.3(7XIY)  0.9611  0.9659  0.9897  1.0000  0.9937  0.9902 
BA.2.13(7XNR)  0.9782  0.9833  0.9984  0.9937  1.0000  0.9892 
BA.4(7XNS)  0.9770  0.9802  0.9893  0.9902  0.9892  1.0000  

Fig. 6. The heatmap of the correlation between histograms H1 and H2 
in Table 2. 
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6. We applied successive trainable convolutions, MLPs and batch nor-
malizations on the feature vector fi. At the final step, we applied an 
MLP to the output of the convolutions to predict the interaction site 
scores. 

2.6. Hardware requirements and software prerequisites 

2.6.1. Hardware requirements 
Models were trained on either a single NVIDIA RTX 2080 Ti or a 

single Tesla V100 GPU. Time and memory benchmarks were performed 
on a single Tesla V100. 

2.6.2. Software prerequisites 
Scripts were tested using the following sets of core dependencies as 

shown in Table 1. 

2.7. Molecular docking of spike RBD and hACE2 

In order to choose the appropriate threshold value for positive 
binding site ratios in dMaSIF prediction, molecular docking based on 
grid strategy was adopted to calculate the binding interface area be-
tween SARS-CoV-2 spike RBD and hACE2. The crystal structure of spike 
RBD-hACE2 complex (PDB ID: 6M0J) was downloaded from the Protein 
Data Bank. The RBD was obtained by removing hACE2 from 6M0J. 
Similarly, hACE2 was obtained by removing RBD from 6M0J and added 
with polar hydrogen atoms in the Discovery Studio Visualizer. We used 

pyDock (https://life.bsc.es/pid/pydockweb) for the molecular docking. 
Table S1 in the Supplementary materials showed the docking score, 
RMSD from the overall lowest energy, and buried surface area in our 
molecular docking. In addition, we calculated the surface areas of spike 
protein using VMD 1.9.3. For instance, the surface areas of BA.2 (7XIX) 
were calculated and used to determine the threshold value together with 
binding interface area in molecular docking in this study. 

3. Results and discussion 

After the prediction by dMaSIF method, all the PDB models were 
represented by different degrees of color scale, with the blue and red 
colors indicating low and high predicted probabilities to be interaction 
sites respectively. The PDB models of the SARS-CoV-2 variants consist of 
three chains, for better visualization, we showed the side, top and bot-
tom views in Fig. 4(A–C). It can be seen that the red color is mainly 
concentrated around the bottoms of the spike proteins (Fig. 4(A)) where 
the RBDs are located. The Omicron (7T9J) has a similar predicted sur-
face binding pattern with Delta (7TEY) from all the side, bottom and top 
views (Fig. 4(A–C)). But they show much less red color than the Omicron 
subvariants (7XIY, 7XNR, 7XNS and 7XIX), demonstrating the lower 
binding possibilities of Delta and Omicron comparing to the other 
Omicron subvariants. To some extent, the BA.2 (7XIX), BA.2.13 (7XNR), 
BA.3 (7XIY) and BA.4 (7XNS) show some similar predicted patterns but 
also some differences from all the views (Fig. 4(A–C)). The enlarged 
views of specific regions with similar and different patterns of the four 
Omicron subvariants in Fig. 4 were further plotted in Fig. 5. Fig. 4(D) 
shows the histogram of our predictions which presents the distribution 
gap of interaction site score ranging from 0 to 100. The interaction site 
score indicates the percentage of the probability to be a binding site. For 
instance, the interaction site score 80 means there is an 80 % probability 
that the site is a binding site. 

Table 2 summarized the similarity of the histogram in Fig. 4 (D) 
while Fig. 6 showed the heatmap of the similarity matrix. To get the 
correlation between histograms H1 and H2, we used 

Table 3 
The positive binding site ratios of the SARS-CoV-2 variants under different 
threshold values.  

PDB positive ratio  

>50 >60 >70 >80 

BA.2.13(7XNR)  0.2770  0.1187  0.0284  0.0020 
BA.2(7XIX)  0.2743  0.1127  0.0246  0.0029 
BA.3(7XIY)  0.2627  0.1153  0.0325  0.0027 
Delta(7TEY)  0.2615  0.1015  0.0238  0.0013 
Omicron(7T9J)  0.2550  0.1013  0.0234  0.0014 
BA.4(7XNS)  0.2367  0.1033  0.0345  0.0050  

Fig. 7. (A) The binding structure of SARS-CoV-2 spike RBD (cyan) and hACE2 (blue) with interfaces colored in green and red respectively. (B) The side view of the 
surface area of spike protein of BA.2 (7XIX). (C) The top view of the surface area of BA.2 (7XIX). (D) The side view of the surface area of spike protein of BA.2 (7XIX). 
(E) The side view of the surface area of spike protein of BA.2 (7XIX). Please note the spike protein presents three different side views as shown in (B), (D) and (E). 
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where I denotes the histogram bin. The value of correlation ranges from 
–1–1, while the larger of the value indicates the higher similarity. It can 
be seen that 7T9J and 7TEY, 7XIX and 7XNR have the highest correla-
tion values larger than 0.998, suggesting that the binding possibilities of 
Omicron and Delta, BA.2 and BA.2.13 are quite similar respectively. The 
BA.3 (7XIY) and BA.2.13 (7XNR), BA.4 (7XNS) and BA.3 (7XIY), BA.2 
(7XIX) and BA.3 (7XIY) subvariants show the decreasing trend of cor-
relation values of 0.9937, 0.9902 and 0.9897 respectively, demon-
strating the high similarity of binding possibilities of Omicron 
subvariants. In addition, Delta (7TEY) and Omicron (7T9J) possess the 
relative lower correlation values than the Omicron subvariants since the 
highest value lies below 0.988 (7TEY and 7XIX) while the lowest falls 
below 0.962 (7T9J and 7XIY). 

Table 3 showed the positive interaction site ratios (positive ratios) of 
SARS-CoV-2 variants under the different threshold values, from which 
we could compare the potential binding capacities of different variants. 
The positive ratio indicates the proportion of interaction points to all 
surface points. It could be noticed that a certain variant represents 
different positive ratios at the different threshold values, demonstrating 
that the prediction error can be influenced by the threshold. For 
instance, when we use 50 as the threshold, 7XNR has the largest positive 
ratio. However, the positive ratio of 7XNS is greatly larger than the 
others when 80 is chosen as the threshold. Therefore, it is essential to 
select an appropriate threshold to analyze the results. Herein, we 
adopted the molecular docking method to calculate the binding inter-
face area between the SARS-CoV-2 spike RBD and hACE2 (Fig. 7A)). In 
addition, we calculated the surface areas of spike protein of BA.2 (7XIX), 
as shown in Fig. 7 (B-E). It is worth noting that the surface areas of the 
spike protein of BA.2 can be considered as triangles, and their areas can 
be solved by the side lengths measured by using VMD 1.9.3. The binding 
interface area and the total surface area of spike protein were calculated 
approximately to be 932.8 Å and 20519 Å respectively. According to the 
ratio of the two values (~0.045), we selected 70 as the appropriate 
threshold value to determine the positive ratios for all the SARS-CoV-2 
variants. According to Table 3, BA.4 (7XNS) shows larger positive 
ratio than the others at threshold value 70, suggesting that BA.4 pos-
sesses more active binding behavior than the other variants. In addition, 
BA.2.13 (7XNR), BA.2 (7XIX) and BA.3 (7XIY) present similar and 
higher positive ratios than Delta (7TEY) and Omicron (7T9J) which also 
show similar positive ratios at thresholds 70. 

Based on the results of correlation and positive ratio analyses, the 
surface binding patterns of Omicron subvariants are found to be similar, 
while the surface binding patterns of Delta and Omicron variants are 
similar but quite different to the Omicron subvariants. We demonstrate 
that BA.4 is the most infectious among the Omicron subvariants for its 
highest positive binding site ratio, which can be supported by the results 
in the literature [22,35,36]. Moreover, all of the Omicron subvariants 
are more spreadable than the Delta and Omicron ancestral strain, which 
can also be demonstrated by the published paper [37]. 

4. Conclusion 

In this paper, we adopt the newly emerged dMaSIF method to visu-
alize and analyze the interaction sites on the surfaces of spike proteins 
for SARS-CoV-2 variants. We find that the Delta and Omicron show the 
similar surface binding patterns while the BA.2, BA.2.13, BA.3 and BA.4 
present the similar ones. The BA.4 possesses higher positive ratio than 
the others which may be associated with its higher transmission and 
infection among humans. In addition, the BA.2, BA.2.13, BA.3 have 
higher positive ratios than the Delta and Omicron variants which are 
also accordant with their transmission and infection rates. Our study 

offers a new deep learning method for fast end-to-end learning on spike 
proteins of SARS-CoV-2 variants, hopefully could advance the field of 
function prediction and help guide the design for new SARS-CoV-2 
vaccines. 
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