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Rationale & Objectives: Artificial intelligence
driven by machine learning algorithms is being
increasingly employed for early detection, disease
diagnosis, and clinical management. We explored
the use of machine learning–driven advancements
in kidney research compared with other organ-
specific fields.

Study Design: Cross-sectional bibliometric analysis.

Setting & Participants: ISI Web of Science data-
base was queried using specific Medical Subject
Headings (MeSH) terms about the organ system,
journal International Standard Serial Number, and
research methodology. In parallel, we screened the
National Institutes of Health (NIH) RePORTER
website to explore funded grants that proposed the
use of machine learning as a methodology.

Predictors: Number of publications using machine
learning as a research method.

Outcome: Articles were characterized by research
methodology among 5 organ systems (brain, heart,
kidney, liver, and lung). Grants funded by NIH for
machine learning were characterized by study
sections.

Analytical Approach: Percentages of articles
using machine learning and other research meth-
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odologies were compared among 5 organ
systems.

Results: Machine learning-based articles that are
focused on the kidney accounted for 3.2% of the
total relevant articles from the 5 organ systems.
Specifically, brain research published over 19-fold
higher number of articles than kidney research. As
compared with machine learning, conventional
statistical approaches such as the Cox proportional
hazard model were used 9-fold higher in articles
related to kidney research. In general, a lower
utilization of machine learning–based approaches
was observed in organ-specific specialty journals
than the broad interdisciplinary journals. The
digestive disease, kidney, and urology study sections
funded 122 applications proposing machine
learning–based approaches compared to 265
applications from the neurology, neuropsychology,
and neuropathology study sections.

Limitations: Observational study.

Conclusions: Our analysis suggests lowest use of
machine learning as a research tool among kidney
researchers compared with other organ-specific
researchers, underscoring a need to better inform
the kidney research community about this
emerging data analytic tool.
Machine learning is rapidly emerging as an integral
element in the repertoire of data analytic tools in

a broad range of medical applications. With advances
in hardware and software, advanced machine learning
frameworks such as deep neural networks are
increasingly being considered to process a range of
biomedical datasets.1,2 In the context of kidney dis-
eases and kidney health, a few examples include the
application of machine learning to predict acute kid-
ney injury using electronic health record data,3,4 use
of digitized human kidney biopsies and deep learning
to segment kidney structures5-8 as well as predict
clinical phenotypes,9 and analysis of radiological
imaging data to measure total kidney volume.10 More
examples can be found in a few recently published
review articles,11-15 which are focused on educating
the nephrology and the nephropathology communities
on the merits and limitations of machine learning
approaches.

Machine learning is a powerful data analytic tool that
provides systems with the ability to automatically learn and
improve from experience without being explicitly pro-
grammed. It is similar to several other tools that are
available to the scientific community. When used appro-
priately, it has the potential to unravel interesting findings,
such as how genome-wide association studies can identify
new loci associated with kidney function and chronic
kidney disease.16 Whether research in nephrology uses
machine learning to the same extent as other fields is
unknown. To better understand if kidney research has
been keeping up with the pace of machine learning–driven
advancements seen in other organ-specific fields, we
conducted a bibliometric analysis to compare the number
of manuscripts published using machine learning as a
methodology among different organ systems and research
areas. We also compared the funding sources of the
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PLAIN-LANGUAGE SUMMARY
Machine learning is an exciting research tool that
increasingly is considered for early detection, disease
diagnosis, and clinical management. We explored the
use of machine learning–driven advancements in
nephrology compared with other medical sub-
specialties. We did a bibliometric analysis employing a
Web of Science database using specific search terms for
organ systems and research methods. Our analysis
suggested the lowest use of machine learning in
nephrology compared with other medical sub-
specialties. Our study results highlight the importance
of informing the kidney research community about this
emerging data analytic tool.
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machine learning manuscripts and the number of grants
awarded that proposed machine learning as a research
methodology.
METHODS

Study Design and Data Collection

In this cross-sectional bibliometric analysis, we used the ISI
Web of Science research database (WoS) to identify articles
using machine learning methodologies.17 The WoS covers
articles published since January 1, 1864. We performed
our search on October 10, 2020. A detailed explanation of
the Medical Subject Headings (MeSH) terms and Boolean
commands used for the search strategy is available in Items
S1 and S2. Briefly, we identified articles using machine
learning and other methodologies in different journals
using the International Standard Serial Number (ISSN) for
journals and organ-specific MeSH words refined by specific
research areas. We used the National Institutes of Health
(NIH) RePORTER website18 to identify research grants
given by NIH institutions for research projects using ma-
chine learning as a methodology. The database covers
grant data between 1985 and 2020.

Because all the data used in this study is available to the
public and does not contain any protected health infor-
mation, we did not seek institutional review board
approval. The study followed the Strengthening the
Reporting of Observational Studies in Epidemiology
(STROBE) reporting guidelines for cross-sectional studies.

Outcomes and Measures

The WoS was searched to identify articles using method-
ological approach MeSH terms (machine learning, Cox-
proportional hazard model, etc) and organ-specific MeSH
terms (brain, heart, kidney, liver, and lung). We used
search terms such as ELISA, PCR, Cox-proportional hazard
model to represent traditional research tools and terms
such as machine learning, CRISPR/Cas9, and GWAS to
represent novel research tools in this analysis. We
Kidney Med Vol 3 | Iss 5 | September/October 2021
restricted our search to the areas of “neurosciences &
neurology,” “cardiovascular system & cardiology,”
“urology & nephrology,” “gastroenterology & hepatol-
ogy,” and “respiratory system,” as defined by the WoS
search glossary.

In the final analysis, we included only those articles that
mentioned a specific methodology and the organ of in-
terest and were tagged with a specific research area.
Similarly, specific journals were searched using ISSN, or-
gan name, and methodology in WoS. The journals were
selected according to impact factor. We included journals
focused on specific organ systems with high impact factors
in the final analysis. We compared manuscripts restricted
to our query across 5 different organs and different
methodologies. Articles including original research, re-
views, and meeting abstracts in all languages were
included in our final analysis.

Using the NIH RePORTER website, we extracted data
for research grants funded by various NIH institutions
from 1985 to 2020, using the MeSH term “machine
learning.” We extracted information on the awarding
institute and type of grant—for instance, career develop-
ment grants (K series), fellowship and training grants (F &
T series), and R01 grants. We also searched journals to
identify the number of machine learning papers that
acknowledged specific NIH-level sponsors.

Statistical Analysis

We used descriptive statistics and compared proportions
using the χ2 test. Statistical significance was set at 2-tailed
P < 0.05. Statistical analysis was performed using GraphPad
Prism (GraphPad Software).
RESULTS

Articles Focused on Organ Systems

The WoS query identified a total of 388,169 articles across
5 research areas using organ-specific MeSH terms. Out of
these articles, 13,373 (3.4%) belonged to the machine
learning category. Among all the published machine
learning articles, 434 (3.2%) articles were focused on
kidney research (Table 1). Brain research had the highest
number of research articles (61.9%, n = 8,278) published
between 1952 and 2020 using machine learning, whereas
kidney research had the lowest number of articles (3.2%,
n = 434) published between 1989 and 2020. Also, the 5-
year trends of published machine learning manuscripts
across 5 organ-specific research areas indicated that brain
research had the highest number of research articles
whereas kidney research had the fewest research articles
for a consistent duration (Fig 1).

Articles in Different Journals

Subject-specific and clinical journals had fewer publica-
tions using machine learning compared with science and
multidisciplinary journals (Table 2). The highest number
763



Table 1. Articles Focused on Specific Organs in the Web of Science Bibliometric Database Using Combination of Organ and
Methodology Specific MeSH Term and Boolean Operators

Methodologies
Brain
(n = 96,225)

Heart
(n = 89,846)

Kidney
(n = 48,207)

Liver
(n = 87,191) Lung (66,700)

Total No. of
Manuscripts
per Row

Cox proportional
hazard model

2,118 (8.09%) 13,286 (50.7%) 4,087 (15.6%) 2,971 (11.3%) 3,715 (14.2%) 26,177

CRISPR/Cas9 662 (29.3%) 560 (24.8%) 251 (11.1%) 427 (18.8%) 361 (15.9%) 2,261
ELISA 10,263 (17.8%) 16,417 (28.5%) 7,599 (13.2%) 12,578 (21.9%) 10,670 (18.5%) 57,527
GWAS 991 (29.1%) 1,436 (42.2%) 219 (6.4%) 340 (10%) 413 (12.1%) 3,399
Machine learning 8,278 (61.9%) 2,931 (21.9%) 434 (3.2%) 619 (4.6%) 1,111 (8.3%) 13,373
PCR 36,786 (22.8%) 31,119 (19.3%) 20,627 (12.8%) 42,095 (26%) 30,754 (19%) 161,381
Western blot 37,127 (29.9%) 24,097 (19.4%) 14,990 (12.08%) 28,161 (22.7%) 19,676 (15.9%) 124,051
Percentages are calculated per total number of manuscripts in a specific row. Example of search terms: SU = (Neurosciences & Neurology) AND (AB = Methodology
term AND Brain OR AK = Methodology term AND Brain)
Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; ELISA, enzyme-linked immunosorbent assay; GWAS, genome-wide association
study; MeSH, Medical Subject Headings; PCR, polymerase chain reaction.

Verma et al
of machine learning manuscripts were published in Nature
Communications followed by Circulation, whereas the kidney-
based research published the lowest number of articles.
These journals include the Journal of American Society of
Nephrology (JASN) followed by Kidney International (KI). In a
subgroup analysis, we compared machine learning articles
related to kidney research versus those that were non-
kidney related. We found that a smaller proportion of
kidney research articles used machine learning methods
versus other analysis methods such as the Cox-proportional
hazard models, whereas this proportion was higher in the
case of nonkidney related articles (χ2 (1, N = 39,550) =
1337.2, P < 0.001).

Funding Sources of Articles

The highest number of machine learning manuscripts, 573
(14%), acknowledged the National Institute of Neuro-
logical Disorders and Stroke (NINDS) as their funding
source. The National Institute of Diabetes and Digestive
6
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Figure 1. Publication trends of manuscripts using machine
learning as a research tool for 5-year intervals across 5 organ
systems from 1980 to 2020.
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and Kidney Diseases (NIDDK) was only acknowledged by
70 (1.7%) total manuscripts based on machine learning
approaches (Table 3).

Grants Funded by NIH

Out of all grants funded by 7 NIH institutions, the National
Cancer Institute (NCI) funded the maximum number of
grants, 428 (25.1%), whereas the NIDDK funded 122
(7.2%) grants (Table 4). In terms of the career develop-
ment grants and fellowship grants, the National Heart,
Lung, and Blood Institute (NHLBI) funded the most grants:
56 (31.5%) and 29 (25%), respectively.
DISCUSSION

Historically, the field of nephrology has lagged in using
analytical approaches. For example, large observational
studies on cardiovascular disease risk were published in the
late 1950s and early 1960s,19,20 but similar studies were
published only decades later in nephrology.21 In line with
the historical perspective, we have shown that kidney
disease research underutilizes machine learning as a
research tool compared with other organs and organ sys-
tems. In terms of the 5-year trends related to the publi-
cation of machine learning-based articles, kidney-focused
articles lag behind those for other organ systems. We also
found that organ-specific journals have been publishing a
smaller number of machine learning–based articles
compared with multidisciplinary journals. Even within
these journals, the kidney-specific journals are lagging
behind in terms of publishing machine learning–based
manuscripts. The lowest number of articles using ma-
chine learning approaches acknowledged NIDDK as a
funding source.

These findings suggest underutilization of machine
learning as a research tool in kidney research compared
with other specialties. The question then arises as to the
reason for such a discrepancy in kidney literature
compared with other specialties. An approach or a
Kidney Med Vol 3 | Iss 5 | September/October 2021



Table 2. Articles Published in Specialty Journals Listed on the Web of Science Bibliometric Database Using ISSN Number of the
Specific Journal and MeSH Term for the Methodology

Kidney Int
(n = 1,813)

J Am Soc
Nephol
(n = 680)

Brain
(n =
402)

Hepatology
(n = 4681)

Chest
(n = 599)

Am J
Respir
Crit
Care Med.
(n = 1,210)

Circulation
(n = 10,123)

New Engl
J Med
(n = 964)

Nat Med
(n = 472)

Nat
Commun
(n = 1,766)

Cox
proportional
hazard
model

139
(7.6%)

94
(13.8%)

20
(4.9%)

192
(4.1%)

119
(19.9%)

86
(7.1%)

2,311
(22.8%)

82
(8.5%)

3
(0.6%)

2
(0.11%)

CRISPR/
Cas9

9
(0.5%)

13
(1.9%)

6
(1.5%)

48
(1.02%)

0 5
(0.41%)

121
(1.2%)

5
(0.51%)

27
(5.7%)

341
(19.3%)

ELISA 312
(17.2%)

80
(11.8%)

28
(6.9%)

949
(20.3%)

122
(20.4%)

221
(18.3%)

1,601
(15.8%)

102
(10.6%)

13
(2.7%)

21
(1.2%)

GWAS 6
(0.33%)

16
(2.3%)

9
(2.2%)

16
(0.34%)

2
(0.33%)

16
(1.32%)

299
(2.9%)

0 11
(2.3%)

212
(12%)

Machine
learning

9
(0.49%)

7
(1.02%)

30
(7.5%)

33
(0.7%)

13
(2.2%)

22
(1.8%)

206
(2.03%)

14
(1.45%)

25
(5.3%)

292
(16.5%)

PCR 767
(42.3%)

251
(36.9%)

183
(45.5%)

2,018
(43.1%)

282
(47.07%)

597
(49.3%)

2,443
(24.1%)

661
(68.5%)

255
(54%)

518
(29.3%)

Western
blot

573
(31.6%)

219
(32.2%)

126
(31.3%)

1,425
(30.4%)

61
(10.2%)

263
(21.7%)

3,142
(31%)

100
(10.3%)

138
(29.2%)

380
(21.5%)

Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; ELISA, enzyme-linked immunosorbent assay; GWAS, genome-wide association
study; ISSN, International Standard Serial Number; MeSH, Medical Subject Headings; PCR, polymerase chain reaction.
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technology employed in any scientific research is based on
its appropriateness to address a question, the availability of
the research tool, and the expertise and knowledge of the
Table 3. Machine Learning–Based Articles Supported From Gran

NIH Institutions Brain Heart Ki
NIDDK 0 21 29
NIGMS 127 70 22
NCI 124 36 19
NCATS 103 67 18
NHLBI 37 189 10
NIBIB 454 39 6
NHGRI 0 15 6
NIAID 0 0 4
NIEHS 0 12 4
NINDS 521 43 3
NIA 433 24 3
NCRR 131 30 2
NIAAA 31 0 0
NICHD 138 11 0
NIAMS 0 0 0
NIMH 522 13 0
NIDA 146 9 2
NIDCD 51 0 0
NEI 40 0 0
NIMHD 0 8 0
NLM 58 50 12

The data were extracted from the Web of Science bibliometric database from 186
Abbreviations: NCATS, National Center for Advancing Translational Sciences; NCI,
National Eye Institute; NHGRI, National Human Genome Research Institute; NHL
NIAAA, National Institute on Alcohol Abuse and Alcoholism; NIAID, National Insti
Imaging and Bioengineering; NICHD, National Institute of Child Health and Human D
Diabetes and Digestive and Kidney Diseases; NIGMS, National Institute of Genera
Institute of Neurological Disorders and Stroke; NLM, National Library of Medicine.
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investigative team. These parameters likely dictate the
publications and inclusion of such a technology in research
proposals. Our results, which demonstrate the least
ts From Various NIH Institutions

dney Liver Lung N (%)
16 4 70 (1.7%)
13 21 253 (6.1%)
38 111 328 (8.03%)
10 20 218 (5.3%)
6 57 299 (7.3%)
16 28 543 (13.3%)
0 9 30 (0.7%)
7 15 26 (0.6%)
8 8 32 (0.7%)
2 4 573 (14.0%)
2 4 466 (11.4%)
4 16 183 (4.4%)
4 0 35 (0.8%)
6 5 160 (3.9%)
4 5 9 (0.2%)
0 7 542 (13.2%)
0 4 161 (3.9%)
0 0 51 (1.2%)
0 0 40 (0.9%)
0 0 8 (0.19%)
9 25 154 (3.7%)

4,081
4 to 2020.
National Cancer Institute; NCRR, National Center For Research Resources; NEI,
BI, National Heart, Lung, and Blood Institute; NIA, National Institute on Aging;
tute of Allergy and Infectious Diseases; NIBIB, National Institute of Biomedical
evelopment; NIDA, National Institute on Drug Abuse; NIDDK, National Institute of
l Medical Sciences; NIMH, National Institute of Mental Health; NINDS, National
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Table 4. Comparison of Grants Awarded by Various NIH
Institutions for Research Projects That Proposed the Use of
Machine Learning as a Research Tool From 1985 to 2020

NIH
Institution

Total No. of
Grants
(N = 1,704)

Career
Development
Grants (n = 178)

Fellowship and
Training Grants
(n = 116)

NCI 428 (25.1%) 24 (13.4%) 24 (20.7%)
NHLBI 285 (16.7%) 56 (31.5%) 29 (25%)
NINDS 265 (15.5%) 25 (14.04%) 23 (19.8%)
NLM 251 (14.7%) 22 (12.3%) 16 (13.8%)
NIBIB 185 (10.8%) 12 (6.7%) 3 (2.6%)
NHGRI 133 (7.8%) 17 (9.5%) 12 (10.3%)
NIDDK 122 (7.2%) 21 (11.8%) 8 (6.9%)
NCATS 35 (2.05%) 1 (0.56%) 1 (0.9%)
Abbreviations: NCATS, National Center for Advancing Translational Sciences;
NCI, National Cancer Institute; NHGRI, National Human Genome Research
Institute; NHLBI, National Heart, Lung, and Blood Institute; NIBIB, National
Institute of Biomedical Imaging and Bioengineering; NIDDK, National Institute
of Diabetes and Digestive and Kidney Diseases; NINDS, National Institute of
Neurological Disorders and Stroke; NLM, National Library of Medicine.
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number of machine learning research papers acknowl-
edging NIDDK as a supporting agency and the least
number of kidney research articles published in prime
kidney journals (JASN and KI), are symptomatic of one or
a combination of the aforementioned factors.

These results also raise the possibility of whether there
is lukewarm enthusiasm among kidney researchers to
embrace machine learning as an analysis tool or if re-
searchers with machine learning expertise are not neces-
sarily focused on kidney diseases per se. Interestingly, our
analysis also suggested that kidney disease researchers have
adopted other novel methods and techniques like CRISPR/
Cas9 and GWAS (genome-wide association study) at
higher rates than machine learning tools.

To address the issue of underutilization of machine
learning as a research tool among trainees, clinicians, and
kidney researchers, the following strategies can be
considered. First, trainees in medical schools can be
introduced to machine learning through courses focused
on population health in general22 and by showcasing ex-
amples related to kidney diseases in particular to illustrate
how this tool can impact disease prediction, risk stratifi-
cation, and management. It is also possible to improve
community-wide awareness about the advantages and
limitations of machine learning by developing continuing
medical education content and disseminating the material
during conferences and workshops. During these events,
dedicated research sessions and seminars on the applica-
tions of machine learning in nephrology and neph-
ropathology could be organized. The presence of educators
who are well versed in machine learning will be helpful so
that they can illustrate its advantages and limitations to the
nephrology and the nephropathology communities.

This gradual transformation would also be reflected in
the constitution of peer review processes and NIH study
sections. Special issues within kidney journals focusing on
machine learning applications would also augment
awareness of this technology. It is noteworthy that there
766
are ongoing efforts to integrate machine learning in
the Kidney Precision Medicine Project,23 the Chronic Renal
Insufficiency Cohort (CRIC) study,24-26 the Cure
Glomerulonephropathy (CureGN) study,27 and the Nephrotic
Syndrome Study Network (NEPTUNE).28,29 Making the
greater scientific community aware of these initiatives will
likely increase data science research in kidney diseases.

Last but not least, national- and local-level research
sponsors should consider increasing the funding priority for
machine learning–based applications focused on kidney
health and disease. Creative approaches such as dedicated
fellowships and funding opportunities that are focused on
data science would be educational and attract the interest of
the broader community in pursuing kidney research.

Our study has a few strengths and limitations. To our
knowledge, this bibliometric study is the first of its kind to
identify the differences in the number of articles published,
trends of publications, and research funding across different
organ systems that have used machine learning as a meth-
odology. The study’s limitation is that we worked only with
Web of Science and NIH RePORTER. There are other public
and commercially available bibliometric databases such as
Scopus and Google Scholar, and no bibliometric database is
superior to the others; the differences in the way data are
organized in each database may lead to subtle differences in
the search outputs.30 Therefore, we acknowledge that there
might be possible discrepancies in identifying the exact set
of manuscripts relevant to the scope of this study. Never-
theless, we maintained consistency across our search key-
words and our approach, which provided us with the data
needed to evaluate the extent to which machine learning is
used as a methodology within the kidney research com-
munity. Also, our work mainly focused on US-specific da-
tabases such as NIH RePORTER, but this approach can be
easily extended to European, Asian, and other funding
agencies.

In conclusion, our bibliometric study based on
querying public databases provided the direct insight that
there are significant differences in the use of machine
learning as a research tool among kidney researchers
compared with those who are focused on other organ
systems. The reasons for this critical gap should be
explored, and the kidney research community should
become better informed via various educational platforms
and training programs about this exciting research tool.
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