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Abstract: (1) Background: Oenothein B, a cyclic dimeric ellagitannin present in various medicinal
plants, has been reported to exert diverse effects that are beneficial for the treatment and prevention
of diseases, including cancer and infections. We recently showed that oenothein B also functions in
the brain because its oral administration to systemic inflammatory model mice reduced inflammatory
responses in the brain and suppressed abnormal behavior. (2) Results: The present in vivo results
demonstrated that oenothein B activated extracellular signal-regulated kinase 2 and cAMP response
element-binding protein in the brain, both of which play important roles in synaptic transmission
and learning/memory in the central nervous system (CNS). (3) Conclusions: These results suggest
that oenothein B exerts neuroprotective effects on the CNS by not only its anti-inflammatory activity
but also by enhancing neuronal signaling pathways.

Keywords: oenothein B; ellagitannin; neuroprotection; extracellular signal-regulated kinase (ERK);
cAMP response element-binding protein (CREB); brain

1. Introduction

Oenothein B, which has a unique macrocyclic structure (Figure 1), was initially isolated
from the leaves of Oenothera erythrosepala (Oenotheraceae) in 1990 [1] and was subsequently
found to be widely distributed in various medicinal plants of Myrtaceae and Lythraceae
other than Oenotheraceae [2]. In vitro and in vivo studies demonstrated that oenothein
B exerted various biological effects, including antioxidant, anti-inflammatory, antiviral,
antimicrobial, antitumor, and immunomodulatory activities [3]. Oenothein B-rich plant ma-
terials, such as willow herb tea (hot extracts from the leaves and flowers of Epilobium species
of Oenotheraceae), are capable alternatives for use as pharmaceuticals to reduce the risk
of diseases closely associated with active oxygen damage [4,5]. These biological effects
have been proven using peripheral cells/tissues [2,3], and our in vivo findings showed
that oenothein B also functioned in the brain: (1) its per os (p.o.) administration reduced
neuroinflammation in the brain during systemic inflammation induced by lipopolysaccha-
ride (LPS; an inflammatory agent) and (2) neuroinflammation-induced abnormal behavior
was suppressed in these mice [6].
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Figure 1. Structure of oenothein B. 

We also demonstrated that (1) catechol derivatives, such as 4-methylcatechol (4-MC), 
stimulated the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 along 
with the neurotrophin receptor Trk B of cultured neurons [7]; (2) the intraperitoneal (i.p.) 
administration of 4-MC induced an increase in the expression of brain-derived neu-
rotrophic factor (BDNF), a representative neurotrophic factor, in the rat brain [8]. ERK1/2 
are important signaling molecules belonging to the mitogen-activated protein kinase 
(MAPK) family and their signaling pathway has been implicated in diverse cellular 
events. ERK1 (44-kDa) and ERK2 (42-kDa) exhibit 85% sequence identity and are coordi-
nately activated (i.e., phosphorylated) by various stimuli in many types of cells. In the 
central nervous system (CNS), ERK2, but not ERK1, has been suggested to function in 
neurogenesis and cognitive functions [9]. Activated ERK2 leads to the activation of cAMP 
response element-binding protein (CREB) [10], a transcription factor that is a positive reg-
ulator of memory formation and long-term potentiation (LTP) [11]. CREB is also known 
to function as an important regulator of the expression of BDNF [12] and glial cell line-
derived neurotrophic factor [13]. These neurotrophic factors exert neuroprotective effects 
against neurodegenerative diseases [14]. 

Based on these findings, we speculated that oenothein B, a large molecular polyphe-
nol, affects the neuronal signaling pathway in the CNS and exerts neuroprotective effects. 
To clarify the usability of oenothein B-containing plants as herbal medicine for neuro-
degenerative diseases, we herein examined the effects of p.o. administration of oenothein 
B on the activation of ERK2/CREB. 

2. Results 
In our previous study on systemically inflamed brains, mice were p.o. administered 

oenothein B to achieve 100 or 300 mg/kg/day for 10 days [6]. Therefore, the dose in the 
present study was set to 100 mg/kg/day as well as a higher dosage of 500 mg/kg/day. The 
duration of its administration in the present study was set to 3 or 7 days. The brain tissue 
assessed in the immunoblot analysis was the hippocampus because it plays an important 
role in the consolidation of information from short- to long-term memory [15]. During the 
experimental period, none of the mice showed any abnormalities in behavior or appetite 
at either dose. 

Figure 2 shows the representative bands of a Western blot for total ERK (ERK)1/2 and 
phosphorylated ERK (pERK)1/2 in hippocampal tissues prepared 3 or 7 days after the 
administration of oenothein B, indicating that ERK1 and ERK2 were activated by oeno-
thein B almost in parallel. As ERK2 (but not ERK1) isoform has been reported to play a 
part in the crucial roles in the CNS [9,10], we only analyzed the ratio of pERK2/ERK2 (the 
vehicle-treated group was expressed as one arbitrary unit). On day 3, the pERK2/ERK2 
ratio was slightly but not significantly higher in the oenothein B (OeB)-treated groups than 
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We also demonstrated that (1) catechol derivatives, such as 4-methylcatechol (4-MC),
stimulated the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 along
with the neurotrophin receptor Trk B of cultured neurons [7]; (2) the intraperitoneal (i.p.)
administration of 4-MC induced an increase in the expression of brain-derived neurotrophic
factor (BDNF), a representative neurotrophic factor, in the rat brain [8]. ERK1/2 are
important signaling molecules belonging to the mitogen-activated protein kinase (MAPK)
family and their signaling pathway has been implicated in diverse cellular events. ERK1
(44-kDa) and ERK2 (42-kDa) exhibit 85% sequence identity and are coordinately activated
(i.e., phosphorylated) by various stimuli in many types of cells. In the central nervous
system (CNS), ERK2, but not ERK1, has been suggested to function in neurogenesis
and cognitive functions [9]. Activated ERK2 leads to the activation of cAMP response
element-binding protein (CREB) [10], a transcription factor that is a positive regulator
of memory formation and long-term potentiation (LTP) [11]. CREB is also known to
function as an important regulator of the expression of BDNF [12] and glial cell line-
derived neurotrophic factor [13]. These neurotrophic factors exert neuroprotective effects
against neurodegenerative diseases [14].

Based on these findings, we speculated that oenothein B, a large molecular polyphenol,
affects the neuronal signaling pathway in the CNS and exerts neuroprotective effects. To
clarify the usability of oenothein B-containing plants as herbal medicine for neurodegener-
ative diseases, we herein examined the effects of p.o. administration of oenothein B on the
activation of ERK2/CREB.

2. Results

In our previous study on systemically inflamed brains, mice were p.o. administered
oenothein B to achieve 100 or 300 mg/kg/day for 10 days [6]. Therefore, the dose in the
present study was set to 100 mg/kg/day as well as a higher dosage of 500 mg/kg/day. The
duration of its administration in the present study was set to 3 or 7 days. The brain tissue
assessed in the immunoblot analysis was the hippocampus because it plays an important
role in the consolidation of information from short- to long-term memory [15]. During the
experimental period, none of the mice showed any abnormalities in behavior or appetite at
either dose.

Figure 2 shows the representative bands of a Western blot for total ERK (ERK)1/2
and phosphorylated ERK (pERK)1/2 in hippocampal tissues prepared 3 or 7 days after the
administration of oenothein B, indicating that ERK1 and ERK2 were activated by oenothein
B almost in parallel. As ERK2 (but not ERK1) isoform has been reported to play a part
in the crucial roles in the CNS [9,10], we only analyzed the ratio of pERK2/ERK2 (the
vehicle-treated group was expressed as one arbitrary unit). On day 3, the pERK2/ERK2
ratio was slightly but not significantly higher in the oenothein B (OeB)-treated groups than
in the vehicle-treated group (Vehicle) (Figure 2A). No significant difference might be caused
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by a lot of individual variation in the OeB-treated groups. On day 7, the pERK2/ERK2 ratio
was significantly (* p < 0.05) higher in the OeB (100 mg/kg/day)-treated group but not in
the OeB (500 mg/kg/day)-treated group than in the vehicle group (Figure 2B). Oenothein
B at the concentration of 500 mg/kg/day might exceed the most suitable concentration.
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pCREB/CREB ratios, indicating that the pCREB/CREB ratio on day 7 was slightly higher 
in the OeB (100 mg/kg/day)-treated group (OeB) than in the vehicle group, but no signif-
icant difference was observed, contrary to our expectation (p = 0.0866). 

3. Discussion 
The present results demonstrated that the p.o. administration of oenothein B acti-

vated ERK2 in the healthy mouse brain (Figure 2). The blood–brain barrier (BBB) functions 
properly in healthy mice. Therefore, hydrophilic oenothein B may not have been able to 
pass through the BBB under the present experimental conditions. Previous studies 
showed that ellagitannins are generally transformed in the gut to ellagic acid (2,3,7,8-tet-
rahydroxy-benzopyrano [5,4,3-cde] benzopyran-5-10-dione), which is then converted to 
metabolites, such as urolithins (i.e., urolithin A, 3,8-dihydroxyurolithin and urolithin B, 3-
hydroxyurolithin), by gut bacteria [16–18]. We speculated that any metabolites penetrate 
and exert their effects in the brain. An important issue that needs to be addressed is iden-
tifying which intestinal metabolites of oenothein B affect brain function. 

Figure 2. Effects of oenothein B on ERK2 activation in the hippocampal region of mice. Hippocampal
tissues prepared on day 3 (A) or day 7 (B) after the p.o. administration of oenothein B (OeB; 100
or 500 mg/kg/day) or vehicle to mice. The density ratio of phosphorylated components to total
components (pERK2/ERK2) in the vehicle-treated group (Vehicle) was expressed as 1.0. Values are
means ± SEM (n = 5 for each group). Symbols indicate a significant difference as indicated by the
brackets: vs. the vehicle-treated group (* p < 0.05).

To investigate whether the p.o. administration of oenothein B induces the activation
of CREB in the hippocampus, we examined the tissues of the OeB (100 mg/kg/day)-
treated group on day 7 based on the conditions of ERK2 activation. Figure 3 shows the
representative bands of a Western blot for total CREB (CREB), phosphorylated CREB
(pCREB), and pCREB/CREB ratios, indicating that the pCREB/CREB ratio on day 7 was
slightly higher in the OeB (100 mg/kg/day)-treated group (OeB) than in the vehicle group,
but no significant difference was observed, contrary to our expectation (p = 0.0866).
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Figure 3. Effects of oenothein B on CREB activation in the hippocampal region of mice. Hippocampal
tissues prepared on day 7 after the p.o. administration of oenothein B (OeB; 100 mg/kg/day) or
vehicle to mice. The density ratio of phosphorylated components to total components (pCREB/CREB)
in the vehicle-treated group (Vehicle) was expressed as 1.0. Values are means ± SEM (n = 5 for each
group). The Student’s t-test shows that the difference (p) between the 2 groups is 0.0866.
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3. Discussion

The present results demonstrated that the p.o. administration of oenothein B ac-
tivated ERK2 in the healthy mouse brain (Figure 2). The blood–brain barrier (BBB)
functions properly in healthy mice. Therefore, hydrophilic oenothein B may not have
been able to pass through the BBB under the present experimental conditions. Previous
studies showed that ellagitannins are generally transformed in the gut to ellagic acid
(2,3,7,8-tetrahydroxy-benzopyrano [5,4,3-cde] benzopyran-5-10-dione), which is then con-
verted to metabolites, such as urolithins (i.e., urolithin A, 3,8-dihydroxyurolithin and
urolithin B, 3-hydroxyurolithin), by gut bacteria [16–18]. We speculated that any metabo-
lites penetrate and exert their effects in the brain. An important issue that needs to be
addressed is identifying which intestinal metabolites of oenothein B affect brain function.

Recent studies showed that ellagic acid has neuroprotective functions in the brain [19–22].
For example, the subchronic p.o. administration of ellagic acid (100 mg/kg) prevented
cognitive and hippocampal LTP deficits and brain inflammation in rats with traumatic
brain injury [19]. The chronic i.p. administration of ellagic acid (30 or 100 mg/kg) sig-
nificantly reversed amnesia induced by scopolamine and antagonized that induced by
diazepam [20]. Regarding urolithins, urolithin A has been shown to possess neuropro-
tective functions [23,24]. For example, urolithin A protected against ischemic neuronal
injury in the mouse brain by reinforcing autophagy [23]. Many findings support the widely
accepted theory that the effective compound(s) in ellagitannin- and ellagic acid-rich foods
are urolithins [25]. However, the chemical structures of the metabolites of oenothein B
have not yet been elucidated in detail. We are planning to identify the urinary and plasma
metabolites of oenothein B and investigate their abilities to activate ERK2 in future in vivo
and in vitro studies.

Another important issue was clarifying the mechanisms underlying the activation
of ERK by oenothein B. Since ellagitannins are generally water-soluble, many researchers
added oenothein B to the culture medium of various cells in order to investigate their
effects [26,27]. In our preliminary experiment, we treated cultured rat cortical neurons with
oenothein B and observed the activation of ERK1/2 10 min after the exposure of cells to
oenothein B (data not shown). Since oenothein B, a large hydrophilic molecule, cannot
pass through cell membranes, its prompt activation of ERK1/2 in vitro suggested that
any part of oenothein B binds to corresponding receptors on neurons, which then activate
ERK1/2 in the cytosol. We intend to investigate which receptors trigger the activation of
phosphorylation cascades by oenothein B in a future in vitro study.

In the present study, we also showed that the p.o. administration of oenothein B
activated CREB in the healthy mouse brain (Figure 3). CREB is activated through the
phosphorylation of the serine 133 residue by various kinases, such as protein kinase A,
Akt/protein kinase B, Ca2+/calmodulin-dependent protein kinase, and glycogen synthase
kinase-3 [28]. To establish whether the oenothein B-induced phosphorylation of CREB is
due to phosphorylated ERK2, further studies using cultured neurons are needed to clarify
the effects of U0126 (a specific inhibitor of MAPK/ERK kinase 1; MEK1).

CREB is a positive regulator of memory formation and LTP [11]. We intend to investi-
gate whether the p.o. administration of oenothein B prevents LTP deficits in a temporary
amnesia-model mouse. CREB is also the key transcription factor for the expression of some
neurotrophic factors [12,13]. These findings suggest that oenothein B exerts neuroprotective
effects through the inducible activity of some neurotrophic factors in the brain. Another
issue that warrants further study is the inducible ability of oenothein B on the expression
of neurotrophic factors in the brain, such as BDNF and GDNF, which will be examined
using cultured neurons.

In the last 20 years, vegetable polyphenols, including tannins, have attracted interest
in human health care, particularly in terms of the prevention of lifestyle diseases induced by
oxygen damage, due to their diverse biological activities that exert strong antioxidant and
immunomodulatory effects [29]. The speculation that oenothein B exerts neuroprotective
effects through not only its anti-inflammatory activity but also the inducible activity of some
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neurotrophic factors in the brain may expand pharmacological applications of oenothein
B-rich herbs.

4. Materials and Methods
4.1. Preparation of Oenothein B and Reagents

Oenothein B was isolated from the leaves of Eucalyptus globulus (Myrtaceae), as
previously described [27,30].

4.2. Oenothein B Treatment

Male ddY mice (7 weeks old) were obtained from Japan SLC (Shizuoka, Japan).
Oenothein B was dissolved in distilled water and p.o. administered to mice to achieve 100
or 500 mg/kg/day once a day for 3 days (from days 1 to 3) or 7 days (from days 1 to 7).
The control group was treated with a vehicle (distilled water). During the experimental
period, mice were deprived of food until the administration (10:00) of oenothein B or
vehicle (0.3 mL solution) and were then allowed free access to tap water and food until
20:00. Their brains were removed 5 h after the last administration.

4.3. Immunoblot Analysis

Protein extracts of cells and tissues were prepared with a RIPA buffer (20 mM Tris–
HCl (pH 7.5), 150 mM NaCl, 0.1% SDS, 1% sodium deoxycholate, 1% NP-40, 2 mM EDTA,
and a protease inhibitor cocktail (Roche Diagnostics GmbH, Mannheim, Germany)) as
previously described [31]. In immunoblot analysis, protein extracts (10 µg protein) were
electrophoresed on SDS-polyacrylamide gels. Proteins were electroblotted onto an Immuno-
BlotTM PVDF Membrane (BIO-RAD, Hercules, CA, USA) and reacted with rabbit antibodies
against MAPK 1/2 (Erk1/2-CT) (Upstate, Lake Placid, NY, USA), phospho-p44/42 MAPK
(Erk1/2) (Thr-202/Tyr-204), CREB, or phospho-CREB (Ser-133) (Cell Signaling, Woburn,
MA, USA). The secondary antibody was horseradish peroxidase-linked anti-rabbit IgG
(Cell Signaling). Blots were developed using the chemiluminescence method with Plus
Western Blotting Detection Reagents (Amersham, Piscataway, NJ, USA).

4.4. Statistical Analysis

All results were expressed as means ± SEM. Significant differences in experiments
with 2 groups were analyzed using the Student’s t-test. Experiments involving 3 groups
were subjected to Dunnett’s multiple comparison test (Prism 6; GraphPad Software, La Jolla,
CA, USA). p < 0.05 was considered to indicate a significant difference.
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