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Abstract: Ion homeostasis is extremely important for the survival of both normal as well as neoplastic
cells. The altered ion homeostasis found in cancer cells prompted the investigation of several
ionophores as potential anticancer agents. Few ionophores, such as Salinomycin, Nigericin and
Obatoclax, have demonstrated potent anticancer activities against cancer stem-like cells that are
considered highly resistant to chemotherapy and responsible for tumor relapse. The preclinical
success of these compounds in in vitro and in vivo models have not been translated into clinical
trials. At present, phase I/II clinical trials demonstrated limited benefit of Obatoclax alone or in
combination with other anticancer drugs. However, future development in targeted drug delivery
may be useful to improve the efficacy of these compounds. Alternatively, these compounds may be
used as leading molecules for the development of less toxic derivatives.

Keywords: ionophores; chemosensitization; obatoclax; nigericin; salinomycin; combination
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1. Introduction

Ion Transport

Ion homeostasis is extremely important for the survival of cells. A proper balance of ions both
inside the cells as well as in the extracellular matrix is necessary for the maintenance of membrane
potential, cell shape and proper functioning of several cellular pathways. Cell membrane consists of
two lipid bi-layers where polar heads of the lipids face outward and hydrophobic tails form interior
of the cell membrane. This structural composition of plasma membrane results in impermeability
of various ions, small hydrophilic molecules such as glucose and macromolecules such as proteins
and RNA across the cell membrane. Only water, oxygen and carbon dioxide freely move across
plasma membrane. Cells overcome these transport issues by devising mechanisms for facilitated
diffusion as well as active transport of ions and molecules across membrane. Facilitated transport
involves diffusion of ions towards concentration gradient mediated by proteins which form water
filled ion channels across the membrane. These ion channels are gated and can be opened and closed
based on the cellular requirements. The most common types of gated ion channels are ligand-gated,
mechanically gated, voltage-gated, and light-gated [1]. In active transport ions or molecules are
transported against the concentration gradient with the help of transporter proteins using energy
from the ATP. Na+/K+ ATPase, H+/K+ ATPase, Ca2+ ATPase, ABC transporters are a few examples
of active transporters [2]. Aberrant expression and/or functioning of ion channels and ion pumps
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in cancer cells establish a unique ion homeostasis which is specifically advantageous to cancer cells.
Maintenance of this ion homeostasis is of great interest to cancer cells. In following sections of the
review article, we will discuss how cancer cells maintain a particular ion balance and how it helps
them in escaping death, increased cancer cell proliferation, and metastasis. We will also explore
how this ion homeostasis is targeted to develop novel therapeutic interventions for cancer treatment
and discuss role of ionophores as anticancer drugs. Ionophores are a class of compounds which
have been successfully employed to eliminate cancer by manipulating ion balance in cancer. We will
focus on Salinomycin (SAL), Nigericin (NIG) and Obatoclax (OBT) as these ionophores have shown
well-documented potent anticancer activity against cancer stem-like cells as well as promising use
as chemosensitizer. Although other ionophores have shown anticancer activity and some of them
may be active against putative cancer stem cells (CSCs) the information is limited or they are less
promising than SAL, NIG or OBT. For instance, Valinomycin’s activity against cancer cells were less
potent compared to SAL or NIG [3]. (Table 1) We will also track clinical progress of these drugs by
evaluating various clinical trials exploiting these drugs as potential anticancer agents.

Table 1. Ionophores with anticancer activity.

Ionophore Transported Ion Cancer Type Target CSCs Reference

Nigericin K+, H+ Several Yes [4–6]
Salinomycin K+, Ca2+ Several Yes [7–9]

Obatoclax HCO3
−, Cl− Several Yes [10–15]

Gramicidin H+, Na+, K+ Renal cell carcinoma, Not known [16,17]
Ionomycin Ca2+ Breast Not known [18,19]
Monensin Na+, H+ Glioblastoma, Bladder Not known [20–22]

Valinomycin K+ Ovarian, Colorectal, Likely [3,23,24]
Lasalocid K+, Na+, Ca2+, Prostate Not known [25]
Enniatin Mg2+ Colon, Ovarian Not known [26,27]

Beauvericin NH4
+, Ca2+, Ba2+

Prostate
Cervical, Colorectal

Hepatoma, Lung
Not known [28,29]

2. Ion Transport in Cancer Cells and Its Targeting to Develop Novel Anticancer Therapies

2.1. Ion Transport in Cancer Cells

Growing body of evidence suggest an altered ion transport in cancer cells. Cancer cells rewire
their cellular circuitry to establish, adopt, proliferate, and metastasize in various challenging conditions
by manipulation their ion homeostasis and ion channels and ion pumps play a critical role in this
reorganization [30].

Ca2+ is a very important ion and plays key role in various signaling mechanism, which integrate
with other signal-transduction cascades and controls a variety of cellular processes. Therefore,
intracellular Ca2+ (Ca2+i) concentration is precisely maintained for proper functioning of cells.
Ca2+ homeostasis is maintained by calcium permeable channels such as transient receptor potential
(TRP) channels, store-operated channels (SOCs), voltage-gated calcium channels, as well as
mitochondrial calcium uniporter (MCU), voltage-dependent anion channels (VDACs), IP3 and
ryanodine receptors, and others. Ca2+i plays central role in early G1phase and at the G1/S and G2/M
transitions [31]. Other studies have pointed towards Ca2+/calmodulin (CaM) and Ca2+/calcineurin
pathways as major checkpoints in cell cycle progression [32,33]. Metastasis involves several Ca2+

dependent processes, including cell deformation, invasion, migration, and adhesion. TRPM7 channels
have been shown to form local and transient calcium domains known as “calcium flickers” at
lamellipodia and guide the direction of migration [34]. An in-depth account of Ca2+ transport mediated
proliferation and metastasis in prostate, breast and lung cancer can be found in a review article by
Deliot et al. [35] Apoptosis involving calcium ion overload in cytosol is a well explored process.
Apoptotic cells increase intrinsic Ca2+ either by sustained Ca2+ influx via activated channels or release
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of calcium by a stressed endoplasmic reticulum (ER) [36,37]. Cancer cells exhibit greater apoptotic
resistance by inhibiting calcium influx by down-regulating channels and/or adapt to chronic-reduced
ER Ca2+ [36].

K+ is the most predominant ion inside the cell and its cellular concentration is maintained
by four different classes of ion channels—voltage-gated, calcium-activated, inward rectifier and
two-pore-domain potassium channels. K+ ion is key regulator of cell volume and shrinking of cell
volume is a characteristic phenotypic modulation of cells undergoing apoptosis. Loss of intracellular
K+ via activation of various ion channels leads to apoptosis by decay of the membrane potential and
the associated Ca2+ influx, apoptotic volume decrease, and activation of various enzymes involved in
the apoptotic process [38]. Readers can refer to a review by Wang for the potential role played by K+ ion
channels in cancer cell proliferation and apoptosis [39]. Similarly, Na+ and Cl− ion and ion channels
have been associated with cancer proliferation and resistance to apoptosis [38,40]. Zn2+ transport has
been shown to affect epithelial mesenchymal transition (EMT) and metastatic stature of cancer [41].
Zn2+ accumulation has been linked to increased resistance as well as sensitization of cancer in cell
dependent manner [42,43]. Mg2+ homeostasis is often associated with drug resistance of cancer
cells [44,45]. Cu+ is essential micro nutrient and its levels are maintained by several transporter
and chaperone proteins. Cu+ is selectively taken up by Copper Transport Protein 1 (CTR1) and
then distributed inside the cell to various cellular compartments by three chaperone proteins Atox1,
Cox17p and CCS. While Cox17p and CCS transport Cu+ to mitochondria and copper/zinc superoxide
dismutase respectively; Atox1 carries Cu+ to ATPase transporters ATP7A and ATP7B which move
Cu+ to trans-golgi network or secretory vesicles for copper efflux from the cells [46]. Pt2+ exhibits
similar coordination chemistry that of Cu+ and highjack copper transport machinery for transport of
platinum-based anticancer drugs. Modulation of expression and activity of CTR1, ATP7A and ATP7B
has been shown to impart resistance to platinum-based chemotherapies by reducing their cellular
levels either by inhibiting their uptake or increased efflux of internalized drug respectively [47–50].

Cancer cells switch their metabolism to glycolysis to meet their energy requirements, known as
Warburg effect. This metabolic change leads to accumulation of lactate in the cells. This excess lactate
is pumped outside the cell by the over activation of Na+/H+ exchanger 1 (NHE1) and the H+/lactate
cotransporter in cancer cells making tumor microenvironment highly acidic. This deregulated
pH homeostasis results in cellular alkalization which was suggested to be first step in the
carcinogenesis [51]. Cancer cells use this acidic environment to their advantage as they are more
adept to these conditions than normal cells. Furthermore, this acidic environment shields cancer
from weakly basic drugs by protonating them resulting in their decreased partitioning inside cancer
cells [52]. Alternatively, H+ ion channels and pumps play a key role in malignant transformation of
cancer by inducing metastasis. Cancer metastasis involves cell volume and cell shape modifications as
cell develops lamellipodium and invadopodium to migrate and invade through extracellular matrix.
These changes in cell volume are regulated by local ion transport through the ion channels at the
leading edge and tip of the outgrowing lamellipodium/invadopodium. Several studies have pointed
towards a critical role played by NHE1 in tumor progression and invasion [53]. H+ ion channels also
play important role in cell signaling, proliferation and cell cycle.

2.2. Ion Transport and Chemotherapy

Modulation and maintenance of altered ionic homeostasis by cancer cells is well documented.
Therefore, alteration of this ionic balance may serve as a lynch pin to start a cascade of signaling
events ultimately leading to cancer cell death. There is multitude of evidence to support this notion as
several studies indicated modulation of cellular ion homeostasis by either activation or deactivation of
ion transporters and ion channels sensitizes cancer cells to otherwise in effective drugs. Regarding
their potential use as chemosensitizers, Abdoul-Azize et al. recently demonstrated sensitization of
pediatric acute myloid leukemia to dexamethasone by chelation of intracellular Ca2+ ions with calcium
chelator BAPTA-AM [54]. Similarly, phenyl isothiocyante induced apoptosis in Gefitinib-resistant
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NCI-H460 human lung cancer cells by altering Ca2+i levels [55]. Chen et al. reported reversal of
chemoresistance to platinum drugs in oxaliplatin-resistant human cervical cancer cells in vitro and
in vivo in response to co-treatment with iron chelator desferal [56]. Partial restoration of function of
volume-sensitive outwardly rectifying (VSOR) chloride channels in cisplatin resistant KCP-4 human
epidermoid cancer cell line by treatment with trichostatin A sensitized these cells to cisplatin [57].
Esomeprazole a proton pump inhibitor potentiated antitumor activity of doxorubicin in triple negative
MDA-MB-468 breast cancer cells [58]. Specific ion pump inhibitors have been tested for cancer
treatment. For example, cardiac glycosides which are Na+/K+ pump inhibitors and commonly
used for heart ailments are currently being investigated for their anticancer properties in various
cancer. Several studies have pointed towards their potential anticancer efficacy in different types of
cancers [59–62]. Similarly, hERG1 inhibitors, which block kv11.1 channels, have shown remarkable
antitumor activity in several cancers [63,64]. Even though, ion channel/ion pump inhibitors have
demonstrated potent anticancer activity, their use as anticancer drugs is limited due to limited
selectivity. For instance, cardiac glycosides have very narrow therapeutic index (low nano molar range)
as at higher concentrations they exhibit severe cardio toxic side effects. Nonspecific inhibition of kv11.1
channels by hERG1 inhibitors may also lead to the lengthening of the electrocardiographic QT interval,
thus predisposing the patient to ventricular arrhythmias [65]. Ion transport inhibitors may have other
effects that can be exploited as chemosensitizer. For instance, the Ca++ channel inhibitor Verapamil is
also a potent inhibitor of the multidrug resistant (MDR) protein ABCB1/P-glycoprotein (P-gp) and
this property has been tested to overcome multidrug resistance [66]. Since the P-glycoprotein, can be
modulated by calcium channel blockers such as cyclosporin and nifedipine these inhibitors were able
to reverse drug resistance in tumors [67,68]. However, at present the use of calcium channel blockers
in chemotherapy has not been successfully translated into clinics, perhaps to limited availability and
toxicity. For instance, while the average steady-state plasma levels measured for verapamil is ~0.5 µM
the concentration usually associated with MDR1 inhibition is about ≥50 µM [66] indicating that this
drug may not be useful at the clinical level.

Therefore new, more specific and selective ion transport modulators are needed to effectively
exploit cancer’s ionic homeostasis as a target to develop successful therapy interventions against cancer.

3. Ionophores

Ionophores mean “ion carrier” is a class of compounds which can bind non-covalently with ions
and can assist in their transport across the cell membrane. Ionophore consists of lipophilic exterior and
has a hydrophilic interior where ion binds and transported across lipid membrane. Ionophores can be
divided in two categories depending on the size of the molecule that in turn determines the mode of
transport of the ion across the cell membrane (Figure 1). Small ionophores such as valinomycin form
complex with the ions and transport them across the cell membrane are known as “Ion Carriers” [69].
Small polyether ionophores transport ions by electroneutral, electrogenic or biomimetic mechanisms
depending on micro environmental and structural modification of ionophore [70–72]. Large ionophores
such as gramicidin form channels across the cell membrane for the ion transport. The interior of channel
is hydrophilic and assists in ion transport while lipophilic external shell shields ion from hydrophobic
environment of cell membrane [69]. However, ion channel ionophores exhibit a lower selectivity in
comparison with ion carrier ionophores. Based on chemical structure ionophores can be categorized
as polyether, peptide, cyclodepsipeptide, macrotetrolides and cryptates [69]. Polyether ionophores
consist of an oxygen rich hydrophilic interior which mostly comprises of ether bonds. Salinomycin
and nigericin are example of polyether ionophores. Gramicidin is example of peptide ionophores
where peptide bonds contribute towards ionophortic activity of the peptide. Cyclodepsipeptides are
peptides in which one or more peptide bonds are replaced by ester bonds. Enniantin is an example of
this class of ionophores. Nonactin is a macrotetrolide and has a macrocyclic structure comprising of
four tetrahydrofuranyl-ester residues. Commonly, ionophores have been used as anticoccidial drugs
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for poultry and/or growth promoters in ruminants. Lately, ionophores have found a new role as
anticancer drugs due to their ability to alter this ion balance by ion transport across cell membrane.Cancers 2018, 10, x 5 of 21 

 

 
Figure 1. Ionophore mediated ion transport across the membrane. (A) Small ionophores “ion carriers” 
bind with ion, shield it from lipophilic interior of membrane, transport it across the membrane and 
release it other side of membrane. (B) Large ionophores form “ion channels” across the membrane 
and transport ions through these channels. These channels have a hydrophilic interior which assist in 
transport of ions while its lipophilic exterior shield ions from repulsive interior of membrane. (C) 
Polyether ionophores carry ions across membrane by electroneutral, electrogenic and biomimetic 
methods based on the microenvironmental conditions and structure of ionophore. Panel C was 
modified from [71]. 

3.1. Salinomycin (SAL) 

SAL is a naturally occurring polyether antibiotic [73] isolated from Streptomyces albus strain. It 
has been used as antibacterial and coccidiostat. SAL is an ionophore and imparts its antibacterial 
properties by facilitating transport of K+ ions through the cell membrane of target organism leading 
to an increase of intracellular Ca2+ ions. This disruption of ionic homeostasis leads to deregulation of 
osmotic balance resulting in death of the organism. SAL came in forefront as a potential anticancer 
drug in 2009 when Gupta et al. screened roughly 16,000 compounds for their selective anticancer 
efficacy against CSCs and found SAL at least 100-fold more effective than paclitaxel, a commonly 
used anticancer drug [7]. Following this work, several other studies pointed towards SAL’s selectivity 
in targeting cancer stem cells practically in every type of cancer [74–80] as well as other multidrug 
resistance (MDR) cancer cells [81,82]. Although the exact mechanism by which SAL targets cancers 
is not known, it is very clear that it influences multiple pathways to impart its effects. SAL has been 
shown to induce cancer and CSC death by inducing apoptosis [83–88]. There are studies which 
indicate autophagic cancer cell death by SAL [89,90]. However, several studies present a 
contradictory view as they suggest inhibition of autophagy and induction of apoptosis as the 
mechanism for elimination of cancer by SAL [91–95]. Several studies indicated SAL induced oxidative 
stress as a key mediator for apoptotic cell death [84,96–98]. SAL induces oxidative stress by altering 
mitochondrial membrane potential. Beside its specific cytotoxicity towards cancer and CSCs SAL 
regulates cancer metastasis by inhibiting cancer cell invasion and migration by targeting Wnt and 
EMT pathways [78,99–102]. Several studies indicate possible involvement of Hedgehog signaling in 
SAL induced cell death in breast cancer [103,104]. SAL is a potent partner in a co-therapy approach 
and has been shown to sensitize several cancers and to potentiate efficacy of other commonly used 
anticancer drugs such as doxorubicin, trastuzumab, gemcitabine, tamoxifen etc. [105–108] Zhang et 
al. demonstrated SAL induced sensitization of pancreatic cancer to gemcitabine by targeting 
CSCs.[108] In a recent study Venkatadri et al., observed a sensitizing effect of SAL in breast cancer 

Figure 1. Ionophore mediated ion transport across the membrane. (A) Small ionophores “ion carriers”
bind with ion, shield it from lipophilic interior of membrane, transport it across the membrane and
release it other side of membrane. (B) Large ionophores form “ion channels” across the membrane
and transport ions through these channels. These channels have a hydrophilic interior which assist
in transport of ions while its lipophilic exterior shield ions from repulsive interior of membrane.
(C) Polyether ionophores carry ions across membrane by electroneutral, electrogenic and biomimetic
methods based on the microenvironmental conditions and structure of ionophore. Panel C was
modified from [71].

3.1. Salinomycin (SAL)

SAL is a naturally occurring polyether antibiotic [73] isolated from Streptomyces albus strain.
It has been used as antibacterial and coccidiostat. SAL is an ionophore and imparts its antibacterial
properties by facilitating transport of K+ ions through the cell membrane of target organism leading to
an increase of intracellular Ca2+ ions. This disruption of ionic homeostasis leads to deregulation of
osmotic balance resulting in death of the organism. SAL came in forefront as a potential anticancer
drug in 2009 when Gupta et al. screened roughly 16,000 compounds for their selective anticancer
efficacy against CSCs and found SAL at least 100-fold more effective than paclitaxel, a commonly
used anticancer drug [7]. Following this work, several other studies pointed towards SAL’s selectivity
in targeting cancer stem cells practically in every type of cancer [74–80] as well as other multidrug
resistance (MDR) cancer cells [81,82]. Although the exact mechanism by which SAL targets cancers
is not known, it is very clear that it influences multiple pathways to impart its effects. SAL has been
shown to induce cancer and CSC death by inducing apoptosis [83–88]. There are studies which indicate
autophagic cancer cell death by SAL [89,90]. However, several studies present a contradictory view as
they suggest inhibition of autophagy and induction of apoptosis as the mechanism for elimination
of cancer by SAL [91–95]. Several studies indicated SAL induced oxidative stress as a key mediator
for apoptotic cell death [84,96–98]. SAL induces oxidative stress by altering mitochondrial membrane
potential. Beside its specific cytotoxicity towards cancer and CSCs SAL regulates cancer metastasis
by inhibiting cancer cell invasion and migration by targeting Wnt and EMT pathways [78,99–102].
Several studies indicate possible involvement of Hedgehog signaling in SAL induced cell death
in breast cancer [103,104]. SAL is a potent partner in a co-therapy approach and has been shown
to sensitize several cancers and to potentiate efficacy of other commonly used anticancer drugs
such as doxorubicin, trastuzumab, gemcitabine, tamoxifen etc. [105–108] Zhang et al. demonstrated
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SAL induced sensitization of pancreatic cancer to gemcitabine by targeting CSCs [108]. In a recent
study Venkatadri et al., observed a sensitizing effect of SAL in breast cancer where SAL was able to
potentiate the resveratrol’s anticancer effect at low concentration which was rather ineffective when
used independently [109].

Cancer resistance is a major concern in complete eradication of cancer as some of the cancer
cells acquire or exhibit resistance to therapy and escape elimination. These cells come back as
a more aggressive and more resistance cancer and cause a cancer relapse. Most of the current
therapeutic approaches fall short of achieving complete cure of cancer and after initial remission
cancer relapses in several cases. Interestingly, SAL has demonstrated potent anticancer effect in
various multi drug resistant (MDR) cancers [110–112]. Development of drug efflux mechanisms via
various drug transporter proteins such as p-glycoproteins, ABCG, MDR etc. is the most commonly
employed counter measure by cancer to survive a fatal outcome. SAL has been shown to overcome
drug resistance by inhibiting these drug transporters [105,113,114].

SAL has exhibited a great therapeutic potential as an anticancer drug. However, poor water
solubility and toxicity to normal cells is a major concern in its therapeutic application for cancer
treatment. These issues can be addressed by either development of targeted delivery strategies
and/or by synthesis of less toxic and more specific SAL analogues. Recently, several studies have
reported successful use of nanoparticles, nanomicelles, nanotubes, and multilamellar liposomes
conjugated with cancer cell surface markers such as CD133, CD44 etc. for targeted delivery of
salinomycin [115–119]. Many analogues have been synthesized by introducing different substituent,
functional groups in the core structure of salinomycin and have been tested for their anticancer
efficacy [120,121]. SAL demonstrated unique ability to target CSCs and MDR cancer cells in variety of
cancers bestowing it with enormous potential to be a break through drug as a mono therapy or as a
sensitizer to compound the effects of other anticancer agents in resistant cancers.

3.2. Nigericin (NIG)

NIG is an antibiotic derived from Streptomyces Hygroscopicus. It was first isolated by Harned et
al. from an unidentified Streptomyces which was later reported to be Streptomyces “Nig-1” [122,123].
NIG is an ionophore and can transport K+, H+ and Pb2+ ions across the plasma membrane. NIG
is an antiporter of H+ and reduces internal pH (pHi) of cells. Cell proliferation is a pH sensitive
process and DNA replication requires slightly alkaline pH to perform optimally. Several studies have
indicated stimulation of cell growth resulting from rapid increase of pHi (0.1–0.3 pH units) in response
to addition of growth promoting reagents such as serum and growth factors [124]. This increase
in pHi in response to growth factors was mediated by stimulation of amiloride sensitive Na+/H+

exchange [125]. Cancer cells have a reversed pH gradient then normal cells which have pHe > pHi
while cancer cell maintain a pHe < pHi. This reversed pH gradient is advantageous to cancer cells as it
promotes cancer progression by inducing cancer invasion and migration [126]. NIG has shown potent
anticancer potential in several cancers as well as resistant cancer stem cells [5,6]. Exact mechanism
by which nigericin acts is not known but several studies have pointed towards its ability to antiport
H+ inside the cell as possible mode for its anticancer activity. Cancer cells have an acidic external pH
(pHe) and nigericin exploits these external cancer microenvironment conditions to its advantage by
transporting H+ from exterior to interior of the cell resulting in lowering of pHi which in turn leads to
cancer cell death. Margolis et al. reported a decrease in cytoplasm pH and reduction in DNA synthesis
on treatment with millimolar concentrations of NIG in Ehrlich ascites tumor cells [127]. Alteration of
mitochondrial function has been associated with anticancer activity of NIG. Treatment with NIG alters
membrane potential which may lead to disruption of energy balance and/or increased reactive oxygen
species (ROS) production leading to cancer cell death [3,128].

Photodynamic therapy (PDT) is a form of phototherapy which is minimally invasive and least
toxic. It employs a light source which excites the photo sensitizer which in turn interacts with
molecular oxygen to produces radicals and ROS leading to localized cytotoxicity in the exposed tissue.
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Several studies have pointed towards NIG mediated sensitization of cancer cells for photodynamic
therapy [129,130]. There is no clear mechanistic explanation for this synergistic effect as evidence
suggest change of pHi, inhibition of peroxidase detoxification to translocation of Bax to mitochondria
as possible reasons for this outcome [131,132]. In another study, Varnes et al. observed an inhibition of
potentially lethal damage recovery in A549 cells upon treatment with micro molar concentration of NIG
post PDT [133]. NIG sensitizes cancer cells and demonstrated a synergistic effect with other anticancer
drugs leading to an improved efficacy of these drugs [6,134]. This enhanced efficacy was mostly
related to NIG’s ability to reduce pHi under acidic tumor microenvironment [134,135]. Regulation
of key cellular pathways such as EMT and Wnt/β catenin has been shown to induce cytotoxicity
and inhibition of cancer metastasis on NIG treatment [136,137]. Autophagy inhibition potentiates
NIG treatment. In a recent study Vu et al. demonstrated a reduction in spheroid formation by ATG5
deficient glioma cells on treatment with NIG [138].

3.3. Obatoclax (OBT)

OBT is synthetic derivative of Prodigiosin class of compounds. Prodigiosin are red
pigments produced by bacteria and show antimalarial, antifungal, immunosuppressant, antibiotic,
and anticancer properties. OBT is a BH3-mimitic and induces apoptosis by modulating Bcl2 family
proteins. It has shown cytotoxicity in several cancers by inducing apoptotic cell death.

Often faced with harsh conditions such as nutrient deficiency, hypoxia, DNA damage,
unnatural genetic variation, and instability, cancer cells still manage to survive by evading death
signals by modulating pro-survival regulators. One such survival design includes over expression
of anti-apoptotic Bcl2 family proteins. These proteins antagonize pro-death proteins by forming a
heterodimer via binding to the pro-apoptotic protein’s BH3 domain situated in the hydrophobic cleft
of anti-apoptotic proteins. While pro-death proteins have only BH3 homology domain, Bcl2 proteins
have four homology domains (BH1-4). Other apoptotic proteins Bax and Bak which are necessary for
the cell death by BH3 only proteins share three homology domains (BH1-3). In viable cells, Bax and Bak
exist as monomers; however, they form homooligomers upon activation of BH3-only pro-apoptotic
proteins. These homooligomers insert themselves in mitochondrial membrane and permeabilize it
for the release of cytochrome c and other pro-apoptotic factors needed for mitochondria mediated
apoptotic cell death. Therefore, natural or synthetic BH3 mimics represent a promising therapeutic
approach for targeting cancer cells.

OBT’s anticancer potential is often attributed to its BH3 targeted apoptosis induction in cancer cells.
In a recent study, Díaz de Greñu et al. demonstrated ionophoretic activity of OBT and other synthetic
derivatives towards chloride and bicarbonate anions and correlated cytotoxicity of these compounds
for small-cell lung carcinoma cell line GLC4 with their ability to discharge pH gradient in living
cells [139]. Acridine orange (AO) a membrane permeable dye which accumulates in acidic vesicles
such as lysosomes was used to monitor pH changes with OBT treatment. AO have a characteristic
orange fluorescence at acidic pH while it flourishes green at basic pH. A transition from orange to
green fluorescence for AO was observed upon treatment with OBT indicating a possible bicarbonate
ion transport leading to alkalization of lysosomes by OBT.

Even though apoptotic cell death constitutes the primary mode of cytotoxicity of OBT in
cancer cells, other cell death mechanisms such as autophagy, necrosis, necroptosis etc. have been
reported as possible causes of cancer cell elimination further corroborating existence of an alternative
mechanism of drug activity. There are several reports which suggest autophagy as possible effecter
of cell death [140,141]. Obatoclax can induce apoptosis in Beclin 1 dependent and independent
manner [142–145]. There is evidence that suggests autophagy and apoptosis work in tandem to
eliminate cancer cells [146]; however, there are contradictory reports that suggest obatoclax inhibits
autophagy by impairing lysosomal function to induce cytotoxic effects in cancer [147,148]. In a recent
study, Basit et al. reported necroptosis mediated cell death by induction of fusion of necrosome on
autophagosomal membrane on treatment with obatoclax [149]. Champa et al. observed necrotic cell
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death in highly resistant anaplastic thyroid cancer cells upon treatment with OBT. On treatment OBT
quickly localized in lysosomes and neutralized their pH. Interestingly, OBT activity was dependent
on its accumulation in lysosome rather than its interaction with Bcl2 family proteins. OBT has
demonstrated a potentiating effect on cancers in combination with other chemotherapeutics [150,151].
Li et al. reported a synergistic effect between OBT and cisplatin in non-small-cell lung cancer [152].
Resistance to therapy is a major concern in cancer treatment. OBT has shown great response in resistant
cancer cells and has overcome chemoresistance in different cancers [153,154].

OBT has shown significant anticancer activity in leukemia cells which rely on Bcl2 family proteins
for their survival. OBT has demonstrated specificity towards leukemia cancer stem cells [14]. Several
studies have identified OBT as potential chemotherapeutic agent to overcome glucocorticoid resistance
in leukemia [155,156]. Wei et al. revealed synergistic antileukemia activity of OBT with a histone
deacetylase inhibitor [146]. OBT’s promising preclinical efficacy has not translated in clinical trials.
Phase I studies of OBT in chronic lymphocytic leukemia (CLL) patients demonstrated significant
toxicities such as somnolence, ataxia, and confusion with limited efficacy [157].

It is indisputable that OBT is a BH3 inhibitor; however, there is ample evidence that suggest
an alternate mechanistic intervention for OBT’s anticancer activity. Furthermore, several studies
indicated neutralization or alkalization of lysosomes upon treatment with OBT as the leading event in
OBT induced cancer cell death suggesting ionophoretic activity of OBT playing a prominent role in
anticancer activity of the drug. Also, OBT’s specific activity towards CSCs and its ability to sensitize
resistant cancers indicates immense anticancer potential of OBT. It is imperative to understand various
molecular targets and pathways involved in OBT induced therapeutic effects. OBT can be a lucrative
therapeutic intervention for cancer sans its toxic side effects and perhaps a better understanding of its
activity will render it more clinical relevance.

4. Ionophores in Ongoing Clinical Trials for Cancer Treatment

There are a few animal studies demonstrating that NIG, at tolerated doses, in combination with
other compounds has antitumor effects [158]. However, at present there are no registered clinical trials
using NIG as anticancer agents www.clinicaltrials.gov.

There are a few clinical reports in the literature about the use of SAL that comes from pilot studies
involving a few patients (four metastatic breast cancer patients, a metastatic ovarian cancer patient,
and a patient with head and neck squamous cell carcinoma) [9,159]. At present there are no registered
clinical trials at www.clinicaltrials.gov.

OBT has been tested in multiple clinical trials as single agent as well as in combination with other
anticancer agents (Table 2). As single agent OBT was not associated with an objective response in
AML [160] or showed only a modest activity in heavily pretreated patients with advanced CLL [157],
classic Hodgkin lymphoma (cHL) [161] myelodysplastic syndromes [162]. OBT in combination with
carboplatin/etoposide failed to significantly improve objective response rate (ORR), progression-free
survival (PFS) or overall survival (OS) in first-line treatment of extensive-stage small cell lung cancer
(ES-SCLC) [163]. Similarly, when added to topotecan did not exceed the historic response rate seen with
topotecan alone in patients with relapsed SCLC following the first-line platinum-based therapy [164].

www.clinicaltrials.gov
www.clinicaltrials.gov
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Table 2. Registered clinical trials (www.clinicaltrials.gov) and published results.

Ionophore Condition Other Drugs Phase Clinical
Trial

Published
Results

Salinomycin -

Nigericin -

Obatoclax

AML - NCT00684918 [160]

Chronic Lymphocytic Leukemia - I/II NCT00600964 [157]

Extensive-stage Small-Cell Lung Cancer Carboplatin/etoposide I/II NCT00682981 [163]

Lymphoma, Follicular Rituximab NCT00427856 -

Non-Hodgkin Lymphoma
Recurrent Adult Diffuse Large Cell Lymphoma

Recurrent Grade 1 Follicular Lymphoma
(and 5 more . . . )

Bortezomib NCT00538187 -

B-cell Chronic Lymphocytic
Leukemia
Leukemia

Prolymphocytic Leukemia
(and 5 more . . . )

Fludarabine rituximab NCT00612612 -

Leukemia
Systemic Mastocytosis NCT00918931 -

Mantle-Cell Lymphoma Bortezomib NCT00407303 -

Hodgkin’s Lymphoma NCT00359892 [161]

Extensive-stage Small-Cell Lung Cancer Carboplatine and Etoposide NCT01563601 -

Lung Cancer Docetaxel NCT00405951 -

Myelodysplastic Syndromes NCT00413114 [162]

Acute Leukemias of Ambiguous Lineage
Acute Undifferentiated Leukemia

Angioimmunoblastic T-cell Lymphoma
(and 26 more . . . )

Dexrazoxane hydrochloride
Doxorubicin hydrochloride

(and 3 more . . . )
NCT00933985 [165]

Refractory Multiple Myeloma
Stage I Multiple Myeloma
Stage II Multiple Myeloma
Stage III Multiple Myeloma

Bortezomib NCT00719901 -

Recurrent Small-Cell Lung Cancer
Unspecified Adult Solid Tumor Topotecan hydrochloride NCT00521144 [164]

Extranodal Marginal Zone B-cell Lymphoma of
Mucosa-associated Lymphoid Tissue

Nodal Marginal Zone B-cell Lymphoma
Recurrent Grade 1 Follicular Lymphoma

(and 4 more . . . )

Bendamustine hydrochloride NCT01238146 -

Myelofibrosis NCT00360035 -

Hematological Malignancies NCT00438178 -

Leukemia (samples) NCT01150656 -

Metastatic Melanoma Temozolomide I/II NCT00724841 -

There are several factors that may limit the clinical translation of ionophores as anticancer agent
especially as single agents. On one hand, the pharmaceutical industry may be more interested in
pursuing patentable drugs. However, toxicity may be the main concern. For instance, SAL is very
toxic to other normal cells at concentrations effective against cancer stem-like cells [166] and therefore
it is unlikely that this drug will be useful as single agent [167]. The ability of NIG to induce apoptosis
or necrosis by increase K+ efflux occurs only at relatively high concentration (2.5–7.5 µM) [6] that may
be not tolerated in vivo. However, as previously discussed, other biological effects at tolerated doses
may be exploited for combination therapy in clinical trials.

5. Conclusions

The disruption of ion homeostasis important for proliferation and survival of cancer constitutes
a potential target for chemotherapy. The ionophores SAL, NIG and OBT have shown important
anticancer activities in in vitro and in vivo preclinical models of cancer as single agents as well as in

www.clinicaltrials.gov
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combination with other anticancer drugs. More important, they also showed anticancer activity against
putative cancer stem-like cells. The underlying reason some ionophores work against cancer stem cells
and other ionophores do not is poorly understood but it is possible that other ionophore-independent
activity target key processes associated with stemness, for instance, (i) SAL induces ER Ca2+ depletion
up-regulating C/EBP homologous protein (CHOP), which inhibits Wnt signaling by down-regulating
β-catenin [168]. SAL also inhibits K-ras [169], Notch [82] and Hedgehog signaling [170], (ii) NIG is
also a potent modulator of the Wnt signaling pathway [6] and (iii) OBT targets cancer stem cells via
disruption of BCL-2-dependent oxidative phosphorylation [14].

Except for OBT, these ionophores have not been translated into clinical trials. At present,
the results of clinical trials with OBT as single agent or in combination with other anticancer drugs did
not show a significant benefit. It is possible that the high toxicity of ionophores towards non-cancer
cells may be limiting their clinical use. The selectivity towards non-cancer cells can be investigated
by using non-cancer cell lines from the same organ. For instance, the Beas-2B cell line consists of
epithelial cells that were isolated from normal human bronchial epithelium obtained from autopsy of
non-cancerous individuals and is sometimes used to compare to lung cancer cells [171]. To overcome
this limitation, future development in targeted drug delivery may help to improve the ability of
these promising compounds. The use of different types SAL loaded nanoparticles alone or in
combination with other drugs showed improved efficacy compared to SAL alone in a variety of
cancer cell types (Table 3). Alternatively, SAL, NIG and OBT may serve as lead compounds to
develop derivatives more selective towards non-cancer cells. In this context, several derivatives of
OBT [172,173] and SAL [120,121,174–179] have shown anticancer effects. For instance, derivatives
with chemical modification of the allylic C20 hydroxyl of SAL, located at the C-ring, enhanced the
activity over 5-fold against breast cancer cells compared to the native structure [121]. Derivatives
of OBT were also found to be more potent against PLC5 hepatocellular carcinoma cells than the
original compound [173]. At present the biological effects and selectivity, in particular the ability to
deplete chemoresistant cells such as cancer stem-like cells need to be further investigated in more
advanced preclinical (animal) models. In summary, targeted delivery and development of more potent
and selective synthetic derivatives of concerned ionophores can facilitate the translation into clinical
applications for cancer treatment.

Table 3. Delivery of Salinomycin using nanoparticles.

Nanoparticle Cancer Type Efficacy Reference

SS lipid-polymer hybrid
nanoparticles Lung ↑ [180]

CESP * Osteosarcoma ↑ [181]

CD133-SAL-NP CD133+ ovarian cancer stem cells and nude
mice bearing ovarian cancer xenografts ↑ [182]

Poly (lactic-co-glycolic
acid) (PLGA)
nanoparticles

Pancreatic cancer

Blocked tumor
growth by 52%

compared to the
control.

[183]

rGO-Ag Human ovarian cancer stem cells ↑ [184]

EGFR-SNPs Osteosarcoma and cancer stem cells ↑ [185]

CD20-SA-NPs Human CD20+ melanoma stem cells ↑ [186]

Salinomycin-NPs +
gefitinib-NPs Lung cancer and lung cancer stem cells ↑ [187]

Sali-NP-HER2 HER2-positive breast cancer stem cells and
cancer cells ↑ [188]
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Table 3. Cont.

Nanoparticle Cancer Type Efficacy Reference

Salinomycin-NPs +
docetaxel-NPs Gastric cancer cells and cancer stem cells ↑ [189]

SDLN Liver cancer cells and cancer stem cells ↑ [190]

iTEP-Sali-ABA NP +
iTEP NP-delivered

paclitaxel
Metastases of 4T1 orthotopic breast tumors ↑ [191]

Salinomycin-NPs +
Paclitaxell-NPs Breast cancer stem cells and cancer cells ↑ [192]

P80-SAL-PLGA Glioblastoma ↑ [193]

CESN Hepatocellular carcinoma ↑ [115]

Ap-SAL-NP Osteosarcoma cancer stem cells ↑ [118]

* CESP = salinomycin-entrapped lipid-polymer nanoparticles labeled with CD133 and EGFR aptamers;
CD133-SAL-NP = salinomycin-loaded poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles conjugated
with CD133 antibodies; rGO-Ag = reduced graphene oxide-silver nanoparticle nanocomposites; EGFR-SNPs = EGFR
aptamer-conjugated salinomycin-loaded polymer-lipid hybrid nanoparticles; CD20-SA-NPs = salinomycin-loaded
lipid-polymer nanoparticles with anti-CD20 aptamer; Sali-NP-HER2 = salinomycin-loaded polymer-lipid
hybrid anti-HER2 nanoparticles; SDLN = salinomycin and doxorubicin nanoliposomes; iTEP-Sali-ABA NP =
immune-tolerant, elastin-like polypeptide (iTEP)-based nanoparticle; P80-SAL-PLGA = Salinomycin-encapsulated
polysorbate 80-coated poly(lactic-co-glycolic acid) nanoparticles; CESN = salinomycin-loaded poly(lactic-co-glycolic
acid) nanoparticles conjugated with both CD133 aptamers A15 and EGFR aptamers CL4; Ap-SAL-NP
= salinomycin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles (SAL-NP) conjugated with
CD133 aptamers.
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