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Allocentric (landmark-centered) and egocentric (eye-centered) visual codes are fundamental for spatial cognition, navigation, and
goal-directed movement. Neuroimaging and neurophysiology suggest these codes are initially segregated, but then reintegrated
in frontal cortex for movement control. We created and validated a theoretical framework for this process using physiologically
constrained inputs and outputs. To implement a general framework, we integrated a convolutional neural network (CNN) of the
visual system with a multilayer perceptron (MLP) model of the sensorimotor transformation. The network was trained on a task
where a landmark shifted relative to the saccade target. These visual parameters were input to the CNN, the CNN output and
initial gaze position to the MLP, and a decoder transformed MLP output into saccade vectors. Decoded saccade output replicated
idealized training sets with various allocentric weightings and actual monkey data where the landmark shift had a partial influence
(R2 = 0.8). Furthermore, MLP output units accurately simulated prefrontal response field shifts recorded from monkeys during the
same paradigm. In summary, our model replicated both the general properties of the visuomotor transformations for gaze and
specific experimental results obtained during allocentric–egocentric integration, suggesting it can provide a general framework for
understanding these and other complex visuomotor behaviors.
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Introduction
The visual system has 2 ways to code object location:
relative to oneself (egocentric; Andersen and Buneo 2002;
Crawford et al. 2011) or relative to surrounding objects
(allocentric; Schenk 2006; Ball et al. 2009; Chen et al.
2011). This distinction has proven to be fundamental
in accounts of the role of the hippocampus in spatial
memory (Mishkin and Ungerleider 1982; Rolls 2020;
Danjo 2020) and in 2-stream theories of vision (Schenk
2006; Thaler and Goodale 2011). This is also true for
goal-directed movements. When egocentric and allo-
centric locations conflict, participants can be explicitly
instructed to use one or the other cue, but normally
(when stable) 2 sources of information are integrated
to minimize internal noise and thus reduce end-point
variability in the behavior (Byrne and Crawford 2010;
Chen et al. 2011; Li et al. 2017). Numerous behavioral
studies have suggested that this involves a process
similar to Bayesian integration (Neggers et al. 2005; Byrne
and Crawford 2010; Fiehler et al. 2014; Klinghammer
et al. 2015, 2017; Li et al. 2017). However, the intrinsic
mechanisms for representing and integrating these
codes remain a puzzle.

Cue-conflict behavioral studies combined with theo-
retical modeling were used first to investigate the com-
putational rules for allocentric and egocentric integra-
tion for reach control (Byrne and Crawford 2010; Fiehler
et al. 2014; Klinghammer et al. 2015, 2017). For example,
when a landmark was shifted relative to the remembered
location of a reach target, reach end-points shift partially
in the same direction, consistent with Bayesian integra-
tion and the outputs of a maximum likelihood estimator
(Byrne and Crawford 2010). The amount of the shift was
also affected by the number of relevant objects in the
scene as well as scene consistency (Klinghammer et al.
2015, 2017). Neuropsychology results imply that egocen-
tric and allocentric visual representations are segregated
in the dorsal and ventral streams of vision respectively
(Schenk 2006; Thaler and Goodale 2011), suggesting a
need to reintegrate this information at some point in
the brain. Subsequent neuroimaging studies confirmed
such segregation (Chen et al. 2014) and suggested that
the recombination occurs in parietofrontal cortex (Chen
et al. 2018), but neuroimaging data are too coarse-grained
to identify specific computational mechanisms at the
cell/circuit level.
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These observations have also been extended to the
monkey gaze control system. As in reaching, when mon-
keys were trained to saccade to remembered targets in
the presence of a landmark shift, their gaze endpoints
shifted partially in the same direction, again implying
weighted integration between egocentric and allocentric
inputs (Li et al. 2017). Landmark influence was larger
when it was closer to initial gaze fixation and when
it was shifted away from the target. The development
of this animal model then allowed for neural record-
ings associated with allocentric–egocentric integration
for goal-directed movements. In particular, Bharmauria
et al. (2020, 2021) recorded from the frontal eye fields
(FEF) and supplementary eye fields (SEF) while rhesus
monkeys performed the cue-conflict gaze task described
above. When the landmark shifted, its influence was
first observed multiplexed in FEF/SEF delay responses,
and then fully integrated in the gaze motor response
(Bharmauria et al. 2020, 2021).

In summary, it appears that egocentric and allocentric
codes are at least partially segregated within the visual
system, but then reintegrated for action in parietofrontal
cortex. However, the early cellular/network mechanisms
for these processes remain unknown. One reason for this
knowledge gap is the lack of a theoretical framework to
guide physiological studies in this area. Specifically, there
is a lack of models that integrate both the complexity of
the visual system and the sensorimotor system in gen-
eral, and allocentric–egocentric integration in particular.

One approach to building such a theoretical frame-
work is to deploy and analyze artificial neural networks
(ANNs). But here again, there is a knowledge gap because
this phenomenon requires the integration of multiple
features into the final motor output. Many ANN models
have attempted to represent feature interactions in the
visual system, but do not consider sensorimotor trans-
formations (e.g. Geirhos et al. 2017; Rajalingham et al.
2018; Schrimpf et al. 2018; Kar et al. 2019). Other trainable
ANN models have been used to simulate visuomotor
transformations by constraining their inputs and outputs
to resemble the known physiology of the system (Zipser
and Andersen 1988; Smith and Crawford 2005; Blohm
et al. 2009), but these models treated the visual world as a
single “dot.” What is needed is a more general model with
the capacity to represent both multiple object features
and implement the sensorimotor transformation.

The purpose of this research was to develop a network
model that can (i) integrate visual features and targets
in order to aim gaze, and (ii) to train the model and
evaluate the output of this model against existing data
obtained from an allocentric–egocentric integration task.
We modeled gaze saccade because of their simplicity and
the availability of relevant data for training and test our
model (Bharmauria et al. 2020). We used a convolutional
neural network (CNN) to represent the visual system
(as a model of the ventral visual pathway), connected
in series with a multilayer perceptron (MLP) network
to represent the visuomotor transformation. Following

the precedent of previous sensorimotor models (Smith
and Crawford 2005; Blohm et al. 2009), we constrained
the inputs and outputs to resemble known physiology,
using fully analytic solutions (Hadji and Wildes 1990).
Specifically, input layers were based on known properties
of the sensory cortex (Hubel and Wiesel 1968; Carandini
et al. 2005; Carandini 2006; Wang et al. 2007) and outputs
based on the motor response field properties of the FEF
(Knight and Fuchs 2007; Knight 2012; Sajad et al. 2015;
Caruso et al. 2018). For the latter, a pretrained decoder
was added to the end of the MLP to transform the motor
population codes into 2D saccades. We then used final
gaze displacement to train network output. For this, we
used both synthetic datasets and actual (behavioral) data
obtained from the cue-conflict task described above (Li
et al. 2017; Bharmauria et al. 2020, 2021). Finally, we
compared the network properties and outputs with the
reported behavioral and neural observations relevant to
allocentric–egocentric combination (Li et al. 2017; Bhar-
mauria et al. 2020, 2021).

Our results suggest that this network captures the
known behavioral and neural properties of the visuo-
motor system in the specific tasks tested, and thus the
trained MLP transformation provides a promising frame-
work for understanding and predicting unknown proper-
ties in the visuomotor system. Furthermore, this model
has potential for generalization and application for a
much wider range of scenarios involving the integration
of visual features for complex visuomotor tasks.

Method
To create our model, 4 main challenges were addressed.
First, training an ANN with images requires large
datasets (Goodfellow et al. 2016), which is infeasible to
create considering the complexity of the experiments
employed in this field. Second, to yield results that are
physiologically relevant, it is essential to incorporate
the known physiology into the ANN. This is particularly
challenging to solve for the current question because it
requires modeling both the early visual system and the
visuomotor transformation for goal-directed saccades,
a task that (to our knowledge) has not been attempted
before. Third, it is desirable for the internal operations of
the model to be interpretable, which is a lack in typical
learned ANNs. Finally, it was necessary to train and
validate our model against real data. To do this, we used
a recent experiment in our lab to train our network (Li
et al. 2017; Bharmauria et al. 2020, 2021). Therefore, in the
following, we first explain the task on which we based
our simulation. Then, we explain the model in a more
general format. Finally, we explain the extracted data we
used for our simulations and the model parameters.

Task
The details of our model were motivated based on the
insights from recent experiments in the macaque gaze
system (Li et al. 2017; Bharmauria et al. 2020, 2021).
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Fig. 1. Experimental conditions. A) After initial fixation on a red dot, an image consisting of allocentric cues (2-crossing lines) and visual target (white
dot) appears on the screen along with the fixation dot. We consider this image an encoding image. Monkeys have a limited time to memorize the
position of the target from this image. After a random delay during which the encoding image is absent, the decoding image consisting of only visual
landmarks and fixation dot appears. Based on the experiment protocol, the landmark location can be the same as the encoding image (no-shift
condition) or can be different from the encoding image (shift condition). The task for the monkey is to perform a saccade toward the missing target
location when the fixation signal (red dot) disappears. B) Landmark location (black crosses) was randomly selected from 4 possible positions, 11◦ from
the target (open circle). Landmark shift was randomly selected from 8 possible shifts (blue crosses) evenly distributed on a circle 8◦ from the initial
landmark location. Initial gaze location was jittered within a 7–12◦ window. Red circle indicates an example gaze jitter of 10◦. Illustrated shift positions
are with respect to the landmark at their center; shifts for other depicted landmarks not shown for sake of simplicity of illustration.

Therefore, it is essential to first summarize the task
(Fig. 1A). Initially, a red dot appears on a screen and
monkeys are trained to fixate their gaze on the red dot.
After the fixation, an image, which consists of allocentric
cues (two-crossing lines) and a visual target (white dot),
appears on the screen (encoding image), while the fixa-
tion point remains. Monkeys have 100 ms to memorize
the position of the target. After a delay, a mask appears
and after a further random delay period, a decoding
image appears. The decoding image consists of only the
landmark. Based on the experiment protocol, the land-
mark location can be the same as it was in the encoding
image (no-shift condition) or it can be different (shift con-
dition). The task for the monkey is to saccade toward the
missing target location when the fixation signal (red dot)
disappears. Monkeys were rewarded if their gaze landed
within 8◦–12◦ of the target. The landmark locations were
randomly selected from 4 possible locations distributed
on the edges of a square and 11◦ away from the target.
The shift direction was randomly selected amongst 8
uniformly distributed points on a circle 8◦ away from
the initial landmark location. In addition, the initial gaze
location (fixation) was jittered within a 7–12◦ window
(Fig. 1B). As noted in the introduction, the results showed
an influence of the landmark shift on gaze behavior as
well as on SEF/FEF motor neuron population code and
intrinsic coordinate frames.

Theoretical model
Model overview

Our theoretical model provides a framework to study
the combination of allocentric and egocentric informa-
tion for goal-directed reaching movements in the brain.

Toward this end, we combined 2 types of neural networks
(Goodfellow et al. 2016): a CNN and a MLP to simulate
different modules of this transformation in the cerebral
cortex. In this section, we provide an overview of the
proposed network and the input–output structure. Note
that since inputs and outputs of the model represent 2-
dimensional (2D) directions in eye-coordinates, we have
simplified the model by implementing it in 2D.

Our proposed network comprises 4 main stages
(Fig. 2A): inputs, a CNN, a multilayer perceptron, and
output. The inputs to the network provide necessary
information for the combination of allocentric and
egocentric information. We feed the network with images
that consist of visual targets and surrounding landmark
cues, based on recent studies in the macaque, as
described in the previous subsection, to provide allocen-
tric information. These images are generated in spatial
coordinates and transformed into eye-coordinates to
mimic retinal projections (e.g. Klier and Crawford 1998;
Klier et al. 2001). Since we did not require this model to
perform 3D transformations, the only extraretinal signal
that we provided was a 2D gaze signal. The second stage
of our network is a CNN (Fig. 2B), which was deployed
to create abstract representations of input images. The
challenge here was to design the CNN as a physiologically
plausible model of the early visual cortex (Hubel and
Wiesel 1968; Carandini et al. 2005; Carandini 2006). In
the third stage, we used an MLP (Fig. 2C) to perform the
required sensorimotor transformations. The fourth stage,
the output, provides the decoded saccade vectors (e.g.
displacement of the eye, coded as final gaze position in
eye-coordinates) from motor populations. Details of the
implementation of these 4 network stages (in the format
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of input—output and hidden units: CNN and MLP) are
provided in subsequent sections.

Model input–output signals

The network required 2 types of input signals: (i) reti-
nal images (i.e. projection of the input images on the
retina determined by subtracting the initial gaze loca-
tions from the images) specifying allocentric landmarks
and the visual target position (which provides allocentric
information); (ii) extra-retinal signals (which provide ego-
centric information), which in real-world conditions are
required for accurate coordinate transformations (Craw-
ford et al. 2011) and calculation of motor error (ME).
The output is the signal that drives the effector (e.g.
the eye in this case) from its current position to the
target position (ME coded in a population format). Here,
we modeled/simulated a simplified 2D representation of
the retina and gaze to focus on the issue of allocentric–
egocentric integration.

Visual inputs

The first component of the input for the network is
the simulated retinal image i.e. projection of the input
images on the retina determined by subtracting the
initial gaze locations from the images). This component
simulates a projection of the world containing both
the movement target and additional landmarks on
the retina. These inputs corresponded to the encoding
and decoding images of the task defined in Section
Task. Since we are interested in investigating the
spatial component of the allocentric and egocentric
combination, and save modeling of temporal aspects for
future work, we process the 2 images separately as input
to our network, each image having dimensions WxH,
with the W and H width and height, respectively.

To simulate these inputs, we generated 2 sets of
images: encoding and decoding. Each image, with the
size of 200 × 200 pixels, contains two-crossing lines
(a horizontal line and a vertical line, each of width 1
pixel and length extending across the entire image) as
well as a 6 × 6 pixel square representing the visual
target. The image intensity values for the target and
lines were set to 1 and the rest of the images were set
to 0. Based on the experiment protocol, there were 2
conditions for decoding images: The landmark appeared
in the same location as the encoding image; or the
landmark appeared in a shifted location compared with
the encoding image. The specific values for the landmark
and target positions for both encoding and decoding
images were extracted from the actual experiment’s
protocol (for further details refer to Bharmauria et al.
2020). Retinal images were calculated based on the
spatial configurations of the stimuli relative to initial eye
(gaze) positions. To perform this calculation, we deployed
a simplified 2D equation (torsional factor is ignored for
now) and calculated the retinal image by subtracting the
eye position from the actual images. These retinal image

values were then used as inputs the first layer of our
convolutional network, described below.

Eye position signal

As mentioned above, extra-retinal signals are essential
for performing the required reference frame transfor-
mations for various sensorimotor behaviors (Soechting
and Flanders 1992; Andersen and Buneo 2002; Crawford
et al. 2011). Although this transformation was not a focus
here, we included a minimal extraretinal input (initial
2D gaze position) so that the model has the potential to
generalize to other situations. We used the angle vector
representation, (rx, ry), which is a 2D vector with compo-
nents scales as the angle of rotations (Blohm et al. 2009).
To encode the angular value along each axis, we used
a coding mechanism analogous to activities reported in
the somatosensory cortex for coding eye position (Wang
et al. 2007): (i) neurons have Gaussian receptive fields
with the peak indicating the preferred gaze direction;
(ii) the preferred direction of neurons does not form a
topographic map; and (iii) a neuron’s activity at the peak
of the receptive field is monotonically increasing as the
saccade amplitude grows. Similarly, we used Gaussian
receptive fields randomly distributed around the orbit
and gain modulated by the saccade amplitude to code
the eye position in our network. This coding mechanism
is formulated as:

ai = bi + αi ∗ ri, (1)

where ai, bi, αi, and ri represent the ith unit’s activation,
baseline activity, rate of the activity increase, and angular
direction, respectively. Baseline activity and the rate of
growth in activity are randomly picked from (0, maxbi/αi

).
Noise is added to eye-position signal using Poisson dis-
tribution. A similar mechanism is used for coding hand
or head position (King et al. 1981; Fukushima et al. 1990;
Xing and Andersen 2000). Therefore, our model can be
extended to include additional extra-retinal signals, if
needed.

Motor output signal

The goal of the network is to generate movements toward
a visual target. Previous work (Bruce and Goldberg,
1985; Sommer and Wurtz 2006; Sajad et al. 2015, 2016)
showed that the motor neurons in FEF represent an open-
end receptive field: The neural activity increases with
increasing saccade amplitude. In contrast, theoretical
studies suggested that cosine tuning is optimal for motor
control in 3D (Kalaska et al. 1997; Kakei et al. 2001, 2003;
Scott 2001). To reconcile the results of these studies
with our data, we represented the response fields of our
output layer as the first quarter (0–90◦) of a cosine curve,
according to:

ai = a0 + a1 × cos (θi) , (2)

where a0 = 0.5 is the baseline activity, a1 = 0.5∗‖−→M‖
Mmax

is the

scaling factor, angle θi =
(−→

M ·−→
PDi

‖−→M‖

)
is the direction of the
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Fig. 2. Proposed model. A) Overall network architecture. Our network consists of 4 main components. (i) Input signals: Retinal images that contain
visual targets and allocentric landmarks (an example of retinal input: We simplified the retina into a 2D plane; therefore, presented images are scaled
version of the presented images to the CNN (screen resolution was 1,024∗768 and the screen was positioned 810-mm away from monkeys), which is
shifted in the opposite direction of the gaze direction), and extra-retinal signals, i.e. eye position. We used 2D eye position for our simulations, (ii) a
CNN to create an abstract representation of the retinal images, (iii) a MLP to implement the required sensorimotor transformations, and (iv) output
signal: A decoder to transform the population code of the required movements (eye displacement) into a saccade vector. B) CNN network architecture
and repeated filter mechanism. Layer 1 extracts local spatial features. C–R–N–P represents convolution, rectification, normalization, and spatial
pooling. In addition, V and H represent vertical and horizontal filtered results, respectively. A network with only 2 layers and 2 sets of filters is depicted
for illustrative purposes; 4 filters are used in actual implementation, i.e. adding 2 more orientations along the diagonals. Each feature map at layer 2 is
treated as a new separate signal and is fed to the feature pooling layer. Symbol strings (e.g. VV, VH, etc.) indicate repeated filtering. The feature pooling
layer consists of 2 fully connected layers: The first layer with a sigmoid transfer function and the second layer with a linear transfer function. The
feature pooling layer combines the feature map from the final filtering layer to create an abstract representation of the required features. C) MLP
network architecture. Our MLP network is a fully connected feed-forward neural network with 4 layers. The first layer is the input layer comprised of
the extracted features from the images as well as extra-retinal signals. The second layer is comprised of our hidden units with sigmoid transfer
functions. The third layer is the population code of the required motor movement for reaching toward the visual target. Finally, we added a read-out
layer with fixed connection weights to decode the population code into 2D reach movements in Euclidean space.

movement, Mmax is the maximum amplitude of the move-
ment,

−→
M is the required movement, and

−→
PDi is the pre-

ferred movement direction of the unit. We used 250 units
to represent motor neurons. The maximum movement
range is 150 cm. Notably, in the actual data the influence
of the landmark shift was fully integrated into the FEF
motor output signal, which coded a landmark-shifted
gaze position in eye-centered coordinates (Bharmauria
et al. 2020).

We also included an extra layer (i.e. linear decoder) to
our network, called read-out, with 2 units: One coded the
horizontal component of the movement, the other coded
the vertical component. It has been shown that a linear

decoding is suited specifically for arrays of neurons with
tuning curves that resemble cosine functions (Salinas
and Abbott 1994). Therefore, we determined the required
weights between the population code and read-out layer
by an optimal linear estimator (OLE; Salinas and Abbott
1994),

wij =
∑

n
Q−1

in · Cnj, (3)

where wij is the weight between unit i at population
code to unit j at the read-out layer. Since we used a
2D representation, j is equal to 2 and consequently M1

represents the horizontal value of movement and M2

represents the vertical value of movement. In addition,
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Qin, the correlation between firing rates of neuron i and
n, and Cnj, the center of the mass for the tuning curve
function for the neuron n, are calculated as

Qi = σ 2
n δin +

∫
d
−→
M · ai

(−→
M

)
· an

(−→
M

)
, (4)

and

Cnj =
∫

dMj · Mj · an
(
Mj

)
, (5)

where σ 2
n is expected neural noise. For detailed discus-

sion and calculations, see Salinas and Abbott (1994) and
Blohm et al. (2009). These weights are fixed in the net-
work and are not changed during training. Using this
strategy, we enforced a more physiologically feasible pop-
ulation code for our network, which enabled us to have
an unambiguous interpretation of single-unit activity. In
addition, using a read-out layer enabled us to have a
more stable fitting procedure for training our network.
More specifically, if we remove the read-out layer, we
need to train the network to predict the motor population
codes. The units in this layer ranged between 4 and 250.
In this scenario, we needed to define a loss function that
matches a vector to our desired population code. This
task can become challenging based on the properties of
the training data such as imbalances between different
classes. To avoid dealing with such challenges, instead,
we designed a fixed decoder to transform the motor
population codes into the performed movement vector
(in 2 dimensions). Using this method, we were able to
use the least square loss function to train our network.
Previous studies deployed a similar strategy (e.g. Smith
and Crawford 2005; Blohm et al. 2009; Keith et al. 2010). It
is noteworthy to mention that even though we simulated
gaze behavior, our model is capable to be used for differ-
ent body effectors (e.g. hand reaching as done in Blohm
et al. 2009).

Hidden units

We used 2 types of networks as our hidden units. The
logic is to provide a similar paradigm as the brain, with
one (CNN) representing the early visual areas detect-
ing the relevant visual features and the other (MLP)
representing the higher cortical layers performing the
required computations (here sensorimotor transforma-
tions) for planning the appropriate action. The param-
eters of our CNN were predetermined based on ana-
lytic and physiological considerations, except the feature
pooling layer, which was learned. The parameters of
the MLP were determined based on the training using
different datasets.

Convolutional neural network

In recent years, CNNs have shown promising perfor-
mance for a wide variety of computer vision tasks such
as image classification (for a review see, e.g. Liu et al.
2020). Some studies took a step further and showed

that the learned filters in convolutional networks repli-
cate neurons’ behavior at the early visual cortex (e.g.
Kriegeskorte 2015). In general, a convolutional network
is comprised of several main components: convolution,
rectification, normalization, and pooling layers, which
typically are repeated over several layers. The first chal-
lenge in designing a CNN is to set the required com-
ponents and their associated parameters properly. Here,
we briefly explain the rationale behind choosing our
network components and parameters based on recent
physiological findings.

One of the main challenges in processing visual scenes
is extracting useful information from input images (e.g.
spatial and spatiotemporal patterns indicative of objects,
texture, and motion). Hierarchical representations pro-
vide a powerful tool to address this challenge by progres-
sively obtaining more abstract features at each succes-
sive layer. This incremental formation of more abstracted
features yields a powerful data representation. A similar
procedure is observed in the human brain. In the early
visual cortex, a cascade of simple and complex cells
is suggested to play a crucial role in extracting first-
order stimuli in visual scenes (e.g. local measures of
orientation; Hubel and Wiesel 1962; Heeger 1991).

In addition, a model with “filter-rectification-filter” has
been suggested to be responsible for extracting higher-
order patterns and creating a more global and abstract
data representation in biological systems, e.g. texture
(Baker and Mareschal 2001). Likewise, it has been shown
that a similar analogy of repeated filtering and rectifi-
cation can generate state-of-the-art results in computer
vision applications such as dynamic texture recognition
(Hadji and Wildes 1990). Here, we propose to use the
same approach: repeated filtering. Figure 2B provides an
overview of the convolutional network architecture. We
only show a limited number of layers for illustrative
purposes and only 2 filters in this figure. As mentioned
above, a cascade of simple and complex cells is observed
in the early visual cortex. Analogously, we employ a
series of convolution, rectification, normalization, and
pooling (C–R–N–P) processes to mimic the simple and
complex cells’ functionality. The output of these C–R–N–P
processes is then passed through the same procedures to
yield the repeated filtering approach. At the last layer, we
propose a cross-channel feature pooling process to create
the final abstract representation of the data.

Figure 3 illustrates the efficacy of the repeated filtering
approach. Figures represent the local energy in images at
each layer. The input is an image that contains a vertical
and a horizontal line crossing and a target represented
as a dot, analogous to the stimuli used in Bharmauria
et al. (2020). The goal is to capture the crossing point and
the target position. Here, we represent only 2 filter orien-
tations: horizontal (H) and vertical (V). Three properties
emerge after passing the image through the first layer fil-
ters: (i) the horizontal and the vertical line are separated,
(ii) a gap is present at the mid-point of the line because
of interference from the orthogonal lines in that vicinity,
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Fig. 3. An example of processed images in a sample network with 2 layers and 2 sets of filters. V and H represent vertical and horizontal, respectively.
Passing the input image through horizontal and vertical filters resulted in a separation of the horizontal and vertical lines. The target is present in
both filtered images but now with different properties: More vertically oriented after passing through the vertical filter and more horizontally oriented
after passing through the horizontal filter. Passing through the same filter twice (e.g. VV) resulted in almost full removal of the orthogonal line (e.g.
horizontal line in VV). However, the target is still present at all the filter images with different activation level. Finally, combining all the locally
extracted features by the trained feature pooling layer enabled us to detect the required features (crossing point and target position). Filter responses
are represented as image brightness, with greater brightness corresponding to larger response.

and (iii) the target appears in both filterings, because its
local shape drives both. Although the target is present
in both filterings, its properties are now different, e.g. the
target is mainly represented by vertical components after
passing through the vertical filter. In the second layer,
the distinction between the 2-crossing lines becomes
almost absolute. For instance, passing the input image
through 2 vertically oriented filters (i.e. VV) resulted in
the removal of the horizontal line. Also, the gap in the
line is lessened because the interfering horizontal was
suppressed from the previous layer of filtering. On the
other hand, despite its different activation levels, the
target is still present in all the filtered images. This result
property enabled us to create an abstract representation
of the target and landmark locations from input images
using a feature pooling layer. In particular, our feature
pooling layer detects common activated areas in all the
filtered images at the second layer. Using preliminary
experimentation, we found that 2 layers of repeated
filtering is sufficient 4 our models. However, as shown in
Fig. 3 (and explained theoretically elsewhere, Hadji and
Wildes 1990), the energy in the images decreases after
each layer of filtering and consequent processes, and
thereby has potential to provide an automatic criterion
for determining the appropriate number of layers. In the
next 4 sections, we detail the operation of each of the
convolutional, rectification, normalization, and pooling
layers.

Convolution

The convolutional layer is one of the essential compo-
nents of CNNs. Convolution is a linear, shift-invariant
operation that performs a local weighting combination
(filtering) across the input signals. The strength of such
a function is that it extracts different input signal
features based on the combined weights. Inspired by
neuronal receptive fields in the early visual cortex, a
set of oriented Gabor filters (Gabor 1946) is a popular

choice (Carandini et al. 2005; Carandini 2006), which we
symbolize as

C (x; θi, σ , γ , λ, ψ) = G (θi, σ , γ , λ, ψ) ∗ I(x), (6)

where I(x) is the input image parameterized by spatial
position, x, θi is the orientation of the Gabor filter G,
whereas σ , γ , λ, and ψ are variance, spatial aspect ratio,
wavelength of the sinusoidal component, and the phase
offset of the sinusoidal component of the Gabor filter,
respectively. We used both cosine and sine components
of the Gabor filter. In our study we only varied the ori-
entation; therefore, for simplicity of exposition, we only
explicitly notate θi for parametrizing the Gabor filter in
the following.

Rectification

The output of the convolution contains both positive
and negative values. Passing such positive and nega-
tive values through pooling can result in an attenuated
response. Since we have both cosine and sine compo-
nents of our Gabor filters, we deployed the energy model
proposed for early visual cortex complex cells (Heeger
1991; Carandini et al. 2005) according to

E (x; θi) =
√

(Ccos (x; θi))
2 + (Csin (x; θi))

2, (7)

where Ccosand Csin are the cosine and sine components of
the Gabor filtered images, respectively.

Normalization

We also included normalization with 2 goals in mind:
First, to remove the sensitivity to local brightness; sec-
ond, to prevent the rectification process from generat-
ing unbounded responses. As divisive normalization is
considered a canonical process across different cortical
areas (Carandini and Heeger 2012), we used a divisive
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form of normalization in our network according to

Ê (x; θi) = E (x; θi)∑n
j=1 E

(
x; θj

) , (8)

where j ranges across the n filter orientations.

Spatial pooling

Spatial pooling is added to the network to aggregate nor-
malized responses. This process provides a certain level
of shift-invariance by abstracting the exact location of
the responses in the pooling region. Similar mechanisms
are observed in cortical areas (Webb et al. 2011). In our
network, spatial pooling has been implemented using a
low pass filter (i.e. binomial) and down-sampling with
factor 2 at each layer according to

S (x; θi) = ↓τ

(
B × Ê (x; θi)

)
, (9)

where B is a binomial lowpass filter and ↓τ is spatial
down-sampling. This spatial pooling is done at the end
of each layer.

Feature pooling

Finally, after the second layer, we included a feature pool-
ing process. Our logic was that we created an abstrac-
tion for different features using repeated filtering (e.g.
different orientations). Using the feature pooling process,
we aim to create an abstraction for combined features
(i.e. line-intersections). Another motivation for including
feature pooling was to prevent the network from explod-
ing, as after each filtering, the number of features will
be doubled. We implemented the feature pooling process
using a weighted summation of all the feature maps to
yield

F(x) =
∑n

i=1
wi × S (x; θi) , (10)

where n represents the number of features (e.g. for a
network with 4 orientations in each layer and 2 layers
n will be 16). The weights wi are trained to detect the
intersection of the 2 lines and the target. To train the
weights, we created a dataset in which the inputs are the
images used to train the network and the outputs are the
images created by the multiplication and normalization
of the final features after the second convolution (e.g.
the third column in Fig. 3). Note that in our network,
this feature pooling is only employed at the end of the
second layer; however, for a network with more layers
this mechanism may be exploited at the end of each
layer (for further details see Hadji and Wildes 1990). We
complete processing at this layer by transforming the
representation of the images into a vector format by
sequentially concatenating the image rows (flattening).
This flattened feature is fed to our MLP alongside initial
gaze position data. Such flattening is typical when con-
volutional layer results are fed to fully connected layers
and does not impact the signal content, even as it makes
the format more amenable to fully connected processing.

Fully connected layers

We used a physiologically inspired fully connected feed-
forward MLP to implement the visuomotor transforma-
tions for reaching toward the visual target. Figure 2C
shows the schematic of the network architecture. The
input to the MLP is comprised of 2 main types: (i) output
of the CNN network that consists of extracted features
from the input images, which has been flattened to
facilitate further processing and (ii) extra-retinal signals,
which can consist of several different signals such as
eye position, head configuration, etc., but in the current
implementation is restricted to eye position. These 2
types simply are concatenated for subsequent process-
ing. The second layer is comprised of units that receive
inputs from all the previous layer’s units and their activ-
ity is calculated as:

ul
j = f

(∑
i
wl−1

ij × ul−1
i

)
, (11)

where, ul
j is the activity of unit j at the current layer l,

wl−1
ij are learned connection weights from the ith to thejth

unit, ul−1
i is the activity of unit i at the previous layer,

and f (x) is the unit’s transfer function. In the current
implementation, l = 2. Here, we considered the sigmoid
transfer function to mimic the nonlinear transfer func-
tion of real neurons (Naka and Rushton 1966) according
to

f (x) = 1
1 + e−x

, (12)

The units in the third layer provide the population cod-
ing of the reaching movement. As described in Section
Hidden units, these units are constrained to have cosine
tuning. To impose such tuning behavior, we constrained
the activity of the third layer’s units by fixing the con-
nection weights to the final read-out layer according to
equations (2)–(4). The final layer provides 2D effector dis-
placement read-out of the population coded Euclidean
distance. We first trained a separate feed-forward net-
work with one hidden layer to transform the population
codes into 2D read-outs. Then, we fixed the connection
weights between the third and final layer. Units of the
final layer are purely linear.

Network training and testing
To provide realistic simulations and compare our model
outputs with real data, we simulated the task employed
in several previous experimental publications (Li et al.
2017; Bharmauria et al. 2020, 2021). As explained in
Section Task, the task consists of 4 possible landmark
locations and 8 possible landmark shifts. We extracted
these landmark positions and their associated shifts as
well as the target locations from the dataset. These data
were used to create the encoding and decoding images.
In addition, in this experiment, 3D eye movements
(horizontal, vertical, and torsional components of
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orientation of the eye relative to space) were recorded
(Bharmauria et al. 2020, 2021). For our simulations, we
used the horizontal and vertical components to create
the 2D initial and final gaze locations. We normalized
final gazes by subtracting the mean gaze error calculated
during no-shift condition. This normalization was done
separately for each target location.

We made use of 2 types of datasets to train our net-
work. First, a dataset was generated based on the avail-
able behavioral data obtained from monkeys (Bharmau-
ria et al. 2020). We used ∼25,000 trials for each of 2
monkeys, and we trained the network separately for
each monkey. For each data point we had an encod-
ing image (200 × 200), a decoding image (200 × 200), 2D
initial eye position, and final gaze position to calculate
the displacement of the eye. As described in the task,
Section Task, an encoding image contains the initial
eye fixation, target, and landmarks. Based on the task
(Bharmauria et al. 2020), initial eye positions were dis-
tributed within 7◦–12◦ from the center of the screen,
whereas the target and landmark locations were deter-
mined based on the neuron’s response fields. Target
locations were distributed approximately within a rect-
angular range of 30–80◦ across both horizontal and ver-
tical dimension. Exact target locations were determined
based on the size and shape of a neuron’s response
field (i.e. 4 × 4 or 7 × 7 grid and 5–10◦ apart). Landmark
locations were selected from one of the oblique locations
11◦ apart from the target. The decoding images contained
the visual landmark: in the exact same location as the
encoding image or shifted 8◦ from the initial location.
The direction of the shift was randomly selected from
the 8 possible locations evenly distributed on a circle
(for a visualization, see Fig. 1).

To probe the network in more controlled, idealized
conditions, we also generated simulated datasets for the
combination of allocentric and egocentric information
with 80,000 data points. We considered 3 scenarios: no
allocentric (0% allocentric; final gaze location landed
on the target location), purely allocentric (100% allo-
centric; final gaze location landed on the shifted target
location), and a combination of allocentric and egocen-
tric (30% allocentric; final gaze location landed between
the target and shifted target location). Like the neu-
rophysiological data, for each simulated data point we
had an encoding image (200 × 200), a decoding image
(200 × 200), 2D initial eye position, and final gaze position
to calculate the displacement of the eye. For encod-
ing images, we generated target and landmark locations
randomly. These locations were uniformly distributed
between (−40,40) and (−50,50) for landmark and tar-
get, respectively. For decoding images, landmark shifts
were randomly chosen and varied in the range (−10,10).
Similarly, initial gaze positions were generated randomly
in the range (−10,10). All the values are generated in
screen coordinates with (0,0) being the center of the
screen.

We considered the mean square error (MSE) between
a monkey’s final gaze displacement and the network

output as the network loss for training,

L = minW

(∑
Tdata

(xe − xd)
2 + (

ye − yd
)2

)
, (13)

where W = {w1, . . . , wN} are the learned parameters,
Tdata is training data, (xe, ye) is network’s estimated gaze
location, and (xd, yd) is ground truth gaze location. The
numerical value for N is specified below for each layer.

The values for the predetermined parameters in the
first 2 layers of the CNN were as follows: We used 4
Gabor filters (7 × 7) with uniformly distributed orienta-
tions: θ ∈ {0◦

, 45
◦
, 90

◦
, 135

◦ }. All the other parameters
were the same for all the Gabor filters (i.e. σ = 1, λ = 0.5,
γ = 2, and ψ = 0). We used a down-sampling of factor 2
for our spatial pooling layers. We used a sigmoid transfer
function for the first layer of the feature pooling stage
in the CNN (and the 2 first fully connected layers in our
MLP). After the feature pooling, we flattened the images,
which resulted in a vector with 4,136 × 1 dimension. We
used 44 units to code initial gaze location and 100 units
for our hidden layer. For our motor population codes, we
varied the number of units from 4 to 250 and observed
the same results. Here, we provided the results with
250 units. Overall, the learned parameters were 16 for the
CNN and 13,391,200 for the MLP.

Training used the ADAM optimizer (Kingma and Ba
2015) with learning rate of 0.001 and batch size of 32.
We divided each dataset into 3 sub-datasets: The first 2
subsets with proportion of 90 and 5 were used for training
and cross-validation of the network. This separation was
done to prevent overfitting. The final 5% was used for
assessing the performance of the network against behav-
ioral data. We used R2 to quantify the explained variance
in the training dataset by our network and evaluate the
network performance. We stopped the training based on
2 criteria: (i) if the number of epochs reached 50, or (ii)
if the RMSE in the validation dataset stopped dropping
significantly (i.e. absolute changes in gradients < 0.001).
We provided our figures of our training in Supplementary
Fig. S1.

Hidden unit analysis
We deployed a similar analysis pipeline as Bharmauria
et al. (2020) to analyze the activity of the hidden units
in our network. This pipeline consists of 2 steps: (i) deter-
mining the coordinate frames that each unit uses to code
information. The pool of possible coordinate frames is
created either based on the canonical coordinates (e.g.
Target in eye, shifted target in eye, etc.) or based on
the intermediate coordinates (e.g. coordinates created by
connecting target to the shifted target). (ii) Selecting units
that are spatially relevant to the task. This selection is
performed by examining if each unit’s response field is
spatially tuned. In the following we elaborate on how we
performed each of these steps.

Fitting units’ response fields against spatial models

A key step in understanding how the brain implements
the required coordinate transformation is determining

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac026#supplementary-data
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Fig. 4. Spatial model fitting logic and procedure. A) Example of the task configuration: The box represents the real task under consideration, including
both encoding (landmark and target) as well decoding (shifted landmark) images. B) Spatial continua: We selected 3 reference points to create spatial
continua: Target, Gaze, and virtually shifted target locations. Using these 3 reference points we created 2 continua: Target-to-Gaze and
Target-to-Virtually shifted Target. We performed model fitting across both continua and selected the model with the lowest mean residuals as the best
model explaining intrinsic coordinate frames of the unit.

the intrinsic coordinate frame of individual neurons. To
be consistent with the published neural literature (Bhar-
mauria et al. 2020, 2021), we used the same analytic
method, i.e. fitting different spatial models to a neuron’s
response field (Keith et al. 2009). The spatial model that
yields the best fit (lowest residuals between the data
and model) is taken as representative of the intrinsic
coordinate frame of the neuron. Further description is
provided in the Supplementary Method section.

In our task, and based on the neurophysiological
findings, we considered 3 main reference points (Fig. 4A):
Target, final gaze, and shifted target locations. We
also considered 2 possible coordinate frames, space vs.
eye frames. To discriminate between these coordinate
frames, we fit each unit’s response field against different
spatial models (here 6: Target in eye (Te), Final gaze in
eye (fGe), Shifted target in eye (T′

e), Target in space (Ts),
Final gaze in space (FGs), and Shifted target in space (T′

s))
using a nonparametric fit with a Gaussian kernel:

Afit
(
xi; kw

) =
Σn

i 
=jAj × e
−

∣∣∣xi−xj

∣∣∣2/kw

Σn
i 
=je

−
∣∣∣xi−xj

∣∣∣2/kw
, (14)

where Afit represents the fit prediction for a neuron’s
activity, Ai represents recorded activity for neuron i, x
represents the position, and kw represents the Gaussian
kernel bandwidth.

To quantify the goodness of the fit, predictive error
sum of squares (PRESS; Keith et al. 2009) statistics were
calculated. To do so, we calculated the fit for each trial
based on the activity of the other trials. Then, we cal-
culated error between the fit activity and the measure
activity for each trial and calculated the mean squared
difference for a given spatial model and kernel band-
width. The model and kernel bandwidth that yielded the
lowest residual is considered as the best fit. This kernel

bandwidth is used for further analysis. Full details of
this method are available elsewhere (Keith et al. 2009).
Supplementary Fig. 3 provides further explanation of our
fitting method.

Intermediate spatial models

Our previous results (Sadeh et al. 2015; Sajad et al. 2015,
2016; Bharmauria et al. 2020) suggested that canonical
models (model’s that are merely based on different
effectors and experiment parameters, e.g. Target in
eye, shifted target in eye, etc.) are not always the best
candidate to describe the neural response field, but
instead intermediate models between canonical models
should be considered. In addition, based on our previous
observations (Bharmauria et al. 2020, 2021), we designed
our motor population layer to code information in eye-
coordinates. Consequently, in the following we only focus
on the spatial models in eye-coordinates and will not
use subscripting. Figure 4A shows a schematic of the
geometric relation of the components of an example
trial in the deployed task (explained in Section Task) and
Fig. 4B demonstrates the 2 relevant continua. Therefore,
we created 2 continua (Fig. 4B): Target-to-gaze (T–G), and
Target-to-virtually shifted target (T–T′). We considered
30 equally distributed steps for each continuum (with 10
steps between the main reference points and 10 steps
above each of the reference points). Furthermore, the
rightmost panel in Fig. 4B shows the residuals for the 10
steps between the target and gaze continuum. The model
that yields the lowest PRESS residual is selected as the
best model fit.

One of the main assumptions here is that the landed
gaze location will not be the same as the target location.
This difference between gaze location and target is
due to sensory, motor noises as well as the landmark
shift (an illustration of the noise is provided in result

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac026#supplementary-data
https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac026#supplementary-data
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Fig. 5. Comparison of 2-D Gaze end points generated by monkeys (red dots) versus model (blue dots) in the same task conditions. Data points are
grouped into 9 panels based on the direction of the landmark shift. The amount of the landmark shift is shown on top of each figure, e.g. where (0,0)
means no shift and (8,0) means an 8◦ horizontal shift to the right. Data were derived from many different target locations but here are normalized
relative to target location (0◦,0◦). For each panel, the left plot represents the data for monkey 1 and the right plot represents the data for monkey 2.
The large circles indicate the typical size (10◦) of the monkeys’ reward window (range 8–12◦). As illustrated, for both monkeys and our network, the
final gaze distribution was centered around target location (and mostly within the reward window) but shifted partially in the direction of the
landmark shift. In addition to the landmark influence, our data are affected by different sources of noise (e.g. sensory and motor noises).

Section Quantitative comparison between network
generated and behavioral gaze, Fig. 5). The T–G and T–T′

continua are selected to assess the intrinsic coordinate
frames of neurons considering these sources of noise.
The T–G continuum will provide the tool to evaluate the
transition between target coding to motor performance.
Particularly, as can be predicted, we observed that earlier
during the task (e.g. target presentation) neurons code
more target location and as the task progress (e.g.
performing the saccade) neurons code gaze location.
Similarly, the T–T′ continuum examines the effect of the
landmark shift.

Test for spatial tuning

The method of Section Intermediate spatial models can
be used only if a unit’s activity is spatially tuned, i.e.
selective for a particular set of target positions. Therefore,
we tested for spatial tuning of each unit’s activity and
excluded the spatially untuned units from our analysis.
To test for spatial tuning, we shuffled the average fir-
ing rate data over the position data obtained from the
best-fitting model. Then, we statistically compared the
mean PRESS residuals distribution of the 200 randomly
generated response fields with the mean PRESS residual
distribution of the best fit model. A neuron’s activity is
considered spatially tuned if the best fit PRESS residual
fell outside of the 95% confidence interval of the distri-
bution of the randomly shuffled mean PRESS.

Results
We designed and implemented an ANN and trained it on
actual and synthesized visual stimuli/gaze data to model
the neural integration of allocentric and egocentric cues.
In the following sections, we evaluate this network
in terms of both its behavioral (decoded gaze output)
performance (Section Behavioral analysis: gaze output
performance and allocentric influence) and the unit
and population properties of its MLP output layer
(Section Neural analysis: MLP output response fields and
reference frames).

Behavioral analysis: gaze output performance
and allocentric influence
Figure 5 shows the distributions of gaze end points for
both monkey data test sets (red dots) and the corre-
sponding decoded model outputs for the identical ini-
tial position and stimulus inputs (blue dots). Data are
normalized relative to target position but separated by
landmark shift direction. The large circles indicate the
typical reward window used during the monkey record-
ings (range 8–12◦; Bharmauria et al. 2020). This results in
2 important qualitative observations: Both gaze datasets
tend to cluster similarly around the targets (and mostly
within the reward window), but both tend to shift subtly
in the direction of the landmark shift. Overall, the actual
and stimulated data distributions overlap, i.e. they follow
the same general patterns.
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To formally evaluate our network output, we tested
it quantitatively against both actual gaze data (Fig. 5)
and neural data recorded in the same task. Specifically,
we addressed the following questions: First (Section
Quantitative comparison between network generated
and behavioral gaze), what proportion of the overall gaze
variance can be replicated by our network? To answer
this question, we evaluated overall network performance
by comparing gaze endpoints and errors in model output
to an equivalent monkey dataset with similar inputs, i.e.
initial gaze, target, and landmark positions (Bharmauria
et al. 2020). Second (Section Influence of allocentric
weighting and noise on overall gaze performance), how
is overall gaze performance influenced by allocentric–
egocentric weighting and noise in the training set? To
answer this, we compared network performance with
actual and simulated gaze datasets where we systemati-
cally manipulated allocentric influence and simulated
noise in the training set. Third (Section Systematic
influence of the landmark shift on simulated gaze
output), does our network learn and replicate the
observed allocentric–egocentric weighting? Here, we
isolated the specific influence of the landmark shift
relative to target position. We compared the allocentric–
egocentric weighting produced by the network to see if it
would replicate the weighting for different training sets
(including actual monkey behavioral data).

Quantitative comparison between network generated and
behavioral gaze

The goal of this test was to ascertain if the network
learned the relevant aspects of the task. To this aim we
evaluated if the network replicates the specific patterns
and distributions of gaze behavior observed in monkeys
on the same task. Here, we used the data of the 2 mon-
keys (Bharmauria et al. 2020) to train and evaluate net-
work performance. Note that for these tests we compared
monkey gaze data with gaze positions decoded from the
MLP output layer of our model under identical conditions
(initial gaze, target position, and landmark stimuli). We
tested the model on portions of data that were not used
during training or validation.

To evaluate how well our network learned the task,
we calculated the goodness of fit of the network output
to the actual gaze displacement data using R2, which
assesses the ability of our network to explain the data’s
variability (Fig. 6A–B and D–E). Broken down into horizon-
tal and vertical components, the model explained 80% of
the horizontal variance and 78% of the vertical variance
for the first animal and 79% of horizontal and 77% of the
vertical variance for the second animal. Overall, our net-
work explained 80% of the data’s end-point variability in
the first animal, and 75% in the second animal (Table 1,
rows 1–2). This is likely due (mostly) to their dependence
on target location, but possibly also due to other factors
that we will examine below.

In addition, we asked how similar the distribution of
the gaze error amplitudes is (calculated as the angular

distance between the end gaze point and target position)
in our network compared with the data. Figure 6C and F
illustrates the comparison of the error distribution for
our network (light colors) and the monkey behavior
(darker color). As can be seen, monkey data were very
noisy, but the majority of the errors fell below 8◦–12◦

of the visual target. In the behavioral task, monkeys
were rewarded if they performed a saccade within 8◦–
12◦ distance of the target (Bharmauria et al. 2020). This
reward window was selected to reassure that monkeys
were engaged with the task, but it is not a criterion for
data exclusion in our model. Qualitatively, the trained
network errors follow a similar distribution, except errors
dropped off less precipitously outside the monkey’s
reward window.

These results suggest that (i) our model explains the
majority of the observed gaze behavior variability and (ii)
that the network and monkey data showed similar distri-
butions of gaze error, with most gaze trials landing near
the target. Thus, most of the explained variability is likely
due to target influence, but it is possible that some of
the explained variability is due to the landmark shift (see
Section Systematic influence of the landmark shift on
simulated gaze output). But first, we will assess how
well the model performs on other training sets, and the
possible role of the noise in the unexplained variability
of these fits.

Influence of allocentric weighting and noise on overall gaze
performance

The purpose of this analysis was to evaluate how over-
all model performance (i.e. gaze accuracy, precision) is
influence by (i) allocentric weighting and (ii) noise in
the training set. For the first goal, we created 3 different
synthetic training sets, with different levels of allocen-
tric–egocentric weighting: 100%–0%, 0%–100%, and 30%–
70% (similar to that observed in experimental studies). In
other words, the final gaze positions were located on the
target, on the virtual shifted target, or 30% shifted toward
the virtual shifted target respectively, in the training set.
No noise was present in these datasets. Table 1 (rows 3–5)
summarize the network’s performance for these scenar-
ios, providing R2 values for ideal vs. actual performance
(Note that for this test, different datapoints were used
than those used in the training set). It is seen that all
3 task situations, the network is capable of predicting a
considerable amount of the data’s variability (>90%).

The performance of the model was better in these
idealized datasets compared with the performance of the
model trained on actual data. We hypothesized that this
was very likely because there was noise in the monkey
data unrelated to the task. To test this hypothesis, we
created a fourth synthetic training set: again 30%–70%
allocentric–egocentric, but with added noise (random
gaze variations introduced by adding Poisson noise as
well as Gaussian blur with 10

◦
standard deviation for

images) similar to that seen in the data. This manipula-
tion decreased the explained variability from 95% to 87%
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Fig. 6. Quantitative analysis of overall network performance B). A–B) Regression analysis of our network gaze endpoints and the monkey gaze end
points. Our network explained approximately 80% of the data’s variability for both horizontal and vertical directions. C) Distribution of gaze endpoint
errors observed from the monkey data (darker gray boxes) and from our network (lighter gray boxes). For both monkey data and our network, the
errors are mainly below 8–12◦. D–F) similar analysis as A–C) but for the second monkey. Note that the overlap between the 2 bar plot results in the
medium dark gray.

Table 1. Evaluation of our network performance under different scenarios and comparison to monkey data. The first 2 rows present
the result for actual data and the 4 final rows present the result for the simulated data with different allocentric–egocentric
combination and noise values.

Scenario Testing Training

Allocentric contribution Noise R2 MSE # Training points # Testing points

Monkey 1 NA 0.80 58.22 25,626 1,424
Monkey 2 NA 0.75 63.04 21,638 1,202
0% No noise 0.93 39.79 64,000 8,000
100% No noise 0.95 56.82 64,000 8,000
30% No noise 0.94 51.96 64,000 8,000
30% High∗ 0.87 115.19 64,000 8,000

We chose the noise to simulated the observed variability in the data: (random gaze variations introduced by adding Poisson noise as well as Gaussian blur with
10deg standard deviation for images)

(Table 1, row 6), supporting the notion that much of the
unexplained variance in our data-trained model was due
to input noise rather than some failure of the model to
simulate systematic behavior.

In summary, these initial tests suggest that the model
output generally simulated monkey gaze performance in
terms of end points and errors (Fig. 5) and that much of
the disagreement between them is likely due to noise that
cannot be trained into the network (Fig. 6). However, we
have not yet established the specific contribution of the
landmark shift to gaze errors.

Systematic influence of the landmark shift on simulated
gaze output

The purpose of this section is to evaluate the specific
influence of the landmark shift on allocentric–egocentric

weighting in our network output. The key feature of
allocentric–egocentric integration in human and mon-
key behavioral studies is that when these cues conflict,
humans and monkeys perform as if weighting between
them. The weighting of allocentric cues tested so far has
ranged from 30% to 50%, depending on the experimental
conditions (Neggers et al. 2005; Byrne and Crawford 2010;
Fiehler et al. 2014; Klinghammer et al. 2017; Li et al. 2017;
Lu and Fiehler 2020). This result presumably reflects
an optimization process, where usually egocentric and
allocentric cues would tend to agree with each other, but
with different levels of reliability and noise (Byrne et al.
2007; Körding et al. 2007; Byrne and Crawford 2010; Lew
and Vul 2015; Klinghammer et al. 2017; Aagten-Murphy
and Bays 2019). Here, we directly tested if our network
learned to perform such integration.
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To answer this question, we assessed whether the gaze
endpoints produced by our trained networks replicate
the influence of the landmark shift when actual mon-
key data are used in the training set. The influence of
the shift is quantified by the component of the gaze
endpoints (d) along the axis between the target (T) and
direction of the landmark shift (T′) (Bharmauria et al.
2020). As this parameter quantifies the contribution of
allocentric information in reaching, it is taken as the
allocentric weight (AW): AW = 0 means that no allocen-
tric information is used (i.e. the gaze endpoints were in
close vicinity of the memorized target), whereas AW = 1
means that gaze is completely influenced by allocentric
information (i.e. gaze endpoint shifted with the same
amplitude and direction as landmark shifts).

Figure 7A illustrates the relationship between AW and
task components. It is noteworthy that training the net-
work on the gaze behavior does not guarantee that the
network will replicate the observed AW distribution. This
is shown in different panels of Fig. 7A: In all 3 panels, the
returning value from loss function is the same (calcu-
lated as the difference between the network generated
gaze (light gray dot) and gaze from data (blue dot); how-
ever, the AW generated by the network is different in all
the examples. Thus, a network optimized to follow the
gaze behavior does not guarantee the replication of the
AW distribution.

To directly compare our network’s prediction with
monkey’s behavior, we trained the network on each
animal’s dataset and then compared AW of our network
and the model for both the training datasets (Fig. 7B
1–2) and the test dataset (Fig. 7B 3–4). We used both
training and test dataset to evaluate the training and
prediction capability of our network. Notably, in all cases
(both training sets and test sets) the gaze endpoints are
shifted toward the shifted landmark with average AW
ranging in [0.30–0.35] and [0.24–0.32] for the data and
network, respectively. To quantitatively examine if the
generated mean of the AWs is significantly different
from the data, we used Wilcoxon signed rank test to
compare the mean of the 2 distributions. Except for
training set for the first monkey (P = 4.3124e−16), we
found that the generated AW mean by our network is not
significantly different form the monkey data (monkey 1
test set: P = 0.096; monkey 2 training set: P = 0.341; and
monkey 2 test set: P = 0.0284). This result indicates that
our network learned the fundamental aspect of the task
(i.e. allocentric–egocentric combination).

To verify that these results are specific to the task-
related inputs, we repeated the same simulations but
removed the landmark shifts from the input (the
decoding images was set to zero). Although the goodness
of the fit for this modified network was 75% (very similar
to the full model), the averaged AW for both training and
test dataset were reduced to [0.10–0.11] and [0.04–0.14]
for models trained on data from animals 1 and 2, respec-
tively. These values were significantly different com-
pared with the monkey behavior (Fig. 6C; monkey 1 train-
ing set: P = 0; monkey 1 test set: P = 2.2475e−16; monkey

Fig. 7. Allocentric weight based on Monkey’s behavior. A) Comparison of
the network error vs. allocentric weights. In all panels the network error
(predicted gaze (gray dot)—monkey gaze (dark pink dot)) remains the
same; however, each configuration results in a different allocentric
weight. This shows that solely training the network on the final gaze
behavior does not guarantee the effect of allocentric information. B)
Comparison of allocentric weights from our network vs. monkey
behavior. As can be seen for both monkeys, the network replicates the
observed allocentric weight for the training data set (shows proper
training of our network) as well the test data set. C) Similar analysis as B
but without providing landmark shift for the network. Although both
networks (with and without landmark shift) yielded comparable errors,
as opposed to the full network, removing the landmark shift from the
network resulted in a poor replication of the allocentric weights for the
training and test datasets.

2 training set: P = 0; monkey 2 test set: P = 6.0696e−10).
In other words, the complete model with landmark-
shift inputs was required to replicate the monkey
behavior.

Finally, to show directly that our network can learn
arbitrary allocentric–egocentric weightings, we repeated
this analysis on our synthetic datasets with 0%, 100%,
30% allocentric weighting, with noise included to
resemble the actual data (see Section Influence of
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Fig. 8. Allocentric weight based on simulated datasets. A–C) Allocentric weights for different simulated datasets. A) No allocentric contribution: The
final gaze location landed on the remembered target location, B) full allocentric contribution: The final gaze location landed on the virtual target
location, C) partial allocentric contribution (30%): Final gaze location landed between the remembered target and virtual target location. The
percentage determines the amount of shift toward the virtual target. D–F) Our network’s replication of the final gaze locations for different simulated
datasets where the differences arise from different selected experiment parameters (i.e. allocentric weight and noise). In all scenarios, the network
was able to adapt the location of the final gaze location based on the desired allocentric contribution (0%, 100%, and 30%).

allocentric weighting and noise on overall gaze perfor-
mance). Figure 8 illustrates that our network learned
different integration of allocentric and egocentric infor-
mation dependent on the training dataset. For instance,
varying the contribution of allocentric information from
0% (Fig. 8A) to 100% (Fig. 8B) resulted in a shift of the
gaze endpoint distribution from being centered around
0 (Fig. 8D) to being centered ∼1 (Fig. 8E). Similarly, a
partial integration of allocentric–egocentric information
resulted in a partial shift of gaze endpoint distribution
(Fig. 8C vs. Fig. 8F). Based on these simulations, we
conclude that the model is able of achieving arbitrary
levels of allocentric–egocentric integration, depending
on the input.

Neural analysis: MLP output response fields and
reference frames
We aimed to produce a model that can be compared
directly with observed neurophysiological data. Specifi-
cally, we tested if the model was able to recreate a similar
distribution of spatial coding observed in actual FEF data
in the same task (e.g. Sajad et al. 2015; Bharmauria
et al. 2020). Here, the key observations were that (i) FEF
motor responses code gaze in an eye-centered frame of
reference, (ii) this code was partially shifted toward the
shifted landmark, and (iii) the influence of the landmark
shift was fully integrated into the eye-centered motor
responses of saccade.

To assess if our network shows similar results, we
created a simulation of the neurophysiology experi-

ments. To provide a uniform dataset of target/landmark
combinations we generated a simulated training/testing
dataset that contained a uniform distribution of target
locations across the encoding-decoding images. This
latter design was essential to ensure that we have enough
units responsive to different target locations. (Note that
our actual behavioral data missed many of these points,
but networks trained on the behavioral data gave similar
results to those described below.) To generate the final
gaze positions, we created a Gaussian distribution for
egocentric (Target) and allocentric (Virtually shifted
target) information. We then created a distribution for
the final gaze position using a weighted summation
of allocentric and egocentric information (Bayesian
integration; Byrne et al. 2007; Körding et al. 2007;
Klinghammer et al. 2017). For our integration, we con-
sidered 33% weights for the allocentric information. This
weight selection resulted in a similar distribution to the
observed data (as shown in the previous section). We also
added noise to replicate the monkey data (similar to row
6 in Table 1). Finally, we sampled from this distribution
to generate the gaze position for each trial. We used
this dataset to train our network. Then, we created a
dataset where target location incrementally changes
across the images to assess the intrinsic coordinate
frames of hidden units in our motor population layer. We
defined the motor population layer to resemble the FEF
code (Bharmauria et al. 2020, 2021), as explained in the
methods. For these simulations, we simulated 250 MLP
output neurons with 2D directional tuning distributed
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evenly across 360◦. Using these datasets, we compared
general response field and reference frame properties
(Section Response fields and intrinsic coordinate frames
of MLP output units), the influence of the landmark
shift on both response fields (Section Influence of
landmark shift on MLP output unit response fields) and
reference frame coding (Section Influence of landmark
shift on intrinsic coordinate frames of MLP output units),
and finally the degree of integration between egocentric
and allocentric coding in these units (Section Integrated
landmark influence in the final motor response).

To remind the reader, we analyzed the intrinsic coor-
dinate frames of our units similar to the performed
neural analysis in Bharmauria et al. (2020): First for each
neuron we examined which coordinate frames it used
to code information (e.g. target, gaze, landmark, shifted
landmark, etc.), then we created intermediate coordinate
frames to examine the egocentric vs. allocentric coding.
Like the neural data, we created 2 continua: target to gaze
(T–G) and Target to shifted target (T–T’). Full details of
our neural analysis are provided in Section Hidden unit
analysis.

Response fields and intrinsic coordinate frames of MLP
output units

Recall that we constrained our output to represent FEF
motor neurons. To this aim, we implicitly forced the
motor population units to have cosine tunings with
open-ended response fields. Here, we first confirm that
our motor units behave as they are designed. Figure 8A
shows an example motor response field, from a unit in
motor population layer, in the absence of a landmark
shift. The plotting conventions are the same as those
used for real neural data in our previous papers, i.e. circle
size indicates the neural “firing rate” for a randomly
selected subset of the individual trials, and the color
code represents the nonparametric fit made to the
full dataset. Both the individual trial locations and fit
are plotted in the coordinate system that provided the
best overall fit for this unit: future gaze relative to
initial eye position (see methods and below for further
explanation). Similar to our actual FEF motor response
recordings (Sajad et al. 2015; Bharmauria et al. 2021), we
observed that only a subset of our neurons is spatially
tuned (similar to Bharmauria et al. 2021) and that
spatially tuned units showed open-ended response field
(as expected).

The next step is to investigate the coordinate frames
our units deploy to code information. Although the
overall population code follows an eye centric coordinate
frame (Gfe) as an emergent result of our design, the
individual neurons can have different coordinate frames.
To test the intrinsic coordinates of our simulated neural
population, we used the same methods used in our
previous physiological studies (Bharmauria et al. 2020,
2021). In brief, we calculated the residuals between the
individual data points and fits made in each coordinate
system. Only units that showed significant spatial

tuning were selected for further analysis (n = 34 in
the absence of landmark shift). We tested Target-in-
space (Ts), Target-in-eye (Te), Landmark-in-space (Ls),
Landmark-in-eye (Le), Target-relative-to-landmark (TL),
and future Gaze relative to initial eye position (Gfe).
We found that the majority of individual units (∼83%)
showed a significant preference for Gfe coordinates,
and no neurons showed a significant preference for the
other models (Fig. 9B). Similarly, the entire population
showed a significant (P < 0.05) preference for gaze-in-eye
coordinates (as expected; Fig. 9C), similar to Sajad et al.
(2015), where there was no landmark.

We repeated the same analysis in the presence of the
landmark shift (Fig. 9D–F), where 48 of the 100 output
units showed significant spatial tuning. Here, additional
models were included to account for the shifted land-
mark position (L′) and the virtual position of the target
relative to the landmark (T′L′). However, these results
showed a similar pattern: Response fields were very sim-
ilar (Fig. 9D), a few units showed a significant preference
for Le but the majority (∼67%) showed a significant pref-
erence for Gfe (Fig. 9E) and the entire population signifi-
cantly preferring future gaze-in-eye coordinates (Fig. 9F).
In short, these results replicated those recorded from the
monkey FEF in the presence of a landmark shift: preser-
vation of the basic eye-centered gaze code (Bharmauria
et al. 2020). But as in the latter study, this comparison
of “canonical” models was not sensitive enough to detect
the influence of the landmark shift. For that, we turned
to a more sensitive analysis based on intermediate coor-
dinate frames, as shown below.

Influence of landmark shift on MLP output unit response
fields

In monkeys, FEF motor responses are modulated by a
shift in the landmark, specifically causing a shift toward
landmark-centered coding without altering the basic
response field or gaze code (Bharmauria et al. 2020).
To see if a landmark shift produced a similar influence
in our simulated data, we first plotted unit response
fields for different landmark shifts. A typical example
is shown in Fig. 10. Neural activity is represented by the
heat map, with an asterisk (∗) placed at the peak of the
response field, plotted in Gfe coordinates and indicate
the coordinates of landmark shifts on top of each box
(in parentheses). The middle panel in Fig. 10 shows the
response field for no-shift condition (0,0), and the other
panels are arranged congruently with the landmark shift
direction (i.e. up for up-shift etc.). Again, the unit activity
resembles an open-ended response field. At first glance,
the Gfe response field appears to be very similar for
each landmark shift, consistent with the notion that this
unit is primarily coding gaze. However, the peak of the
response field appears to shift with the landmark in some
directions (e.g. for left and right shifts in this case) but not
other shift directions. This result was typical, but other
units showed direction-dependencies (of the cue shift)
on both the magnitude and direction of their response
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Fig. 9. Intrinsic coordinate frame analysis for motor population’s units. A–C) without landmark shift: A) The response field of a motor unit. This unit
has an open-ended response field with and upward preference. Cooler colors represent lower activity and warmer colors represent higher activity. Our
nonparametric fit revealed that this unit significantly (P < 0.05) prefers a gaze-in-eye coordinate frame. The prediction of our fit is presented by black
circles where the diameter indicates the activity predicted by our fit. We reduced the number of circles (randomly) for illustration purposes.
B) Summary of the preferred coordinate frames for all 34 spatially tuned motor neurons. The tested models were Target in space (Ts), Target in eye
(Te), Landmark in space (Ls), Landmark in eye (Le), Target in landmark (TL), and Gaze in future eye (Gfe). The majority of neurons (∼83%) significantly
(P < 0.05) preferred gaze-in-eye coordinate frames. C) Population analysis of units coordinates frames. The population analyses were performed by a
t-test of mean residuals for each model relative to the best model fit. When coordinate frames were tested at the population level, the entire
population significantly (P < 0.05) preferred gaze-in-eye coordinates. D–F) Similar analysis as A–C) but in the presence of the landmark shift. Here we
had 48 spatially tuned neurons. In addition to the previously mentioned spatial models, models related to landmark shifts were tested:
Virtually-shifted target in space (T′s), virtually shifted target in eye (T′e), shifted landmark in space (L′s), shifted landmark in eye (T′e), and Target in
shifted landmark (TL′).

field shifts (see Supplementary Fig. S2). To understand
the overall landmark influence on this population, we re-
examined the underlying coordinates of these response
fields, using a more sensitive test (Bharmauria et al. 2020,
2021).

Influence of landmark shift on intrinsic coordinate frames
of MLP output units

In the next step, we performed a similar “intermediate
frame” analysis as used in our previous neurophysiology
studies (e.g. Bharmauria et al. 2020). Specifically, we used
nonparametric fits (as described in Section Hidden unit
analysis) to detect the best fits for each spatially tuned
unit along 2 spatial continua: Target to shifted target (T–
T′) and Target to Gaze (T–G). T–T′ provides a continuous
measure of the influence of the landmark shift on the
target representation, where T′ would be a virtual target
fixed to the shifted landmark (Bharmauria et al. 2020).
T–G measures the degree to which each unit encodes

variable gaze errors (Sajad et al. 2015). Each continuum
was divided into 10 steps between the 2 “cardinal” models
with 10 more steps beyond each. The point yielding the
lowest fit residuals represents the best intrinsic coordi-
nate frame.

Figure 11 provides a direct comparison of our network’s
motor population layer vs. actual FEF motor responses.
Figure 11 A show fits along T–T′ continuum. The first
figure (Fig. 11A (1)) shows an example of a simulated
motor unit that codes information in an intermediate
coordinate frames that is shifted 3 steps in the direction
of T′ (Landmark shift), with a very similar FEF neuron
(also shifted 3 steps) illustrated in Fig. 11A (2). The rows
below (Fig. 11A (3)–(6)) show corresponding frequency
histograms for the simulated and physiological data.
The distribution of the simulated fits was narrower
compared with the physiological data fits but they
both show a shift to the right, i.e. in the direction T′.
The simulated data (Fig. 11A (3)) showed ∼20% shift
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Fig. 10. A unit’s response field for different landmark shifts. Each panel shows the response field of the same unit for different landmark shifts. The
coordinates of landmark shifts are provided on top of each box (in parenthesis). Response fields are plotted in gaze coordinates. The peak of activity is
indicated by an asterisk (∗) in each box. Following the asterisk location, varying the landmark shift resulted in a correspondingly shifted response field
in some directions indicating the possibility of shifted intrinsic coordinate frames.

toward the T′ (mean = 21%, median = 20%, P = 7.54e−7,
Wilcoxon signed ranked test). The distribution of the fits
for simulated data followed a Gaussian distribution. For
the physiological data (Fig. 11 (4)) the shift had a mean of
29% (median 20%) toward T′. In our physiological studies
(Sajad et al. 2015; Bharmauria et al. 2020), 2 types of
neurons were presented: visuomotor neurons (neurons
that are responding both at the time of visual stimuli
and eye movement) and motor neurons (neurons that are
responding only at the time of eye movement). To further
compare our network’s motor population units’ behavior
with FEF neurons, we separated the visuomotor neurons
from motor neurons (Fig. 11 (5) & (6)). We observed that
the visuomotor neurons (Fig. 11 (5)) show a bimodal
distribution (resembling a mixture of Gaussians) in their
fit with higher shift toward T′, whereas motor neurons
(Fig. 11 (6)) show a unimodal distribution with lower shift
toward the right direction. This comparison suggest that
our motor population units resemble to motor neurons
and not the visuomotor neurons. In addition, these
observed shifts, along the T–T′ continuum, are qualita-
tively consistent with the observed 33% allocentric shift
in the behavioral data (see Section Systematic influence

of the landmark shift on simulated gaze output). Overall,
these results suggest that, like the actual data, our
MLP output unit coordinates shifted partially with the
landmark toward coding T′.

Figure 11B provide a similar analysis for the T–G con-
tinuum. The example response fields (Fig. 11B (1) & (2))
were shifted 70% and 90% from T toward G in the simu-
lated and FEF data respectively. The rows below (Fig. 11B
(3)–(6)) show the distribution of best fits for the simulated
and physiological data. The simulated data (Fig. 11B (3))
showed a unimodal distribution with a significant shift
(P = 1.06e−18, Wilcoxon signed ranked test) toward G that
was larger on average with a mean of 100% and median
of 100%. The FEF data (Fig. 11B (4)) showed a bimodal
distribution with a smaller peak near T and a larger peak
near G, and an overall mean and median of 57% and
70%, respectively. Separating the visuomotor and motor
neurons, we observed that the majority of the bimodal-
ity resulted from the visuomotor neurons (Fig. 11B (5))
whereas the distribution of the motor neurons (Fig. 11B
(6)) was less bimodal and had a higher shift toward G.
Nevertheless, the dominant peaks of all datasets (simu-
lated and physiological) indicated near pure gaze coding.
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Fig. 11. Motor neuron’s coordinate frames. Model hidden units at the motor population layer showed similar coding mechanisms as the
neurophysiology data. A) Model fits in allocentric coordinates (i.e. along T–T′ continuum). 1–2) Fit model for a sample unit in our motor population
layer (1) and in FEF (2). In both example neurons, the intrinsic coordinate frame was 3 steps away from the target toward the shifted target. 3–6)
Distribution of the intrinsic coordinate frames when fit along T–T′ continuum. Motor population coding in our network (3) was biased toward target
coordinates when fit along the Target-to-Shifted target coordinates with a partial shift toward the shifted target (30%). This shift was aligned with the
distribution of the FEF neurons (4–6). Separating the different classes of neurons (visuomotor (5) and motor (6)) showed that our motor population
neurons resemble mostly the motor only neurons (as expected). B) Model fits in egocentric coordinates (i.e. along T–G continuum). 1) Fit model for a
unit in our motor population layer. 2) Fit model for an example neuron. In this neuron the best model is 1 step before the final gaze model. 3–6)
Distribution of the intrinsic coordinate frames of motor neurons in our motor population layer and area FEF (Bharmauria et al. 2020). 3) The majority
of motor units coded information in Gaze coordinates. 4–6) Similar to our simulated motor units, the majority of neurons coded information in Gaze
coordinates. However, in the physiological data, the fits represent a bimodal distribution as opposed to a unimodal distribution. Separation of the
visuomotor neurons (5) from motor neurons (6) showed that most of the bimodality is resulted from the visuomotor neurons. This observation suggest
that our motor units mostly represent the motor only neurons and not the motor response of the visuomotor neurons.

Overall, these results indicate that the model, like most
actual FEF responses, show a coordinate shift in the
direction of the landmark while continuing to code gaze
relative to initial eye orientation. Although this might
sound contradictory, in the next section we show how
these 2 results can be reconciled.

Integrated landmark influence in the final motor response

In the previous section, we showed that similar to
FEF motor neurons, our motor population units code
information in both egocentric (T–G) and allocentric
coordinates (T–T′). An important question is whether
these 2 codes are integrated or independent. To answer
this question, we correlated our allocentric and ego-

centric codes. As illustrated in Fig. 12A, these codes
could be completely independent (vertical or horizontal
lines), multiplexed but uncorrelated (shifted lines), or
correlated (diagonal lines). In the physiological data
recorded previously (Bharmauria et al. 2020), these
measures were uncorrelated in memory responses (not
shown), but became significantly correlated in the motor
response, suggesting an integrated motor code (Fig. 12B).
We tested if the same was true in our simulated data.
Although the simulated data had a smaller distribution,
we observed a significant ego-allocentric correlation
(Fig. 12C; slope = 0.10 ± 0.08, R2 = 0.10, P = 0.0200) in our
motor output layer. This result suggests that our network
replicates the observed behavior in monkeys FEF motor
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Fig. 12. Integration of allocentric and egocentric information. A) Correlation prediction for different allocentric and egocentric integration scenarios.
B) Allocentric information was integrated into FEF motor codes. When allocentric coding is examined against egocentric coding, it showed significant
correlation. C) Similar to the FEF data (Bharmauria et al. 2020), our motor population layer showed integrated allocentric information into the motor
codes (significant correlation between allocentric and egocentric coding; slope = 0.10 ± 0.08, R2 = 0.1, P = 0.0200).

responses, i.e. an allocentric influence that is integrated
into the egocentric motor response to directly influence
gaze behavior.

Discussion
In this study, we developed and validated a novel neural
network framework of allocentric–egocentric integration
for goal-directed movements. The model used physiolog-
ically constrained inputs and outputs and was validated
through comparison of (i) network output with known
monkey gaze behavior in cue-conflict task and (ii) its
hidden unit’s activity with FEF neural activity recorded
in this same task (Bharmauria et al. 2020). To implement
a general theoretical framework, we modeled the visual
system as an analytically specified CNN and the senso-
rimotor transformation for gaze as an MLP. A pretrained
decoder was added at the end of the MLP to transform the
motor population activity into 2D saccades. The network
(i.e. MLP weights) was trained on synthetic and actual
data (final gaze locations) from a task where a landmark
shifted relative to the saccade target. We observed that
(i) our network generates saccade vectors comparable
to observed monkey gaze as well as simulated datasets
with different allocentric–egocentric contribution, with
and without noise, (ii) the network replicates the allo-
centric–egocentric weighting in different datasets, and
(iii) our motor units code gaze in an eye-centered frame
(an emergent property of our network design); this code
was partially shifted toward the shifted landmark and
the influence of the landmark shift was fully integrated
into the eye-centered motor responses of saccade (result
of our network training), similar to FEF motor neuron
responses. To our knowledge, this is the first network
model that combines complex visual system properties
with a sensorimotor transformation to replicate observed
behavioral and neural data.

Neural network models in sensorimotor
neuroscience
Neural network approaches have long been deployed to
understand the underlying mechanisms for sensorimo-
tor transformations (for reviews, see Pouget and Snyder
2000; Battaglia-Mayer and Caminiti 2018; Blohm et al.
2009). The general approach is to train an analogous
network using similar input–output as observed in senso-
rimotor tasks, evaluate network output and performance
against experimental data (as we have done here), and
then analyze hidden unit properties to understand how
the brain might do this. Early studies modeling senso-
rimotor transformation in 2D found that varying initial
eye, head, and hand positions results in gain modulation
of unit’s activity (Zipser and Andersen 1988; Salinas and
Abbott 1995; Xing and Andersen 2000). Analysis of hidden
layers revealed that hidden units encode information
in purely gaze-centered coordinate frames, whereas the
information is coded in intermediate coordinate frames
or as shifting response fields in motor output layers.
Extended from 2D modeling, a 3D neural network inves-
tigation revealed new properties generalizing the pre-
vious findings (Smith and Crawford 2005; Blohm et al.
2009). The authors observed fixed input–output relation-
ships within each unit and each layer. These fixed input–
output relationships acted as local coordinate transfor-
mation modules. The global transformation at the net-
work level was implemented by combining these local
transformations, weighted in a gain-field like fashion
(Blohm et al. 2009). These new properties emerged as a
result of the nonlinearities inherited form the 3D coordi-
nate transformations. Other studies have extended such
models to include recurrent connections, “memory” and
spatial updating of the remembered visual goal during
eye movement (Keith et al. 2010).

The above-mentioned models played a crucial role in
understanding the available data as well as providing
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prediction for further experiments. However, these stud-
ies have 2 shortcomings. First, in all the previous studies,
the complexity of visual system is ignored: The visual
stimulus is oversimplified into a “dot” that is represented
as a hill of activity in a retinal topographic map. This over-
simplification results in the inability of such networks
to model complex stimuli (e.g. crossing lines, or objects).
Thus, previous models are not capable of explaining the
presentation of allocentric information and their role in
sensorimotor transformations. Second, the majority of
the previous studies treated sensorimotor transforma-
tions as a feedforward network that resulted in a lack
of temporal dynamics. Here, we attempted a first step
toward addressing the first of these 2 limitations (visual
complexity), as discussed in the following sections.

Current approach
To create and validate a model that would be useful for
neurophysiologists, we followed principles established in
previous studies described previously (Zipser and Ander-
sen 1988; Blohm et al. 2009; Keith et al. 2010). In par-
ticular, we constrained the inputs and outputs of our
network to resemble the known physiologically of the
modeled system. Since our aim was to reconstruct the
early visuomotor transformations from visual cortex to
early 2-dimensional (2D) eye-centered motor codes in
frontal cortex (Bharmauria et al. 2020, 2021), we sim-
plified the inputs as 2D eye-centered images and 2D
eye-position signals based on the eye-position coding
observed in Somatosensory area 1 (S1) (Wang et al. 2007).
Likewise, we modeled the output layer to represent the
open-ended response fields observed in the FEF (Bruce
and Goldberg 1985; Sommer and Wurtz 2006; Sajad et al.
2015, 2016). This particular input–output configuration
allowed us to both train and compare our model outputs
with a known dataset (Bharmauria et al. 2020, 2021).

In contrast to previous visuomotor networks (which
processed a single “dot” stimulus), our model had to
encode a 2D visual image containing multiple features
and then somehow represent/integrate egocentric and
allocentric information derived from this image. To do
this, it was necessary to combine the complexity of the
visual system (Schenk 2006; Thaler and Goodale 2011;
Geirhos et al. 2017; Rajalingham et al. 2018) with the
feed-forward properties of a sensorimotor transforma-
tion (Smith and Crawford 2005; Blohm et al. 2009; Craw-
ford et al. 2011). For this purpose, we found it useful to
separate the network into a representational stage (i.e.
the visual system) and a sensorimotor transformation
stage (Crawford et al. 2011).

To model the visual system, we used a CNN. But unlike
previous models (Geirhos et al. 2017; Rajalingham et al.
2018; Schrimpf et al. 2018; Kar et al. 2019; Lindsay 2021)
we did not train our CNN but instead used an analyti-
cally constrained architecture to be consistent with the
known physiology. Specifically, we built our CNN based
on the concept of repeated filtering: “filter-rectify-filter.”
Our network consisted of 2 identically designed layers in

which each layer consists of convolution, rectification,
normalization, and pooling. To replicate the properties
of cortical simple and complex cell, we deployed 2D
oriented Gabor filters for our convolutions (Carandini
et al. 2005). Following the biological evidence suggesting
that learning occurs at higher cortical levels (Serre et al.
2005), we introduced a trainable feature pooling layer
to construct the final output from the CNN with the
required attributes (here landmark and visual target).
This design enabled us to construct a highly interpretable
model of the visual system. In particular, the model is
interpretable in that each stage admits to precise mathe-
matical description, as given by the equations of Section
Convolutional neural network.

To model the sensorimotor system, we used the
outputs of our CNN as inputs for a fully connected
feedforward MLP. In line with sensorimotor transfor-
mations studies, this network was left fully trainable.
As noted above, previous studies have shown that
such feedforward networks are able to produce striking
similarities with observed neural activities in areas
involved in sensorimotor transformations (Zipser and
Andersen 1988; Blohm et al. 2009; Keith et al. 2010).
For this purpose, it is advantageous that our network
is highly interpretable, i.e. it is not a black box as is often
the case for many ANNs.

Finally, we trained and validated our model against
real data. We trained our network using both idealized
datasets and behavioral data from a recent neurophysiol-
ogy experiment (Bharmauria et al. 2020). For training pur-
poses, we decoded behavior (saccade vectors) from the
motor output, based on physiological realism and previ-
ous network studies (Smith and Crawford 2005; Blohm
et al. 2009). We chose to model saccades because of their
simplicity and the availability of relevant data, but our
model can be generalized to other visuomotor behaviors
by adapting its input–output structure, for example to
resemble the reach system (Blohm et al. 2009).

Optimal allocentric–egocentric integration in
behavior
In an early study that combined experimental data with
statistical modeling, Byrne and Crawford (2010) showed
that reach movements were biased toward shifted
landmark when participants were instructed to reach
to memorized visual targets in the presence of a visual
landmark (presented as vibrating dots on the corners of
an invisible square). The amount of shift was influenced
by the actual relative reliability of gaze versus landmark
positions, as well as the perceived stability of the visual
landmarks: Higher stochasticity (induced by increasing
the dots’ vibration range) resulted in less reliance on
the landmark information. More recent experiments
with more realistic scenes, replicated the basic result
(i.e. aiming shifted with landmarks) but showed that
the magnitude landmark influence was determined by
different factors such as the number of shifted objects
(Fiehler et al. 2014; Klinghammer et al. 2015) and scene
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consistency (Klinghammer et al. 2017). Similar effects
have been observed in monkey gaze behavior (Li et al.
2017; Bharmauria et al. 2020).

Here, we showed that our network is capable of repro-
ducing the observed monkey saccades with good agree-
ment (R2 ≈ 75%–80%; Table 1, rows 1 and 2), as well as
various other scenarios with different ego-allocentric
weightings (Figs. 6 and 7). Our network reproduced sim-
ilar allocentric weights as reported for monkey’s data
(Fig. 6), but with wider distribution (Fig. 7). Some of the
differences with real data might be accounted for by the
existence of noise in sensorimotor systems (Körding and
Wolpert 2006; Alikhanian et al. 2015; Abedi Khoozani
and Blohm 2018). Consistent with this, increasing the
noise reduced the ability of the network to explain data
variability (Table 1, rows 3–6). This perhaps agrees with
a recent report that the addition of noise to deep neu-
ral nets improves correspondence with actual response
fields in early visual cortex (Jang et al. 2021).

How does the brain implement egocentric–allocentric
integration? At a computational level, the predominant
view in the field is that the brain uses probabilistic infer-
ence to estimate the reliability of ambiguous sensory
signals for optimal integration (Ernst and Banks 2002;
Alais and Burr 2004; Pitkow & Angelaki 2014). In this
view, the brain estimates each signal contribution for
the optimal integration (e.g. for allocentric–egocentric
weighting) based on the statistical properties of sen-
sory signals (where higher signal variability results in
lower contribution). This can be derived online through
probabilistic neural codes (Ma et al. 2006) or based on
learned contextual cues (Mikula et al. 2018). For example,
Byrne and Crawford (2010) explained their reach data
using a maximum likelihood estimator based on the
actual reliability of egocentric versus allocentric cues
combined with a landmark stability heuristic based on
prior experience. Here, our neural network model learned
to extract such rules from the training set, consistent
with the suggestions that error-based learning rules nat-
urally implement probabilistic inference (Orhan and Ma
2017). But to understand how this is done, it is necessary
to look within actual neural populations (Pitkow and
Angelaki 2014).

Simulation of neurophysiological results
As noted above, we coded the motor output of our net-
work using the same motor population coding mecha-
nisms as seen in the FEF (Bruce and Goldberg 1985; Som-
mer and Wurtz 2006; Sajad et al. 2015, 2016). This choice
was made to (i) impose physiological realism within the
model and (ii) allow direct comparisons of our network
model with actual FEF data. To test if our motor output
units generate similar properties as their counterpart
motor neuron in FEF, we performed 3 analyses simi-
lar to neurophysiology studies. First, we confirmed that
our motor population units show open-ended response
fields and code information in a gaze-centered coordi-
nate frame (Fig. 8). These observations are in line with

previous observation of dominate gaze-centered coding
in motor neurons (Sajad et al. 2015, 2016). Although,
the open receptive field arose due to our design, the
gaze-centered coding emerged from the training process.
More specifically, although the overall population was
expected to show geze-centered coding, individual units
could have contributed to the output in many ways spe-
cially in the presence of multiple stimuli. For instance, we
observed that in the presence of landmark, some units
preferred landmark relative to the eye (Fig. 9, bottom
row), suggesting that the landmark information made it
all the way through the final output layer. This result
suggests that observing Gfe as a dominate preferred
coordinate frame is not trivial.

Second, and more importantly, when we examined
the intermediate coordinate frames, we observed that
our units use a range of intermediate coordinate frames
between target and gaze to code the information as
reported for FEF and SEF motor neurons. Third, exam-
ining the influence of the landmark shift, we observed
that shifting the landmark resulted in shifted receptive
fields (Fig. 9). In particular, we observed that the coor-
dinate frames of our units were partially shifted toward
the virtually shifted target (Fig. 10) representing an allo-
centric coding in our network. When we evaluated the
allocentric–egocentric information, we found a strikingly
similar partial integration as reported in SEF and FEF.

On the whole, these results suggest that we success-
fully created a model that can closely follow current neu-
rophysiological reports (Bharmauria et al. 2020). This was
a crucial goal for the current project. These observations
suggest that the underlying mechanisms of the proposed
network might have close similarities with brain mecha-
nisms for allocentric–egocentric integration.

Potential interpretability of the network
processes
As suggested above, the striking similarities between
our unit’s activity and their physiological counterparts
suggest that our network might use similar mechanism
as the brain to implement the required processes. This
implies that interpretability of our network is essential.
We argue that our network is highly interpretable by
design. First, all the units of our CNN except, the feature
pooling layer, are determined analytically; thus, they are
fully interpretable. Moreover, the feature pooling also is
mathematically fully measurable: A product of all the
feature responses in the final maps determining cross-
ing points of the 2 lines as well as the target location.
The next and most challenging task will be to uncover
the mechanisms governing the transformation between
the input–output in our MLP. In particular, what hap-
pens in the trainable layers between our analytically
defined visual system layers and motor output layer? For
this purpose, it should be possible to use both analytic
solutions arising from computer science (e.g. Hadji and
Wildes 1990; Monga et al. 2020; Zhao and Wildes 2021)
and “neurophysiological” techniques like those employed
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in the past (Zipser and Andersen 1988; Smith and Craw-
ford 2005; Blohm et al. 2009). In this way, our visual-motor
model can be used as a “quasi experimental model,” in
parallel with studies on the real brain, for example to
understand how egocentric and allocentric signals are
integrated in goal-directed movements.

It is noteworthy that qualitative (i.e. visualization of
convolutional filters) is significantly different from quan-
titative (i.e. mathematical specification) interpretability.
Although visualizing the filters provides some insight
into the working principles of CNNs, the learned con-
volutional filters, by definition, lack precise mathemat-
ical specification. Providing the mathematic specifica-
tion of the convolutional filters, alongside the analyt-
ical specification of the rest of the hyperparameters,
provides the possibility to mathematically calculate the
processed image by the CNN and consequently to math-
ematically identify the CNN output. This is essential
for the understanding of how the MLP implements the
allocentric–egocentric integration (the focus of our next
study).

Limitations and future directions
Despite its success in replicating current neurophysiolog-
ical and behavioral observations, this study is only the
first step in modeling the integration of complex visual
stimuli for sensorimotor transformations. To extend
its usefulness beyond the current task (ego-allocentric
cue conflict in the gaze system) several steps need
to be taken. First, it should be possible to train this
model on other 2D datasets (different visual stimulus
configurations, etc.) to see how well it generalizes and
investigate other questions involving the use of complex
visual stimuli for movement control. Second, it should be
possible to extend this model to include 3D geometry of
sensorimotor transformation (and including other extra-
retinal signals such as head position), multisensory (e.g.
somatosensory) inputs of target and hand position. As
emphasized by many studies, modeling the 3D linkage
of eye–head–hand is crucial for a full understanding of
sensorimotor transformations (for a review see Crawford
et al. 2011). Third, another limitation of the current
version of the model is that it does not include any
temporal dynamics. A series of studies showed that
FEF goes through a series of sensory–memory–motor
transformations that include a dynamically evolving
spatial memory signal (Sajad et al. 2015, 2016; Bharmau-
ria et al. 2020, 2021). These studies classified recorded
FEF neurons into 3 groups: visual neurons (neurons that
are only active during the target onset), motor neurons
(neurons that are active only during the gaze onset),
and visuomotor neurons (neurons that are active during
both target and gaze onset). Sajad et al. (2015, 2016)
demonstrated that although visual neurons mostly code
target in eye (the peak of the distribution is significantly
shifted toward Te) and motor neurons code gaze in
eye (the peak of the distribution is significantly shifted
toward Ge), visuomotor neurons deploy a distribution

between Te–Ge with a peak being closer to Te during
the visual response and shifting toward Ge during the
motor response. In our network, we only were able to
analyze motor responses without having any visual
or visuomotor responses. This resulted in a unimodal
distribution in our T–G analysis (Fig. 11B (3)) as opposed
to a bimodal distribution observed in monkeys’s FEF
(Fig. 11B (6)). Therefore, temporal dynamics are essential
for quantifying the progression of sensory coding
through memory delay signals and into motor coding
in such tasks. Including recurrent connection in the
current model addresses this limitation. Finally, the
current version of the model is appropriate for detecting
simple stimuli such as 2D crosses or dots and therefore is
not generalizable to datasets that include more realistic
3D objects. However, our studies in dynamic texture
recognition show that incorporating additional CNN
layers enables the current CNN model to recognize more
complicated patterns (Hadji and Wildes 1990).

Conclusions
We implemented and evaluated a neural network
model—with physiologically constrained inputs and
outputs—that provides both the capacity for encoding
relatively complex visual features and sensorimotor
transformation for goal-directed movements. We trained
this model on real and synthetic datasets involving
saccade generation in the presence of allocentric
landmarks. We showed that our network replicates
the reported behavior and generates the observed
neural activities in FEF areas (i.e. dominance of gaze-
center coding, emergent property of network design,
as well as shifted coordinate frames and integration
of allocentric–egocentric coordinate frames, emergent
property of network training). These results suggest that
our framework provides an analytic toolbox to better
understand the interaction of allocentric and egocentric
information for goal-directed movements. Specifically,
having created, trained, and verified the model against
real behavioral and neurophysiological data, further
analysis of the hidden units in the MLP should be useful
in understanding and predicting how the brain produces
such transformations. We further propose that this
network can be generalized to model other complex
visuomotor tasks. Building such toolboxes is necessary
to facilitate our further understanding of the underlying
mechanisms for performing sensorimotor coordinate
transformations where the stimulus is not simply a dot.
Since spatial transformations ubiquitously underly most
brain processes, this toolbox has potential for application
in fields as diverse as reaching to grasp, posture/balance
control, visual navigation, decision making, as well as
their analogs in computer vision and robotics.
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