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Background: Stroke in UK Biobank (UKB) is ascertained via linkages to coded

administrative datasets and self-report. We studied the accuracy of these codes using

genetic validation.

Methods: We compiled stroke-specific and broad cerebrovascular disease (CVD) code

lists (Read V2/V3, ICD-9/-10) for medical settings (hospital, death record, primary care)

and self-report. Among 408,210 UKB participants, we identified all with a relevant

code, creating 12 stroke definitions based on the code type and source. We performed

genome-wide association studies (GWASs) for each definition, comparing summary

results against the largest published stroke GWAS (MEGASTROKE), assessing genetic

correlations, and replicating 32 stroke-associated loci.

Results: The stroke case numbers identified varied widely from 3,976 (primary care

stroke-specific codes) to 19,449 (all codes, all sources). All 12 UKB stroke definitions

were significantly correlated with the MEGASTROKE summary GWAS results (rg.81-1)

and each other (rg.4-1). However, Bonferroni-corrected confidence intervals were wide,

suggesting limited precision of some results. Six previously reported stroke-associated

loci were replicated using ≥1 UKB stroke definition.

Conclusions: Stroke case numbers in UKB depend on the code source and type

used, with a 5-fold difference in the maximum case-sample size. All stroke definitions

are significantly genetically correlated with the largest stroke GWAS to date.
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INTRODUCTION

UK Biobank (UKB) is a prospective population-based cohort
study with extensive phenotype and genotype information on
>500,000 participants from England, Scotland, and Wales
(www.ukbiobank.ac.uk). It is an open-access resource,
established to facilitate research into the determinants of a
wide range of health outcomes, particularly those relevant in
middle and older age (1). An example of such a disease is stroke,
the second most common cause of death worldwide and a major
global cause of disability (2).

Disease outcomes in UKB are ascertained chiefly via linkages

to routinely collected, coded, national administrative health

datasets. In addition, data on self-reported medical conditions

were collected at recruitment. However, to use these data
appropriately, researchers need to select which particular disease
codes to use for their study and have an understanding
of their accuracy. For example, to identify stroke cases,
existing codes can be divided into those that are stroke-
specific and those that fall under the broad cerebrovascular
disease (CVD) category. Stroke-specific codes are used to code
acute stroke events where the clinician is confident about
the diagnosis and can usually assign a subtype. In contrast,
broad CVD codes also capture cases with: (i) phenotypes
that pose a high risk for a subsequent stroke (e.g., a code
for a transient ischemic attack, an unruptured aneurysm, or
carotid artery stenosis); (ii) a past history of stroke with
residual symptoms (e.g., a code for sequelae of cerebral
infarction); (iii) events where there may be some diagnostic
uncertainty (e.g., a code for unspecified cerebrovascular disease);
and (iv) intracranial hemorrhages other than intracerebral
or subarachnoid hemorrhage (e.g., extradural or subdural
hemorrhages, which most clinicians consider different from a
stroke). Including codes from the broad CVD category will
therefore significantly increase the overall number of cases
identified, but while this is likely to include at least some
misclassified true acute stroke cases, non-stroke cases will also
be included.

In a systematic review of studies validating stroke code
accuracy from case-note review, the overall positive predictive
value (proportion of true-positive cases among all identified
cases) for identifying acute stroke cases was consistently >70%
for stroke-specific codes, dropping to <50% in many studies
when broad CVD codes were included (3, 19). For self-reported
stroke events, the positive predictive value ranged from 22
to 87% across different studies, making it hard to draw firm
conclusions (19). While the case-note review for code validation
is often considered a gold standard, this method also has its
limitations. It is time-consuming and labor-intensive, so can only
be achieved in relatively small numbers of cases, with limited
precision of the results. In addition, the results rely on: (i)
accessing the complete relevant medical record; (ii) the detail and
quality of the medical record; (iii) the qualification of the person
reviewing the notes; (iv) the inter-adjudicator agreement, which
we know is not perfect even between highly specialized clinicians;
and (v) the consistency of results across different healthcare
settings/providers (4).

We set out to supplement current knowledge about the
accuracy of stroke codes with a method making use of large-
scale genetic data, which we refer to as ‘genetic validation’.
The fundamental idea is to use existing knowledge of genetic
associations with a disease (in this case acute stroke), to assess
how well various potential code lists capture people who truly
have this disease, which in turn could be used to harmonize
disease definitions across cohorts and health systems (5). If the
code list captures true-positive cases, we would expect the genetic
associations that result from stroke cases identified through
coded data to closely mirror the genetic association results from
previous studies of stroke.

METHODS

Study Setting
We included all 408,210 UKB white British ancestry participants
in this study.We restricted our analyses to this ancestry subgroup
because it covers 94% of the UKB participants and allowed
us to achieve a good balance between attaining sufficient case
numbers while reducing population stratification and analytic
complexity. As part of the UK Biobank recruitment process,
informed consent was obtained from all individual participants
included in the study. At the time of the study, UKB had linked
hospital admissions and death registry administrative coded data
available for all participants, and primary care administrative
coded data for 47% of the cohort (191,146), covering the
time period up to March and September 2019, respectively
(Supplementary Table S1). In addition, all participants self-
reported pre-existing health conditions during an interview
at recruitment. The subset of the cohort with primary care
data available was similar to the whole cohort with respect
to age at recruitment, sex, and Townsend deprivation index
(Supplementary Table S2).

Identifying Stroke Cases in UKB
We compiled stroke-specific and broad CVD code lists for
each medical setting (hospital admission, death record, primary
care) and self-report. This process was informed by previously
published codes where available (3, 19), supplemented by the
selection of additional codes by expert clinicians (authors KR,
CLMS, ED, RW) on discussion and mutual agreement (further
detail is provided in Supplementary Methods). This resulted in
a total of eight code lists, covering the ICD-9/ICD-10, Read
Version 2, Clinical Terms Version 3 (Read Version 3), and UKB
self-report illness coding systems (Supplementary Table S3).

Next, we identified all participants with a relevant code
from any of the code lists and created 12 different ways
of defining stroke cases in UKB based on the code type
(stroke-specific, broad CVD) and source (hospital admission,
death record, primary care, self-report). This resulted in 12
partially overlapping case-control groups, where cases were all
the individuals with a stroke code for the particular stroke
definition, and all the remaining participants acted as controls.
A specific UKB participant could therefore be a stroke case for
one definition and control for another definition.

Frontiers in Neurology | www.frontiersin.org 2 February 2022 | Volume 12 | Article 787107

http://www.ukbiobank.ac.uk
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rannikmäe et al. Defining Stroke in UK Biobank

Genome-Wide Association Studies
We performed 12 genome-wide association studies (GWASs),
one for each case-control set (i.e., for each definition of stroke
cases and their controls). We applied a linear mixed model
method using the BoltLMM software package (v2.3.4) software
(6). We included the following as covariates: genotyping array,
UKB assessment center, sex, age at recruitment, and principal
components one to ten. We filtered the results for single
nucleotide polymorphisms (SNPs) with an imputation quality
INFO score ≥0.9 and minor allele frequency ≥1%. After
filtering the results for SNP imputation quality and minor allele
frequency, we included 9,524,428 SNPs. For further analyses, we
converted the linear mixed model effects to logistic regression-
comparable odds ratios, betas, and standard errors using the
R code provided in https://shiny.cnsgenomics.com/LMOR/ (7).
We also estimated stroke heritability in each of the 12 GWAS,
converting heritability on the observed scale to heritability on the
liability scale based on the prevalence in the study sample (8). We
then assessed stroke heritability in the MEGASTROKE European
sample, using the BLD LDAK model (9) for comparison.

Analyses of GWAS Results
We compared summary results from our 12 GWASs against
the largest published stroke GWAS meta-analysis project-the
MEGASTROKE study. The MEGASTROKE study is a meta-
analysis of 29 stroke GWASs (17 including individuals of
European ancestry) and does not include UKB data. Almost all
studies included in MEGASTROKE (covering >95% included
cases) required the stroke diagnosis to be confirmed by a medical
professional or required evidence of stroke from >1 source, even
if the initial case ascertainment included using administrative
codes (10). All analyses were done using R software version 3.6.2.

Genetic Correlation With the MEGASTROKE Study

Results
We applied a high-definition likelihood method using the
HDL software (11) to assess the genetic correlation between
our GWAS results using the 12 stroke definitions, and the
MEGASTROKE study GWAS summary results for any stroke
subtype in European samples. Genetic correlation (rg) is the
proportion of variance that two stroke definitions share due
to genetic causes. A genetic correlation of 0 implies that the
genetic effects on one definition are independent of the other,
while a correlation of one implies that all of the genetic
influences on the two definitions are identical. We assessed if
the correlation was significantly different from 0 and 1, setting
the p-value significance threshold to 0.0042 after a Bonferroni
correction for the 12 tests. We used the LD matrix calculated
from the UKB for the reference panel provided as part of the
HDL package, therefore restricting analyses to 1,029,876 QCed
imputed HapMap3 SNPs. We displayed the results (correlation
measured as rg) on a heatmap. We also display Bonferroni
corrected confidence intervals to aid interpretation.

Genetic Correlation Within Our Study Definitions
We then used the HDL software to assess genetic correlations
within our study across the 12 definitions. We set the

significance threshold to 0.0024 after a Bonferroni correction
for seven independent non-overlapping case-control definitions
(definitions not in bold in Table 1), resulting in 21 correlation
tests. We used the LD matrix calculated from the UKB for the
reference panel provided as part of the HDL package, therefore
restricting analyses to 1,029,876 QCed imputed HapMap3 SNPs.
We also display Bonferroni corrected confidence intervals to
aid interpretation.

Replicating the MEGASTROKE Study

Stroke-Significant Loci
The MEGASTROKE study identified 32 genetic loci significantly
associated with stroke. We identified these loci (the lead SNP
for each locus) in our GWAS summary results and considered
a locus to be replicated (i.e., also significantly associated with
the respective stroke definition in our data) if the p-value of
association in our GWAS was <0.00156 (Bonferroni corrected
for 32 loci). We compared the number of replicated loci
across our summary definitions. We compared the effect sizes
of the associations between MEGASTROKE trans-ethnic and
European ancestry GWASs and our GWAS summary results.
Where the lead SNP was not available in our data, we identified
SNPs in moderate LD (r2 > 0.7 in the 1,000 Genomes
GBR population using the Ensembl LD calculator https://www.
ensembl.org/Homo_sapiens/Tools/LD) with the lead SNP, and
if any SNPs in LD available in our data were identified, we
examined their associations instead. We displayed results for five
of our summary definitions of stroke cases and their controls:
stroke-specific code from any medical setting; broad CVD code
from any medical setting; stroke-specific or broad CVD code
from any medical setting; specific or non-specific self-reported
stroke event; any code or self-reported event. We highlighted
significantly associated (i.e., replicated) loci.

We also calculated our expected power to replicate the 32 loci
using the Genetic Association Study (GAS) Power Calculator
(http://csg.sph.umich.edu/abecasis/gas_power_calculator/index.
html), assuming a stroke prevalence of 2.26% and inputting the
disease allele frequency and genotype relative risk estimates from
the MEGASTROKE publication Table 1 (10).

RESULTS

Stroke Cases in UKB
The number of relevant codes for identifying stroke cases varied
widely depending on the coding system (ICD vs. Read vs. self-
report) and code type (stroke-specific vs. broad CVD code)–from
less than five codes for a specific self-reported stroke event, to
>500 codes when including all possible codes across all coding
systems. The stroke-specific and broad cerebrovascular disease
(CVD) code lists for each medical setting and self-report are
shown in the Supplementary Table S3.

The number of stroke cases identified among the 408,210
participants also varied widely depending on the code type and
source used–from 3,976 cases in primary care when using stroke-
specific codes, to 19,449 cases when including all possible code
combinations (stroke-specific and broad CVD) across all sources
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TABLE 1 | Number and demographic characteristics of stroke cases identified in UK Biobank (UKB).

Stroke definition Number of

cases

Number of

controls

Mean (median) age

at recruitment (years)

Mean (median) age;

age range at stroke (years)

Sex

(% female)

Stroke-specific code from hospital/death

records

6,887 401,323 61 (63) 63 (64); 31 to 79 40

Stroke-specific code from primary care 3,976 404,234 61 (63) 59 (61); 1 to 79 41

Stroke-specific code from any

medical setting

8,665 399,545 61 (63) 61 (63); 1 to 79 41

Broad CVD code from hospital/death

records

5,725 402,485 62 (63) 64 (65); 31 to 79 43

Broad CVD code from primary care 4,003 404,207 62 (63) 62 (63); 1 to 79 41

Broad CVD code from any medical

setting

8,085 400,125 62 (63) 63 (64); 1 to 79 44

Stroke-specific or broad CVD code from

hospital/death records

12,612 395,598 61 (63) 63 (64); 31 to 79 41

Stroke-specific or broad CVD code from

primary care

7,979 400,231 62 (63) 60 (62); 1 to 79 41

Stroke-specific or broad CVD code

from any medical setting

16,750 391,460 62 (63) 62 (63); 1 to 79 42

Specific self-reported stroke event 5,915 402,295 61 (62) 53 (55); 0 to 70 41

Specific or non-specific self-reported

stroke event

7,536 400,674 61 (63) 53 (55); 0 to 70 42

Any code or self-reported event 19,449 388,761 61 (63) 60 (61); 0 to 79 43

Across all UKB participants 408,210 57 (58) Not applicable 54

We considered code and self-reported event age missing if it predated the date of birth, contained a negative value, or was recorded by UKB as unreliable or missing–this affected

0.3% to 2.1% cases depending on the stroke definition. CVD, cerebrovascular disease. Bold represents combined groups, e.g. broad CVD code from hospital/death + broad CVD from

primary care = broad CVD code from any medical setting.

(hospital admission, death record, primary care, self-report)
(Table 1).

The code source for cases with a stroke-specific code
was: self-report only in 27%, primary care only for 9%,
hospital/death record code only for 29%, and >1 source
for 35% (Supplementary Figure S1). The code source for
cases with either a stroke-specific or a broad CVD code
was: self-report only in 14%, primary care only for 15%,
hospital/death record code only for 34%, and >1 source for 37%
(Supplementary Figure S1). These proportions are calculated
based on the primary care data being currently available only for
∼50% of the participants, and so will change when primary care
data for the whole cohort become available.

The overall proportion of prevalent codes (i.e., first code
predates participant’s recruitment to UKB) vs. incident codes
(i.e., first code date occurs after participant’s recruitment to UKB)
was the same for stroke-specific and broad CVD categories:
38% prevalent vs. 62% incident codes. These proportions are
dependent on the updates to different linked health datasets and
the proportion of incident codes will continue to increase with
increasing duration of follow-up (Supplementary Table S1).

Mean andmedian age at recruitment was higher among stroke
cases (for all stroke definitions) than for the whole cohort of UKB
participants (mean age 61 to 62 vs. 57 years; median age 62 to 63
years vs. 58 years). Mean and median age at the time of stroke (in
case of multiple events, age at the earliest event was taken) was
higher for coded diagnoses from the medical setting compared
to self-reported events (mean age 62 vs. 53 years, median age 63

vs. 55 years, respectively). This is to be expected, considering that
all self-reported events were recorded at the time of recruitment,
whereas medical codes also capture diagnoses after recruitment
during follow-up. The proportion of women was lower among
stroke cases than across all UKB participants (43% for those
with any medical setting or self-reported code vs. 54% for all
UKB). This is to be expected as age-specific incidence rates are
substantially lower in women than men in younger and middle-
age groups, but these differences narrow down so that in the
oldest age groups, incidence rates in women are approximately
equal to or even higher than in men (12) (Table 1).

Analyses of GWAS Results
Manhattan plots, QQ plots, and genomic inflation factors (λ,
lambda) are displayed in Supplementary Figure S2. Lambda
remained 1.002 for all analyses, suggesting no significant
inflation. Heritability measures across different stroke definitions
ranged from 1.41% (for broad CVD code from primary
care) to 5.69% (for stroke-specific code from primary care)
(Supplementary Table S4). Heritability in the MEGASTROKE
study was similar at 2.92%.

Genetic Correlation With the MEGASTROKE Study

Results
All 12 UKB stroke definitions were significantly correlated
with the MEGASTROKE summary GWAS results, with genetic
correlations (rg) ranging from 0.81 to 1, and confidence intervals
overlapping. The p-values for the difference from one were
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FIGURE 1 | Genetic correlation of UKB stroke definitions with MEGASTROKE and each other. Where the rg was >1, we rounded it to 1.

not significant, compatible with perfect correlation. However,
the Bonferroni corrected CIs were wide, especially for five
of the 12 tests, where the lower confidence limit was <0.7,
limiting the precision of some of these results (Figures 1, 2,
Supplementary Table S5).

Genetic Correlation Within Our Study Definitions
The UKB summary definitions in our study were all significantly
correlated with each other (all p-values significantly different
from 0), with rg ranging from 0.4 to 1. Again, the Bonferroni
corrected CIs were wide, with the lower confidence limit even
suggesting the possibility of a negative correlation for two
comparisons (Figures 1, 2, Supplementary Table S6).

Considering the wide confidence intervals from the above
genetic correlation analyses, we further explored this by
calculating the effective sample size (Neff) (13). This ranged from
7,875 to 37,045 (Supplementary Table S4), which is significantly
lower than the sample size used in the calculations by Ning et al.
(11) when first describing the HDL method, and hence we would
expect to see wider confidence intervals in our study.

Replicating the MEGASTROKE Study

Stroke-Significant Loci
Within our GWASs, six of the 32 previously reported
stroke-associated loci were replicated by one or more
definitions. Analyses using stroke-specific codes and analyses
using any code or self-reported event both replicated the
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FIGURE 2 | Confidence intervals of genetic correlation of UKB stroke definitions with MEGASTROKE and each other. The upper triangle displays Bonferroni corrected

upper confidence intervals, and the lower triangle displays Bonferroni corrected lower confidence intervals. Where the rg was >1, we rounded it to 1.

biggest number of known stroke loci (five of 32). The
power from additional cases for the latter category did
not result in replicating more loci than stroke-specific
codes alone. However, for three of the five replicated loci,
the p-values were smaller in the larger dataset (analyses
using any code or self-reported event) suggesting a more
robust replication when using the broadest definition of
stroke in UKB. Within our data, effect sizes (expressed
as odds ratios) were similar across the stroke definitions,
with overlapping Bonferroni corrected confidence intervals
(Supplementary Figure S3).

For two of the six replicated loci (PITX2 and HDAC9–
TWIST1), the effect size of the association (odds ratio) was
bigger in the MEGASTROKE dataset than in our data (across
all five summary stroke definitions). These two loci are known
to be associated with particular stroke subtypes–PITX2 with
cardioembolic and HDAC9–TWIST1 with large artery stroke
[10] (Figure 3, Table 2, Supplementary Table S7).

Power calculations suggested we had≥80% power to replicate
all 32 loci for any code or self-reported event definition while
having ≥80% power for only 11/32 loci for the definition

including a stroke-specific code from any medical setting
(Supplementary Table S8).

DISCUSSION

Our analyses show, that depending on the code source and

type used for identifying stroke cases in the UKB, the currently

achieved maximum case-sample size can range from ∼4,000

to ∼20,000–a remarkable 5-fold difference. We go on to

demonstrate, that regardless of the code source and type used,
the resulting GWAS summary results are significantly genetically
correlated with the largest stroke GWAS to date, with similar
(albeit low) heritability estimates. Finally, whenwe try to replicate
known stroke-significant loci in our data, both stroke-specific
codes from any medical setting as well as a broad definition
including any code or self-reported event, replicate five of the
32 loci. Replication generated broadly similar effect sizes for all
but two stroke subtype-specific loci, which is likely explained
by our dataset including a mix of stroke subtypes. Another
possible explanation is the “winner’s curse” phenomenon (i.e., the
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FIGURE 3 | MEGASTROKE stroke subtype-significant loci replicated using UK Biobank stroke definitions. MEGASTROKE odds ratio and p-value is shown for the

analyses (European or trans-ethnic) showing the lowest p-value.
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TABLE 2 | MEGASTROKE stroke-significant loci replicated using UKB stroke definitions.

Known stroke

genetic locus

Significantly

associated

stroke type in

MEGASTROKE

MEGASTROKE

European

meta-analyses

N = 40,585*

MEGASTROKE

transethnic

meta-analyses

N = 67,162
†

Stroke-specific

code from any

medical setting

N = 8,665

Broad CVD code

from any

medical setting

N = 8,085

Stroke-specific

or Broad CVD

code from any

medical setting

N = 16,750

Specific or

non-specific

self-reported

stroke event

N = 7,536

Any code or

self-reported

event

N = 19,449

CHR4: rs13143308

(PITX2)

Cardio-embolic

stroke

1.34 (1.28–1.40)

5.2 × 10−41

1.32 (1.27–1.37)

1.9 × 10−47

1.09 (1.05–1.13)

7.5 × 10−6

1.06 (1.02–1.1)

0.0036

1.08 (1.05–1.11)

1 × 10−7

1.04 (0.995–1.08)

0.08

1.07 (1.04–1.1)

3 × 10−7

CHR7: rs2107595

(HDAC9–TWIST1)

Large-vessel

stroke

1.27 (1.19–1.35)

1.4 × 10−13

1.21 (1.15–1.26)

3.7 × 10−15

1.07 (1.03–1.12)

1 × 10−3

1.03 (0.99–1.08)

0.12

1.05 (1.02–1.09)

4.7 × 10−4

1.08 (1.03–1.13)

8.9 × 10−4

1.06 (1.03–1.09)

1.1 × 10−4

CHR10: rs2295786

(SH3PXD2A)

All stroke 1.05 (1.03–1.07)

1.4 × 10−7

1.05 (1.04–1.07)

1.8 × 10−10

1.07 (1.04–1.11)

1.5 × 10−5

1.01 (0.98–1.04)

0.59

1.04 (1.02–1.07)

4 × 10−4

1.04 (1.01–1.08)

0.021

1.05 (1.03–1.07)

5.1 × 10−6

CHR12: rs3184504

(SH2B3)

All ischaemic

stroke

1.08 (1.06–1.10)

1.2 × 10−14

1.08 (1.06–1.10)

2.2 × 10−14

1.04 (1.01–1.07)

0.0096

1 (0.97–1.03) 0.83 1.02 (1–1.05)

0.04

1.06 (1.03–1.1)

1.9 × 10−4

1.03 (1.01–1.05)

0.0068

CHR9: rs635634

(ABO)

All ischaemic

stroke

1.08 (1.05–1.11)

9.2 × 10−9

1.07 (1.04–1.10)

6.9 × 10−3

1.08 (1.03–1.12)

1.8 × 10−4

1 (0.96–1.04) 0.86 1.04 (1.01–1.07)

0.0043

1.1 (1.05–1.14)

5.8 × 10−6

1.05 (1.02–1.07)

4.3 × 10−4

CHR9: rs7859727

(Chr9p21)

All stroke 1.05 (1.03–1.07)

7.2 × 10−8

1.05 (1.03–1.07)

4.2 × 10−10

1.06 (1.03–1.09)

8.1 × 10−5

1.04 (1.01–1.07)

0.018

1.05 (1.03–1.07)

5.3 × 10−6

1.02 (0.98–1.05)

0.32

1.04 (1.02–1.06)

6.3 × 10−5

Summary: number replicated loci 5/32 0/32 4/32 3/32 5/32

Significant associations are in bold in shaded boxes. CVD, cerebrovascular disease; CHR, chromosome; N, number.
†
MEGASTROKE transethnic meta-analyses included 60,341 ischaemic stroke cases; 9,006 cardio-embolic stroke cases; 6,688 large-vessel stroke cases. MEGASTROKE European

meta-analyses included 34,217 ischaemic stroke cases; 7,193 cardio-embolic stroke cases; 4,373 large-vessel stroke cases.

estimated effect of a marker allele from the initial study reporting
the marker-allele association is often exaggerated relative to the
estimated effect in follow-up studies).

The correlation of all definitions with the MEGASTROKE
study results suggests one or more of the following: (i) all
definitions retrieve true-positive acute stroke cases, meaning
that broad CVD codes include additional true-positive cases
not identified by stroke-specific codes; (ii) cases coded with a
broad CVD code have not necessarily suffered an acute stroke,
but represent a range of phenotypes with a similar genetic
architecture to acute stroke [e.g., previous research has shown
at least one overlapping locus for carotid artery disease and
acute stroke (10)]; (iii) the MEGASTROKE study includes some
misclassified broad CVD cases as false-positive acute stroke cases.
It is most likely that a combination of these factors is contributing
to our findings, but we are unable to dissect their separate
contributions in the current study.

Previous case-note validation studies suggested that broad
CVD codes are better at identifying the broad conditions they
signify as opposed to ascertaining acute stroke cases (14),
supporting a role for option two above. An example of this
would be a case-note review of patients with a code for an
unruptured intracranial aneurysm or carotid artery stenosis
confirming that the diagnosis was also most likely an unruptured
intracranial aneurysm or carotid artery stenosis, rather than the
reviewing clinician deciding it was an acute stroke that had been
miscoded as an unruptured intracranial aneurysm or carotid
artery stenosis.

Despite the definition using any code or self-reported event
increasing the sample size by more than 2-fold compared to
the definition using only stroke-specific codes from a medical
setting, it did not replicate a higher number of known stroke-
associated loci. This could suggest that there is still insufficient
power to replicate additional loci using any of our definitions

despite power calculations suggesting ≥80% power for all loci.
Also, associations for nine of the 32 loci in MEGASTROKE
were only found for specific stroke subtypes and 11 of the 32
loci were significant in analyses including only ischemic stroke
cases, the proportions of which are unlikely to be identical
between the two datasets. For example, theMEGASTROKE study
sample included 90% confirmed ischemic stroke cases. The stroke
subtype breakdown among the UKB participants is available only
for stroke-specific codes from the hospital, death record, and
self-reported data (UK Biobank data fields “42009,” “42011,” and
“42013”) and shows a proportion of confirmed ischemic stroke
cases of 47%, with 10% cases being intracerebral hemorrhage and
11% subarachnoid hemorrhage and the remainder of unspecified
stroke subtype. Furthermore, case-note validation suggests that
while ischemic stroke cases can be identified with good accuracy
using stroke-specific codes, further work is needed to understand
the accuracy of hemorrhagic stroke codes (3). Alternatively, it
could also suggest that the additional cases identified by using any
code or self-report are not true-positive stroke cases or that some
of these known stroke-associated loci are false-positive findings.
Finally, the absence of primary care data for half of the cohort will
have reduced the negative predictive value of the Read Version 2
and 3 code lists in this study, and hence to an extent reduced our
power to replicate known stroke-associated loci.

Self-reported cases (both stroke-specific and broad CVD) also
showed a close genetic correlation with the MEGASTROKE
study, supporting the use of self-report as a means of identifying
additional stroke cases in the UKB. This was so despite the highly
variable results from the previous case-note-based validation
studies of self-report for ascertaining stroke cases. Studying this
by case-note validation in UKB itself would be challenging, given
the difficulties accessing NHS records which predate recruitment
by many years and the fact that participants may have moved
between UK regions during their life-course. Other studies have
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also reported a close genetic correlation between a wide range of
self-reported diseases and medical setting diagnoses. Examples
include both acute and chronic conditions (e.g., depression,
myocardial infarction, rheumatoid arthritis) (15–17).

We used the HDL method for assessing genetic correlations
to fully account for LD across the genome and improve
precision in genetic correlation estimation. Compared to the LD
Score Regression method, HDL reduces the variance of genetic
correlation estimates by about 60%, equivalent to a 2.5-fold
increase in sample size (11). For some of our definitions, the
rg was >1. The estimated rg is a combination of the true rg
and variation. When the true rg is close to the boundary (-1
or 1) and/or variation is large, the estimated rg can go beyond
the boundary (11). In rg estimation, some common reasons for
generating large variation are: (i) at least one of the h2 estimates
is very low; (ii) small sample size; (iii) many SNPs in the reference
panel are absent in one of the two GWASs; (iv) there is a severe
mismatch between the GWAS population and the population for
computing reference panel. We can exclude the last two options,
and the small sample size is, therefore, the likely explanation.

In our analyses, the case-control groups were partially
overlapping and a specific UKB participant could therefore be a
stroke case for one definition and control for another definition.
We used this study design to mimic the “real world” situation,
creating binary case-control definitions based on each code list.
In theory, this could reduce the power of some of the analyses,
since it means controls can end up including some true-positive
stroke cases. However, in reality, it is unlikely to have a significant
effect given the overall large number of controls. For example,
for analyses using stroke-specific codes from any medical setting,
just over 2% of controls have a broad CVD code and/or have
self-reported a stroke event.

We used BoltLMM for running the GWAS (6). Our case
fraction ranged from 1 to 5% depending on the case definition
and we limited our analyses to SNPs with a minor allele
frequency of at least 1%. Based on simulations done using
BoltLMM, the authors of the software suggest that with this
case-fraction and minor allele frequency parameters, they did
not find statistically significant inflation of the type I error rates
[Supplementary Table 8 in (5)].

The strengths of our study are: (i) we included-and have made
available to re-use-a clinically informed, comprehensive set of
codes across all relevant coding systems; (ii) we compared our
results against the largest stroke GWAS to date; (iii) we used
multiple methods for comparison accounting for both GWAS
significant loci but also SNPs across the whole genome–i.e.,
correlation and replication; (iv) we have added novel data to what
is already known from case-note validation.

Our study also has some limitations: (i) some of our
definitions included relatively small case numbers compared
to the MEGASTROKE study, reducing our power to replicate
known loci; (ii) uneven numbers across definitions not allowing
direct comparisons, but rather reflecting the real-world situation;
(iii) our definitions included the subarachnoid hemorrhage
stroke subtype codes, whereas the MEGASTROKE study did not,
resulting in a slightly different mix of stroke cases; (iv) the UKB
participants’ demographic characteristics differ from those of

the UK general population with evidence of a healthy-volunteer
selection bias, which needs to be considered when extrapolating
these results to other settings (18); and, (v) some controls are
likely to experience a stroke during follow up in the future, which
may have reduced study power.

We have shown that the selection of codes and code
sources used to ascertain stroke cases has a major impact
on the overall stroke case numbers in the UKB. Given the
close genetic correlation between stroke cases identified using
broad CVD codes, self-report, and physician-confirmed stroke
cases, we suggest that for studies accepting more crude stroke
and cerebrovascular disease outcomes, researchers may wish to
include all codes and self-reported events for increased power.
Alternatively, this information is also helpful in informing the
selection of controls for various studies. Including a large number
of broad CVD coded cases among controls might weaken any
association seen for certain study designs. However, since we
cannot exclude the effects of shared genetic control of broad CVD
phenotypes and acute stroke, this evidence is not sufficient to
support using broad CVD codes in studies that need to define
acute stroke outcomes very accurately (e.g., clinical trials).

Further research is needed: to better understand the
underlying reasons for the close genetic correlation between
stroke-specific and broad CVD codes; to dissect the underlying
explanation for our results with targeted case-note validation;
to replicate our results in other datasets. In addition, more
data is needed on the accuracy of different coding systems for
identifying specific pathological stroke subtypes (ischemic stroke
vs. intracerebral hemorrhage vs. subarachnoid hemorrhage) and
etiological stroke subtypes (e.g., small vessel disease vs. large
artery disease vs. cardioembolic stroke vs. other/unknown cause).
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