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Simple Summary: In recent years, the development of immune checkpoint inhibitors, such as anti-
PD-1 and anti-PD-L1, proved to prolong melanoma patient survival and are now used in routine
clinical practice. PD-L1 also represents a potent biomarker for in vivo molecular imaging using
radiolabeled anti-PD-L1 mAbs and positron emission tomography and is currently in development
to select patients and assess response to treatment. The aim of our study was to investigate in a
preclinical model of human melanoma if PD-L1 could also be a good target for treatment using
targeted alpha-particle therapy. Our results show that targeting PD-L1 with bismuth-213, an alpha
particle emitter, was associated with efficient anti-tumor response, significant tumor growth delay,
and improved survival. This demonstrates that anti-PD-L1 antibodies could be used as theranostics
in molecular imaging but also in targeted alpha-particle therapy to treat the tumor and its stroma.

Abstract: PD-L1 (programmed death-ligand 1, B7-H1, CD274), the ligand for PD-1 inhibitory re-
ceptor, is expressed on various tumors, and its expression is correlated with a poor prognosis in
melanoma. Anti-PD-L1 mAbs have been developed along with anti-CTLA-4 and anti-PD-1 antibod-
ies for immune checkpoint inhibitor (ICI) therapy, and anti-PD-1 mAbs are now used as first line
treatment in melanoma. However, many patients do not respond to ICI therapies, and therefore new
treatment alternatives should be developed. Because of its expression on the tumor cells and on
immunosuppressive cells within the tumor microenvironment, PD-L1 represents an interesting target
for targeted alpha-particle therapy (TAT). We developed a TAT approach in a human melanoma
xenograft model that stably expresses PD-L1 using a 213Bi-anti-human-PD-L1 mAb. Unlike treatment
with unlabeled anti-human-PD-L1 mAb, TAT targeting PD-L1 significantly delayed melanoma tumor
growth and improved animal survival. A slight decrease in platelets was observed, but no toxicity on
red blood cells, bone marrow, liver or kidney was induced. Anti-tumor efficacy was associated with
specific tumor targeting since no therapeutic effect was observed in animals bearing PD-L1 negative
melanoma tumors. This study demonstrates that anti-PD-L1 antibodies may be used efficiently for
TAT treatment in melanoma.
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1. Introduction

PD-L1 (programmed death-ligand 1, B7-H1, CD274) is the primary ligand for PD-1
inhibitory receptor [1]. PD-L1 is constitutively expressed among various immune cells
such as T-cells, B-cells, macrophages, and dendritic cells (DC) and upregulated upon
activation [2,3]. Its function is not limited to inhibiting effector T-cells, as PD-L1 can in-
duce Tregs in the periphery (iTregs) and sustain their suppressive functions [4]. PD-L1 is
also expressed by various tumor cells, such as melanoma, non-small-cell lung carcinoma
(NSCLC), triple-negative breast cancer (TNBC), as well as within the tumor microenviron-
ment, on tumor-associated macrophages (TAM), and myeloid-derived suppressor cells
(MDSC) [5–9]. In this context, PD-L1 expression results from pro-inflammatory stimuli
and is subjected to a complex regulation [10,11]. In melanoma, it has been shown that
IFNγ produced by tumor infiltrating T-lymphocytes (TILs) is the main factor inducing
expression of PD-L1 [12,13]. Indeed, in biopsies of melanoma patients, colocalization of
PD-L1 expressing tumor cells, CD8+ TILs and IFNγ, has been observed, and heterogenous
expression of PD-L1 was related to the T-cell infiltrate [14]. In addition, hypoxia, a fre-
quent feature of solid tumors, and hypoxia inducible factor, HIF-1α, may also contribute
to PD-L1 regulation in tumors and their microenvironment [8,15]. PD-L1 expression is
considered to be one of the major tumor escape mechanisms and has been correlated with
a more aggressive phenotype [16–18]. Several anti-PD-L1 mAbs—atezolizumab, avelumab,
and durvalumab—have been developed as immune checkpoint inhibitor (ICI) therapy
molecules and, based on their promising results in patients, have been recently approved
for clinical use by the FDA and EMA [19–21].

Accordingly, with early clinical trials of ICI therapy using anti-PD-1 mAb, a review
by Gandini et al. analyzed the clinical results of 4230 melanoma patients and reported an
objective response rate of 48% for patients whose tumors expressed PD-L1 vs. 15% for
those whose tumors were negative for PD-L1, supporting PD-L1 as a potent biomarker to
select forefront the patients who can benefit from ICI therapy and to evaluate response
to treatment [22–25]. However, numerous therapeutic responses have also been observed
despite undetectable PD-L1 expression in the tumor [26,27]. So far, PD-L1 is determined by
immunohistochemistry (IHC), which has several limitations related to the heterogeneous
expression of the molecule [28,29]. IHC analysis has also been done using different mAbs,
specific for various epitopes [14]. As a consequence, the relationship between PD-L1
minimum expression rate and therapeutic response is variable across studies, ranging from
1% to 50%, which actually makes PD-L1 not a clear predictive biomarker. To overcome
IHC limits, numerous clinical trials are currently awaited or ongoing to assess reliability
and sensitivity of in vivo molecular imaging using anti-PD-L1 mAbs radiolabeled with
positron emitting radionuclides, that is, immuno-PET (positron emission tomography)
imaging [30]. In a preclinical study evaluating PD-L1 as target for molecular imaging in
an immunocompetent breast cancer model, Josefsson et al. provided biodistribution and
dosimetry data supporting the feasibility of using a radiolabeled anti-PD-L1 mAb not only
for molecular imaging but also for targeted radionuclide therapy (TRT) [31]. The ideal
radionuclide to use for such TRT application would associate high toxicity to kill the tumor
cells and the immunosuppressive cells within the tumor microenvironment, a short range
of action to preserve surrounding healthy tissues, and the potency of stimulating immunity
to provide an immune modulation.

Targeted alpha-particle therapy (TAT) is a TRT modality based on the use of alpha-
particle emitters delivered specifically to the tumor by the mean of a vector, usually a mAb
or a peptide. The alpha decay energy is comprised between 5 to 9 MeV along a short
linear path in the tissues ranging from 50 to 100 µm; their linear energy transfer (LET) is
therefore very high (50 to 230 keV/µm) and provides a high cytotoxic potential. Moreover,
the radiobiological effects of this type of radionuclides are largely independent of dose rate,
oxygenation, or cell proliferation [32]. Therefore, alpha-particle emitters are considered
as interesting anti-tumor agents for micrometastases, residual tumors, and hematological
cancers [33]. TAT in a preclinical immunocompetent melanoma model using anti-melanin
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mAb radiolabeled with bismuth-213 (213Bi), an alpha-particle emitter, has been shown
to significantly delay tumor growth [34]. In the clinic, promising results have also been
obtained in melanoma patients using 213Bi-anti-MCSP (melanoma-associated chondroitin
sulfate proteoglycan) mAb. In a first clinic trial involving 16 patients, the radiolabeled
mAb was delivered locally in melanoma lesions. In this context, TAT induced massive cell
death with no toxicity [35]. In a second trial, the same radiopharmaceutical was delivered
systemically in 38 patients developing metastatic melanoma. No major toxicity was ob-
served, and the maximum tolerated dose (MTD) was not reached. An objective partial
response was observed in 10% of the patients, and 15% survived more than 3 years [36,37].

Considering that PD-L1 expression is correlated with a poor prognostic in melanoma [38,39],
that despite very promising clinical results, at best, 40% of metastatic melanoma patients objectively
respond to ICI therapy targeting either PD-1 or PD-L1 [40,41], and that PD-L1 expression in the
tumor and its stroma makes it a most interesting target for TAT, the aim of this study was to develop
and investigate TAT using 213Bi-anti-PD-L1 mAb in a preclinical model of human melanoma.

2. Materials and Methods
2.1. Cells and Reagents

The M113WT and M113PD-L1+ human melanoma cell lines were kindly provided by Dr.
Nathalie Labarrière (CRCINA, Nantes, France). The cell lines were cultured in RPMI-1640
medium (Gibco, ThermoFisher Scientific, Waltham, MA, USA), supplemented with 2 mM
L-glutamine (Gibco, ThermoFisher Scientific, Waltham, MA, USA), 100 U/mL penicillin
(Gibco, ThermoFisher Scientific, Waltham, MA, USA), 100 ug/mL streptomycin (Gibco,
ThermoFisher Scientific, Waltham, MA, USA), 10% heat-inactivated fetal bovin serum
(Biosera Europe, Nuaille, France). M113PD-L1+ transfected cells were also supplemented by
addition of 0.8 µg/mL of G418. Cells were incubated at 37 ◦C, 5% CO2, in a humidified-
saturated incubator.

The GoInVivo™ purified anti-human PD-L1 mouse mAb (anti-hPD-L1 mAb), PE-
conjugated anti-hPD-L1 mAb (clone 29E.2A3), GoInVivo™ purified mouse IgG2bκ isotype
control, and PE-conjugated mouse IgG2bκ isotype control (clone MPC-11) were purchased
from Biolegend (San Diego, CA, USA). PE-conjugated goat anti-mouse IgG, F(ab’)2 was
purchased from Jackson Immunoresearch (West Grove, PA, US). Flow cytometry experi-
ments were performed using a FACS Canto II flow cytometer (BD Biosciences, San Jose,
CA, USA), and the events were analyzed using the FlowJo software (Treestar, Meerhout,
Belgium).

Before bismuth-213 radiolabeling, the anti-hPD-L1 mAb and the mouse IgG2bκ isotype
control were modified using 2-(4-isothiocyanato-benzyl)-cyclohexyl-diethylenetriaminepenta-
acetic acid (SCN-CHX-A”-DTPA; Macrocyclics, Plano, TX, USA) with 20 equivalents of CHX-
A”-DTPA in carbonate buffer (0.05 M, pH 8.7). After 12h incubation at 25 ◦C, modified mAbs
were purified by high-performance liquid chromatography on a Sephadex G200 gel-filtration
column (Amersham Biosciences, Little Chalfont, UK). The mean chelate number per antibody,
assessed as previously described [42], was 2. For bismuth-213 radiolabeling, 100 µg of each
immunoconjugate was incubated with bismuth-213 eluted from an actinium-225/bismuth-
213 generator (Institute for Transuranium Elements, Karlsruhe, Germany) for 10 min at
37 ◦C in 0.8 M ammonium acetate (pH 5.3), 1.5% ascorbic acid. The resulting 213Bi-labelled
immunoconjugates were separated from unbound bismuth-213 by size-exclusion chromatog-
raphy using a PD-10 column (GE Healthcare, Chicago, IL, USA). Radiochemical purity was
98.7 ± 1.1%, as determined by instant thin-layer chromatography silica gel (ITLC-SG) using
0.1 M sodium citrate solution (pH 5.3) as mobile phase.

2.2. Mouse Xenograft Model

Female NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice were purchased from Charles
River laboratory, housed and bred at the UTE animal facility (SFR François Bonamy, IRS-
UN, University of Nantes, license number: B-44-278) under specific pathogen free condi-
tions. Subcutaneous xenograft tumors were established by injection of 1 × 106 M113PD-L1+
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or M113WT human melanoma cells in 100 µL PBS (DPBS, ThermoFisher Scientific, Waltham,
MA, USA), into the flank of 8–9-week-old NSG mice. Seven days later, when tumor volumes
reached around 80 mm3, mice were randomly allocated into the different experimental
groups. For each experiment, frozen M113PD-L1+ or M113WT cells were thawed and grown
in culture for 10 days before graft. Meanwhile, the absence of mycoplasma contamination
was checked using a HEK-Blue Detection Kit (Invivogen, Toulouse, France), and PD-L1
expression was confirmed by flow cytometry analysis.

2.3. Histology and Immunohistochemistry Staining

Tumors were collected, formalin-fixed, and paraffin-embedded. Hematoxylin and
eosin or immunohistochemistry staining were performed on 3µm paraffin sections. Ex-
pression of PD-L1 was analyzed using rabbit anti-human-PD-L1 (E1L3N®, Cell Signaling,
Danvers, MA, USA) or rabbit isotype control (Cell Signaling, Danvers, MA, USA) pri-
mary antibodies and then using HRP-conjugated secondary antibody. Proliferation was
analyzed using mouse anti-Ki67 (Clone MIB-1, Dako, Les Ulis, France) or mouse isotype
control (BD Biosciences, San Jose, CA, USA) primary mAbs and HRP-conjugated sec-
ondary antibody. Revelation was done using DAB substrate solution and the sections
were counterstained with hematoxylin. Acquisitions were performed using a slide scanner
(Nanozoomer, Hamamatsu, Massy, France). For quantification, ndpi files were imported
in QuPath version 0.2.3, a free software for the analysis of IHC images [43]. Simple tis-
sue detection was performed on each slide, and extra-tumoral vessels were manually
removed from the selection. Cell detection was performed by the detection of the nu-
cleus, based on optical density sum. Ki67 positive cell was defined with a nucleus DAB
(3,3′-Diaminobenzidine) mean staining equal or above a threshold of 0.3. Control isotypic
stained slides showed a maximum of 1.15% positive cells with this threshold.

2.4. Immuno-PET Imaging

Copper-64 was obtained from the Arronax cyclotron (GIP Arronax, Saint-Herblain,
France) using the reaction 64Ni(p,n)64Cu and was delivered as 64CuCl2 in 0.1N HCl. Be-
fore copper-64 radiolabeling, the anti-hPD-L1 mAb was modified using the copper chelat-
ing agent p-SCN-Bn-DOTA (Macrocyclics, Plano, TX, USA), purified on gel filtration
column, and then radiolabeled for 30 min at 42 ◦C in 0.1M sodium acetate. The radiolabel-
ing yield and specific activity of the bioconjugate were 100% and 482 MBq/mg, respectively.
Each mouse was intravenously injected with 20 µg of 64Cu-labelled anti-hPD-L1 mAb.
Total activity injected for each mouse was 10 MBq. Immuno-PET were realized on a multi-
modality preclinical imaging system (Inveon™, Siemens Healthcare, Erlangen, Germany)
at 24h and 48h after 64Cu-labelled immunoconjugate injection. The reconstructed PET
images were analyzed using Inveon Research Workplace (Siemens Healthcare, Erlangen,
Germany).

2.5. Dose-Escalation Study

Naïve 10–11-week-old NSG mice received an i.v. injection in the vein tail of 125, 165,
210, 335, and 395 kBq/g 213Bi-PD-L1 human mAb (n = 3 per group) and monitored for
100 days. Experiment was approved by the local veterinary committee (APAFIS #7915)
and carried out in accordance with relevant guidelines and regulations. Animals were
sacrificed in case of marked distress signs or/and a weight loss greater than 20% of initial
body weight.

2.6. Therapy Studies

TAT studies were performed on mice bearing M113PD-L1+ or M113WT tumors. Seven days
after tumor graft, animals were treated by i.v. injection in the tail vein of a single dose of either
125 kBq/g (n = 17) or 165 kBq/g (n = 10) 213Bi-anti-hPD-L1 mAb. TAT control groups received
either 125 kBq/g (n = 10) or 165 kBq/g (n = 10) 213Bi-mouse IgG2bκ isotype control. Animals
treated with 125 kBq/g 213Bi-anti-hPD-L1 mAb or 213Bi-mouse IgG2bκ isotype control received
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around 6 µg of radiolabeled mAb, and those treated with 165 kBq/g 213Bi-anti-hPD-L1 mAb
or 213Bi-mouse IgG2bκ isotype control received around 10 µg of radiolabeled mAb. Finally,
PBS control group received only an injection of 100 µL PBS (n = 20).

Experiments were approved by the local veterinary committee (APAFIS #7823) and car-
ried out in accordance with relevant guidelines and regulations. Animals were monitored
two to three times a week. Tumor burden was measured using a caliper, and the volume
was calculated based the following formula: volume = (LxW2)/2, where L was length
and W was width. Mice were sacrificed taking into account the appearance of necrosis in
tumors, weight loss greater than 20% of initial body weight, and tumor volume greater
than 2000 mm3. Statistical analyses of tumor volumes were performed using two-way
ANOVA followed by Sidak’s multiple comparisons, and by log-rank test for survivals.

2.7. Toxicity Study

Hematological toxicity was assessed by numeration of red blood cells and platelets on
an automated hematology analyzer (Nihon Kohden France, Le Plessis-Robinson, France).
Statistical analysis was performed with two-way ANOVA followed by Tukey’s multiple
comparison test. Bone marrow, liver, and kidney toxicity was assessed on plasma isolated
by centrifugation (10 min at 600× g). Each sample was assessed in duplicate. Flt3-ligand
concentration was quantified by ELISA (Bio-Techne, Noyal Châtillon sur Seiche, France)
following manufacturer’s protocol. ASAT (Bioo Scientific, Austin, TX, USA), ALT, (Bioo
Scientific, Austin, TX, USA), urea (BioAssay Systems, Hayward, CA, USA), and creatine
(BioAssay Systems, Hayward, CA, USA) were quantified using quantitative colorimetric
assays following manufacturer’s instructions. Statistical analysis was performed with
two-way ANOVA followed by Sidak’s multiple comparison test.

2.8. Statistical Analysis

Statistical analysis were performed using Prism (GraphPad Software Inc., San Diego,
CA, USA). A p-value of 0.05 or less was considered significant.

3. Results

3.1. PD-L1 Expression on M113PD-L1+ and M113WT Xenograft Tumors

M113PD-L1+ melanoma cells were generated by transfection of M113WT parental cells
derived from a melanoma patient with PCDC1 cDNA. PD-L1 expression on both M113WT

and M113PD-L1+ cells was checked on in vitro cultures by flow cytometry analysis and
showed that 99% of M113PD-L1+ cells express heterogeneously PD-L1, with 75% expressing
high levels and 25% expressing low levels of PD-L1 (Figure S1). M113WT cells were negative.
After subcutaneous engraftment in NSG mice flank, M113PD-L1+ and M113WT melanoma
tumors reached a volume around 80 mm3 within 7 days. Such tumor volume appeared
suitable to investigate TAT efficacy. PD-L1 expression was confirmed on M113WT and
M113PD-L1+ melanoma tumors ex vivo by immunostaining and in vivo by immuno-PET
(Figure 1). Hematoxylin and eosin staining demonstrated that cell structure was similar in
both type of tumors (Figure 1A,B). Immunochemistry staining showed that only M113PD-L1+

tumors expressed PD-L1 (Figure 1E). PD-L1 expression was not recovered in M113WT

cells after in vivo implantation (Figure 1F). No stainings were observed with the isotype
control (Figure 1C,D). PD-L1 expression was confirmed in vivo by immuno-PET imaging
using 64Cu-radiolabeled anti-PD-L1 mAb, 1 and 2 weeks (Figure 1G,H), respectively,
after tumor implantation. M113WT tumors remained negative (Figure 1I,J). In parallel to
PD-L1 expression, we also insured that M113PD-L1+and M113WT xenograft tumors were
indeed proliferating at the time of TAT treatment. Therefore, a Ki67 immunohistochemistry
staining was performed on those tumors, collected 7 days after implantation in NSG mice.
The Ki67 staining demonstrated that cells in both types of tumors were in proliferation
(>60%) at the time we planned on initiating TAT (Figure 2 and Table S1). Staining also
showed a central necrotic zone in the M113WT tumor that may have developed early in
this xenograft melanoma model (Figure 2B). These results demonstrate that M113PD-L1+
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melanoma tumors expressed PD-L1 in vivo and confirmed that PD-L1 was a relevant
tumor target to assess TAT efficacy, while M113WT tumors that did not express PD-L1
represented a suitable control to evaluate targeting specificity. In addition, both tumors
were proliferating 7 days after engraftment when TAT was to be performed.
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Figure 1. Expression of programmed death-ligand 1, B7-H1, CD274 (PD-L1) on M113 melanoma
xenograft tumors. Formalin-fixed and paraffin-embedded histologic sections of M113PD-L1+

(A,C,E) and M113WT (B,D,F) melanoma xenograft tumors were examined immunohistochemically
after hematoxylin and eosin (A,B), rabbit isotype control (C,D), and anti-hPD-L1 (E,F) staining.
All sections were photographed at 40x original magnification, scale bars = 50 µm. Data are repre-
sentative of 4 different M113PD-L1+ and M113WT tumors. Immuno-PET imaging of mice bearing
subcutaneous M113PD-L1+ (G,H) or M113WT (I,J) tumors at 1 (G,I) or 2 weeks (H,J) after tumor
engraftment and 48 h after injection of 10 MBq 64Cu-anti-hPD-L1mAb (L: liver, S: spleen, T: tumor).
Data are representative of 3 different mice in each group.
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Figure 2. Ex vivo proliferation analysis of M113 melanoma xenograft tumors. M113PD-L1+ (A,C) and
M113WT (B,D) melanoma tumor proliferation was examined on formalin-fixed and paraffin-
embedded histologic sections after immunohistochemical staining with mouse anti-human Ki67
mAb (C,D) or mouse IgG1κ isotype control (A,B). Data are representative of 4 different M113PD-L1+

and M113WT tumors. Scale bars = 1 mm.
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3.2. Dose Escalation Study of 213Bi-anti-hPD-L1 mAb

The radiochemical yields of 213Bi-anti-hPD-L1 mAb were 98.7 ± 1.1% in all experi-
ments, and affinity after radiolabeling was slightly decreased compared to unmodified
anti-hPD-L1 mAb (6.5 × 10−9 vs. 2 × 10−9 M, respectively) but remained in the nanomolar
range (Figure S2), which was high and suitable for the study. A dose escalation study
was then performed on naïve NSG mice to define the best activities for TAT. Groups of
three mice received activities of 213Bi-anti-hPD-L1 mAb ranging from 125 to 395 kBq/g.
Kaplan–Meier survival curves showed that activities of 395, 335, and 205 kBq/g were
highly toxic, with median survivals of 9 and 10 days, respectively (Figure 3A). In these
groups, mice were sacrificed based on weight loss that was extremely rapid and greater
than 20% of initial body weight (Figure 3B). Instead, groups receiving 125 and 165 kBq/g
213Bi-anti-hPD-L1 mAb survived until the end of the study (Figure 3A). Hematologic and
biochemistry parameters were determined at the end point for each mouse and compared to
status before injection of the radiopharmaceutical (T0). Hematologic toxicity was assessed
by platelet and erythrocyte (RBC) counts. At the end point, all the mice injected with 165 to
395 kBq/g of radiolabeled anti-hPD-L1 mAb exhibited a significant and dose-dependent
drop of the platelets compared to T0 (Figure 3C). The group that received 125 kBq/g of
213Bi-anti-hPD-L1 mAb demonstrated a slight but not significant decrease in platelet count.
No significant change was observed in any group for RBC count (Figure 3D). These results
indicated that, except with 125 kBq/g of 213Bi-anti-hPD-L1 mAb, all the other injected
activities induced significant thrombocytopenia in the animals. In addition to hematologic
parameters, bone marrow toxicity was determined by dosing plasma Flt3-ligand concen-
tration (Figure 3E). At T0, median Flt3-ligand concentration in plasma was 190 pg/mL.
A considerable and very significant increase in Flt3-ligand concentration was observed in
mice injected with 335 and 395 kBq/g of radiopharmaceuticals, with median concentrations
reaching 2058 and 2091 pg/mL, respectively. Plasma Flt3-ligand was also increased in the
205 kBq/g group—in particular, up to 1618 pg/mL in one mouse that developed acute
toxicity. These results demonstrate that acute toxicity observed in the mice injected with ac-
tivities ranging from 205 to 395 kBq/g of 213Bi-anti-hPD-L1 mAb was associated with bone
marrow impairment. Finally, we also observed some increase in Flt3-ligand concentration
in the groups that received 125 et 165 kBq/g of radiolabeled mAb. AST, ALT, and urea
were also assessed as biochemical parameters of liver and kidney failure. No change was
observed for AST or ALT in any group (data not shown). Urea, instead, was increased
in all the groups injected the radiopharmaceutical at activities of 205 kBq/g and greater
(Figure 3F). No kidney toxicity was observed in the groups that received 125 and 165 kBq/g
of radiolabeled mAb. These results suggested that despite a slight hematologic toxicity
on platelets and a minor impact on bone marrow, TAT experiments could eventually be
investigated with 125 and 165 kBq/g of 213Bi-anti-hPD-L1 mAb.
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3.3. Assessment of TAT Efficacy Using 213Bi-anti-hPD-L1 mAb in M113PD-L1+ Melanoma
Xenograft Model

We first confirmed that anti-hPD-L1 mAb without modification or radiolabeling had
no impact on tumor growth or survival in our preclinical melanoma model by treating
M113PD-L1+ melanoma tumor bearing mice with 20 and 100 µg of mAb, which were,
respectively, 3- to 16-fold the amount of mAb used in TAT experiments (Figure S3). Then,
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7 days after subcutaneous graft of M113PD-L1+ melanoma cells, when tumors reached an
average volume of 80 mm3, TAT was performed by i.v. injection of 125 or 165 kBq/g of
213Bi-anti-hPD-L1 mAb. Control groups included treatment with 125 or 165 kBq/g of
IgG2bκ isotype control radiolabeled with bismuth-213 or injection of 100 µL PBS. TAT
efficacy was determined based on tumor growth and survival. Mice treated with 125 and
165 kBq/g of 213Bi-anti-hPD-L1 mAb demonstrated a significant and similar tumor growth
delay compared to mice treated with the radiolabeled isotype control at 125 or 165 kBq/g
or to the PBS control mice (Figure 4A). No difference was observed between these 3 control
groups with respect to tumor growth.
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, n = 20). (A) Tumor volume, represented by mean and SD, was determined sequentially
from engraftment until signs of tumor necrosis or volume reached 2000 mm3 and animals were
sacrificed. Compared to PBS and isotype control groups, TAT significantly delayed tumor growth
in mice treated with 125 kBq/g 213Bi-Anti-hPD-L1 mAb or 165 kBq/g 213Bi-Anti-hPD-L1 mAb (* p
= 0.0313, *** p = 0.0007, **** p < 0.0001). Statistical analysis was performed with two-way ANOVA
followed by Sidak’s multiple comparison test. (B) Kaplan–Meier survival analysis. TAT with 125
kBq/g and 165 kBq/g 213Bi-Anti-hPD-L1 mAb significantly increased survival (MS = 64 and 67 days,
respectively) compared to PBS control group (MS = 47.5 days, **** p < 0.0001). Survival was not
significantly different in both isotype control groups compared to PBS control group. The p-values
were determined by log-rank test. (C) Mean weight variation in each group is expressed as percent
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More precisely, a few days after TAT and throughout the follow up, M113PD-L1+

melanoma development was significantly delayed in mice injected with 125 and 165
kBq/g of 213Bi-anti-hPD-L1 mAb compared to PBS control group (**** p < 0.0001 for both
groups). This impact on tumor progression resulted in improved survival (Figure 4B).
Median survival was indeed 64 and 67 days in the groups treated with TAT at 125 and
165 kBq/g of 213Bi-anti-hPD-L1 mAb, respectively, compared to PBS control group (MS =
47.5 days, **** p < 0.0001) or compared to each relevant 213Bi-IgG2bκ isotype control group
at 125 kBq/g (MS = 49 days, **** p < 0.0001) or 165 kBq/g (MS = 53 days, *** p = 0.0008).
No significant survival difference was observed between the two groups treated with
TAT using radiolabeled anti-hPD-L1 mAb. In addition, weight follow up, as assessed by
percentage weight variation compared to initial body weight, did not demonstrate any
major variation between the groups treated with radiolabeled mAb or receiving only PBS
(Figure 4C). However, one mouse died early after injection of 165 kBq/g of 213Bi-anti-
hPD-L1 mAb due to undefined reasons, which implies that this activity may induce acute
toxicity. All these results demonstrate that TAT using bismuth-213 and targeting PD-L1 was
efficient in this melanoma preclinical model and suggest that optimal treatment activity
was 125 kBq/g.



Cancers 2021, 13, 1256 10 of 15

3.4. Toxicity after TAT Using 213Bi-anti-hPD-L1 mAb in M113PD-L1+ Melanoma Xenograft Model

Hematologic toxicity was assessed in animals treated with TAT at 125 and 165 kg/g
of 213Bi-anti-hPD-L1 mAb and in PBS control animals. Platelets and RBC counts were
evaluated before tumor engraftment (T0), 20 to 28 days after TAT (intermediate), and at the
end point. As already observed during the dose escalation study, we noted a significant
decrease in platelet numbers in both groups treated with TAT 20 to 28 days after injection
of 213Bi-anti-hPD-L1 mAb (**** p < 0.0001), and the amount of platelets was not restored at
the end point (** p = 0.0023, **** p < 0.0001) (Figure 5A).
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CBC were performed before TAT (T0), 20 to 28 days after TAT (Intermediate), and at end point. Other
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TAT had no impact on RBC count (Figure 5B). Toxicity to bone marrow, liver, and
kidneys was also investigated in the mice treated with TAT or receiving only PBS at the
end point to compare with status before xenograft (T0). Dosing of Flt3-Ligand in plasma
showed a significant increase of its concentration at the end point in animals treated with
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165 kBq/g (**** p < 0.0001) of 213Bi-anti-hPD-L1 mAb (Figure 5C). We observed a similar
toxicity with 165 kBq/g of 213Bi-isotype control mAb (data not shown). These data are
consistent with the dose escalation study results and confirmed that TAT targeting PD-
L1 induced some bone marrow toxicity, especially at 165 kg/g, and reinforced the use
of 125 kBq/g for therapy. No increase was observed for AST, ALT, or urea after TAT,
attesting that this treatment and the activities selected did not impair liver or kidney
function (Figure 5D–F).

3.5. Assessment of 213Bi-anti-hPD-L1 mAb Efficacy in M113WT Melanoma Xenograft Model

Based on anti-tumor response and toxicity study, the previous results demonstrated
that TAT should be performed with 125 kBq/g. To confirm that the TAT efficacy we
observed was a result of a specific tumor targeting, we repeated the same experiment in
mice engrafted with M113WT melanoma tumors that did not express PD-L1. Seven days
after M113WT tumor graft, animals were treated with either 125 kBq/g of 213Bi-anti-hPD-L1
mAb or 213Bi-IgG2bκ isotype control, and control animals received 100 µL of PBS. In this
experiment, tumor growth and survival appeared identical in all the groups independent
of the treatment received by the animals (Figure 6). These data demonstrate that TAT
efficacy in the M113PD-L1+ melanoma xenograft model was indeed achieved because of
PD-L1-specific tumor targeting.
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Figure 6. TAT using 213Bi-anti-hPD-L1 mAb in PD-L1 negative M113WT melanoma xenograft model.
At day 0, NSG mice were grafted subcutaneously with 1×106 M113WT melanoma cells that did not
express PD-L1. At day 7, TAT was performed by i.v. administration of 125 kBq/g 213Bi-Anti-hPD-L1
mAb (
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, n = 10), or PBS for control animals
(3, n = 14). (A) Tumor volume, represented by mean and SD, was determined sequentially from
engraftment until signs of tumor necrosis or volume reached 2000 mm3 and animals were sacrificed.
No difference was observed in tumor growth between the different groups. (B) Kaplan–Meier
survival analysis. Treatment with 125 kBq/g 213Bi-Anti-hPD-L1 mAb or 213Bi IgG2b isotype control
had no impact on survival (MS = 43 and 42 days, respectively) compared to PBS control group
(MS = 41 days).

4. Discussion

Melanoma has a high metastatic potential, which makes it the most aggressive and
lethal cutaneous cancer. Over the past decade, the development of ICI therapies with
blocking antibodies directed against anti-CTLA-4, anti-PD-1, and anti-PD-L1 has totally
changed the fate of metastatic melanoma patients thanks to their impressive therapeutic
efficacy. However, the objective response rate remains limited to 40%, which means that
other therapeutic strategies are still needed [40,41]. TAT is one of the promising treatment
strategies currently being developed in oncology [44]. TAT combines the toxicity of an
alpha-particle emitter and the specificity of a vector that can be immunologic. Comparison
of TAT and TRT with beta particle emitters labelling the same vector, in preclinical and
clinical studies, has demonstrated the superiority of alpha-particle emitters in terms of



Cancers 2021, 13, 1256 12 of 15

efficacy [45]. These results are related to the physical characteristics of alpha-particles
(high LET, short linear path limiting the toxicity to the surrounding healthy tissues) and
the fact that their efficacy is not affected by hypoxia or cell cycle status [33].

In this study, we developed and investigated the efficacy of TAT targeting PD-L1 anti-
gen in a preclinical melanoma xenograft model. PD-L1 appeared indeed a very interesting
target, as already mentioned, because of its expression on the cell surface of the tumor
cells and within the tumor microenvironment, increasing the amount of antigen to target
but also because several antibodies are already available for clinical application [19–21].
For such purpose, we used a human melanoma cell line expressing stable cell surface PD-
L1, M113PD-L1+, after transfection of a parental cell line derived from a melanoma patient
metastasis, M113WT [46]. This transfection was indispensable since melanoma cells lose
expression of PD-L1 after in vitro culture without IFNγ—that is, the main inducer of its
expression on tumor cells [13]. PD-L1 expression on M113PD-L1+ cells and tumors appeared
heterogeneous. Such heterogeneity is commonly observed between melanoma patients
but also between the different tumor sites within a patient [47]. Despite this heterogeneity,
TAT was efficient, which implies that any radiolabeled anti-hPDL1 mAb bound to one
cell expressing PD-L1 would be able to destroy the few surrounding tumor cells, and that
targeting is feasible regardless of the total amount of antigenic sites in the tumor. In B
lymphoma, TRT using radiolabeled anti-CD20 mAbs (Bexxar® and Zevalin®) have demon-
strated high clinical efficacy in relapsed or refractory patients, and Zevalin® appeared
significantly more efficient than immunotherapy with rituximab, with an overall survival
rate of 80 vs. 56% (p = 0.002) and a complete response rate of 30 vs. 16% (p = 0.04) [48].
Because of TRT’s unique mechanisms of action, clinical use of a radiolabeled anti-PD-L1
mAb could be of great interest to overcome the limitations observed with current ICI
therapies. Considering the short half-life of alpha emitters, such as bismuth-213 (45 min)
or astatine-211 (7 h), anti-PD-L1 TAT could also be used in combination with nivolumab to
improve anti-tumor response.

It has been recently shown in vitro and in vivo that PD-L1 expression on a tumor is
transiently increased after irradiation and, in particular, when DNA-double strand breaks
are induced [49–51]. Therefore, it would be interesting to confirm by molecular imaging
or other means if TAT with 213Bi-anti-hPD-L1 mAb can induce upregulation of PD-L1
expression and then investigate fractionated TAT to further improve treatment efficacy.

One of the major limitations of our xenograft model is the animal immunodeficiency,
which is preventing, on the one hand, analysis of TAT impact on the immune cells that
constitutively express PD-L1, and, on the other hand, analysis of endogenous immune
response. Concerning TAT toxicity, the study by Josefsson et al. is providing interesting
dosimetric data. They demonstrated that the spleen was expected to receive the highest
activity deposit, followed by the tumor, liver, and thymus and that the dose-limiting organ
would be the bone marrow [31]. This supports the feasibility of targeting PD-L1 with TAT
since the spleen is not considered as a vital organ, the liver is quite a radioresistant organ,
and thymus function is reduced in adults. Concerning the impact on endogenous immune
response, it would be interesting to use an immunocompetent melanoma tumor model.
Alternatively, since combination therapies may provide synergistic effects and better tumor
control, we are currently investigating the potential of combining TAT with 213Bi-anti-hPD-
L1 mAb and adoptive transfer of tumor-specific T-cells in the same preclinical human
melanoma model.

5. Conclusions

This study showed that TAT targeting PD-L1 in a human melanoma xenograft model
was associated with efficient anti-tumor response, as demonstrated by significant delay
in tumor growth and improved survival with minimal hematologic toxicity. This demon-
strates that anti-PD-L1 antibodies could be used as theranostics in molecular imaging to
select patients for ICI therapy and assess response to treatment but also in TAT to target
the tumor and its stroma.
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